Umwelt 🎲 Bundesamt

CERTIFICATE

of Product Conformity (QAL1)

Certificate No.: 0000039320_02

Certified AMS:	Modell 49i for O ₃
Manufacturer:	Thermo Fisher Scientific 27, Forge Parkway Franklin, MA 02038 USA
Test Institute:	TÜV Rheinland Energy GmbH This is to certify that the AMS has been tested and found to comply with the standards VDI 4202-1 (2018), EN 14625 (2012), EN 15267-1 (2009) and EN 15267-2 (2009).

Certification is awarded in respect of the conditions stated in this certificate (this certificate contains 17 pages).

The present certificate replaces certificate 0000039320_01 dated 22 July 2018.

Publication in the German Federal Gazette (BAnz) of 08 April 2006

German Environment Agency Dessau, 14 July 2023

Micel 4

Dr. Marcel Langner Head of Section II 4

www.umwelt-tuv.eu tre@umwelt-tuv.eu Tel. + 49 221 806-5200 Suitability Tested Complying with 2008/50/EC EN 15267 Regular Surveillance

www.tuv.com ID 0000039320

This certificate will expire on: 22 July 2028

TÜV Rheinland Energy GmbH Cologne, 13 July 2023

P. Pet lin

ppa. Dr. Peter Wilbring

TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

Test institute accredited to EN ISO/IEC 17025 by DAkkS (German Accreditation Body). This accreditation is limited to the accreditation scope defined in the enclosure to the certificate D-PL-11120-02-00.

qal1.de

info@qal.de

page 1 of 17

Test report: Initial certification:	936/21203248/B1 dated 5 January 2006 Addendum 936/21221382/A dated 21 March 2013 23 July 2013
Expiry date:	22 July 2028
Certificate:	Renewal (of previous certificate 0000039320_01 of 22 July 2018 valid until 22 July 2023)
Publication:	BAnz. 08 April 2006, number 70, p. 2653, chapter IV number 3.2

Approved application

The tested AMS is suitable for continuous ambient air monitoring of O₃ (stationary operation).

The suitability of the AMS for these applications was assessed based on a laboratory test and a 3-month field test.

The AMS is approved for an ambient temperature range of +5° to 40°C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the measured values relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the intended use.


Basis of the certification

This certification is based on:

- Test report 936/21203248/B1 dated 5 January 2006 of TÜV Immissionsschutz und Energiesysteme GmbH
- Addendum 936/21221382/A dated 21 March 2013 of TÜV Rheinland Energie und Umwelt GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

Umwelt 🍞 Bundesamt

Certificate: 0000039320_02 / 14 July 2023

Publication in the German Federal Gazette: BAnz. 8 April 2006, number 70, p. 2653, chapter IV number 3.2, Announcement by UBA dated 21 February 2006:

AMS designation:

Ozone Analyzer Model 49i

Manufacturer:

Thermo Electron Corporation Franklin, MA 02038 USA and 91056 Erlangen

Field of application:

For continuous ambient air monitoring of O₃ (stationary operation)

Measuring ranges during the performance test:

O₃ 0 - 360 μg/m³ 0 - 500 μg/m³

Software version: Version: V 01.01.02.105

Test institute:

TÜV Immissionsschutz und Energiesysteme GmbH, Cologne TÜV Rheinland Group Report No.: 936/21203248/B1 dated 05 January 2006

Publication in the German Federal Gazette: BAnz. 20 April 2007, number 75, p. 4139, Chap. IV notification 1, Announcement by UBA dated 12 April 2007:

1 Notification of Federal Environment Agency

The new name of Thermo Electron Corp., Franklin, USA, is Thermo Fisher Scientific, Franklin, USA.

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme, 51101 Köln, Dr. Peter Wilbring, dated 20 December 2006

Publication in the German Federal Gazette: BAnz. 03 September 2008, number 133, p. 3243, Chap. IV notification 15, Announcement by UBA dated 12 August 2008:

15 Notification as regards Federal Environment Agency notice of 21 February 2006 (BAnz. p. 2655)

The current software version for the Model 49i air quality monitor manufactured by Thermo Fisher Scientific is:

V 01.05.00 (105115-00)

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 10 March 2008

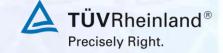
Publication in the German Federal Gazette: BAnz. 25 August 2009, number 125, p. 2929, Chap. III notification 19, Announcement by UBA dated 3 August 2009:

19 Notification as regards Federal Environment Agency notice of 21 February 2006 (BAnz. p. 2655)

The current software version for the Model 49i air quality monitor manufactured by Thermo Fisher Scientific is:

V 01.06.01 (108459-00)

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 1 April 2009


Publication in the German Federal Gazette: BAnz. 28 July 2010, number 111, p. 2597, Chap. III notification 7, Announcement by UBA dated 12 July 2010:

7 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2655) and of 3 August 2009 (BAnz. p. 2936)

The Model 49i air quality monitor manufactured by Thermo Fisher Scientific can also be used with the PU1959-N86-3.07 sample gas pump manufactured by KNF.

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 23 March 2010

Publication in the German Federal Gazette: BAnz. 29 July 2011, number 113, p. 2725, Chap. III notification 21, Announcement by UBA dated 15 July 2011:

21 Notification as regards Federal Environment Agency (UBA) notices of 12 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 12 July 2010 (BAnz. p. 2597, chapter III, notification 7)

The current software version for the Model 49i air quality monitor for O_3 manufactured by Thermo Fisher Scientific is:

V 01.06.04 (109898-00)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 30 March 2011

Publication in the German Federal Gazette: BAnz. 2 March 2012, number 36, p. 920, Chap. V notification 1, Announcement by UBA dated 23 February 2012:

1 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 15 July 2011 (BAnz. p. 2725, chapter III, notification 21)

The current software version for the Model 49i air quality monitor for ozone manufac-tured by Thermo Fisher Scientific is:

V 01.06.08 (111276-00)

Instead of the measurement cell used so far that consists of the polyurethanecoated aluminium tube, an alternative measurement cell can be used which consists of an aluminium tube and an integrated FEP hose (FEP: fluorinated ethylene propylene).

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 17 November 2011

Umwelt 🎧 Bundesamt

Certificate: 0000039320_02 / 14 July 2023

Publication in the German Federal Gazette: BAnz AT 20.07.2012 B11, Chap. IV notification 26, Announcement by UBA dated 06 July 2012:

26 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) und of 23 February 2012 (BAnz. p. 920, chapter V notification 1)

The Model 49i air quality monitor for O_3 manufactured by Thermo Fisher Scientific will be equipped with the PU2737-N86 vacuum pump manufactured by KNF in the future.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 20 March 2012

Publication in the German Federal Gazette: BAnz AT 23.07.2013 B4, Chap. V notification 22, Announcement by UBA dated 3 July 2013:

22 Notification on announcements of the Federal Environmental Agency of 21 February 2006 (BAnz. p. 2929, chapter IV number 3.2) and of 6 July 2012 (BAnz. AT of 20 July 2012 B11, chapter IV, notification 26)

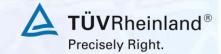
The Model 49i measuring system for O_3 , manufactured by Thermo Fisher Scientific, fulfils the requirements of EN 14625 (December 2012).

In addition, the production and quality management system of the measuring system meet the requirements of EN 15267.

The performance test report no. 936/21203248/B1, a statement of TÜV Rheinland Energie und Umwelt GmbH dated 17 November 2011 as well as the addendum as integral part of report no. 936/21221382/A are available online at www.qal1.de.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 21 March 2013

Publication in the German Federal Gazette: BAnz AT 01.04.2014 B12, Chap. VI notification 35, Announcement by UBA dated 27 February 2014:


35 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 3 July 2013 (BAnz AT 23.07.2013 B4, chapter V notification 22)

Production of the Arcturus Bd. 101491-xx processor board for the Model 49i air quality monitor for O_3 manufactured by Thermo Fisher Scientific has been discontinued and replaced by the Arcturus Bd. 110570-xx processor board.

The current software version of the measuring system is: V 02.00.00 (113421-00)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 1 October 2013

Publication in the German Federal Gazette: BAnz AT 05.08.2014 B11, Chap. V notification 23, Announcement by UBA dated 17 July 2014:

23 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter VI notification 35)

The detector unit of the Model 49i ozone analyzer manufactured by Thermo Fisher Scientific has been re-engineered in order to increase production safety regarding earthing/insulation.

Addendum no. 936/21221382/A to the original test report has been revised and is now available online as addendum no. 936/21221382/A1 at www.qal1.de.

The current software version of the model 49i measuring system for O₃ manufactured by Thermo Fisher Scientific is:

V 02.00.04 (114183-00)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 29 March 2014

Publication in the German Federal Gazette: BAnz AT 02.04.2015 B5, Chap. IV notification 19, Announcement by UBA dated 25 February 2015:

19 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 17 July 2014 (BAnz AT 05.08.2014 B11, chapter V notification 23)

The solenoid values (SV-111747-501) that had been used so far for the Model 49i O_3 analyser manufactured by Thermo Fisher Scientific, have been replaced by new solenoid values (KL344-T-1S1-C204).

The current software version of the model 49i measuring system for O₃ manufactured by Thermo Fisher Scientific is: V 02.02.01 (114620-00)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 22 September 2014

Publication in the German Federal Gazette: BAnz AT 14.03.2016 B7, Chap. V notification 15, Announcement by UBA dated 18 February 2016:

15 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 25 February 2015 (BAnz AT 02.04.2015 B5, chapter IV notification 19)

The current software version of the model 49i measuring system for O₃ manufactured by Thermo Fisher Scientific is: V 02.02.06

Ventilator EBM-Papst 8314 HL may be used instead of the ventilator that has been in use so far.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 22 October 2015

Publication in the German Federal Gazette: BAnz AT 26.03.2019 B7, Chap. IV notification 72, Announcement by UBA dated 27 February 2019:

72 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 18 February 2016 (BAnz AT 14.03.2016 B7, chapter V notification 15)

The model 49i ambient air quality measuring system for O_3 manufactured by Thermo Fisher Scientific may also use connectors manufactured by HAM-LET for its gas lines separately or in combination with those provided by Swagelok. The default lamp intensity setting is now 50%.

Statement issued by TÜV Rheinland Energy GmbH dated 10 January 2019

Publication in the German Federal Gazette: BAnz AT 05.08.2021 B5, Chap. IV notification 14, Announcement by UBA dated 29 June 2021:

 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 27 February 2019 (BAnz AT 26.03.2019 B7, chapter IV notification 72)
 The latest software version of the Thermo Fisher Scientific measuring system Model 49i for O₃ is: V 03.00.01
 In addition to this revision number, the following interim version is also valid: V 03.00.00
 Statement issued by TÜV Rheinland Energy GmbH dated 25 February 2021

gal1.de

info@gal.de

Publication in the German Federal Gazette: BAnz AT 28.07.2022 B4, Chap. III notification 48, Announcement by UBA dated 28 June 2022:

48 Notification as regards Federal Environment Agency (UBA) notices of 21 February 2006 (BAnz. p. 2653, chapter IV number 3.2) and of 29 June 2021 (BAnz AT 05.08.2021 B5, chapter IV notification 14)

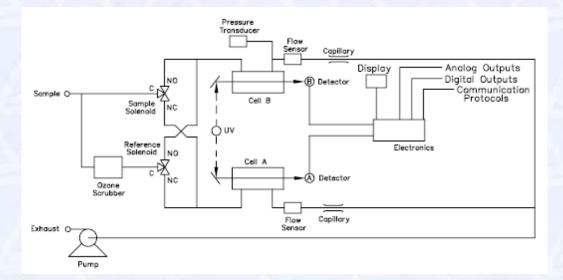
The following hardware changes have been introduced for the Model 49i measuring device for O_3 from Thermo Fisher Scientific:

- The measuring device can now also be equipped with the Arcturus CPU (53281) processor board.

- The measuring device can now also be equipped with a SUNON housing fan (Art. No. PMD2408PMB-A).

Statement issued by TÜV Rheinland Energy GmbH dated 18 May 2022

Certified product


This certificate applies to automated measurement systems conforming to the following description:

The measuring principle of the Model 49i measuring system relies on the determination of light absorption caused by the gas to be measured in the anges of wave lengths characteristic of this gas, which, for ozone, is at 254 nm (UV) and thus complies with the reference method described in standard EN 14625.

The ambient air sample is sucked through the bulkhead connection designated SAMPLE into the Model 49i measuring system and divided into two flows. One of these gas flows passes through an ozone scrubber and serves as reference gas (I_0). The reference gas then flows toward the solenoid valve. The sample gas (I) flows to the sampling solenoid valve directly. The solenoid valves alternate between reference and sample gas flows between cells A and B every ten seconds. When cell A is filled with reference gas, cell B is filled with sample gas and vice versa.

Detectors A and B measure the UV light intensities of both cells. When the solenoid valves direct the reference and sample gas to the respective opposite cell, the light intensities are disregarded for a few seconds in order to purge the cells. The Model 49i measuring system calculates the ozone concentration in each cell. The average concentration is shown on the front display and produced via analogue outputs. The measurement data are provided via serial or Ethernet interface.

The following figure illustrates the spatial configuration of the analyser assemblies.

General notes

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacture of the certified product. Both the product and the quality management systems shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate. This certification mark may be applied to the product or used in advertising materials for the certified product.

Umwelt 🎲 Bundesamt

Certificate: 0000039320_02 / 14 July 2023

This document as well as the certification mark remains property of TÜV Rheinland Energy GmbH. With revocation of the publication the certificate loses its validity. After the expiration of the certificate and on requests of the TÜV Rheinland Energy GmbH this document shall be returned and the certificate mark must not be employed anymore.

The relevant version of this certificate and its expiration is also accessible on the internet: **gal1.de**.

History of documents

Certification of Modell 49i is based on the documents listed below and the regular, continuous monitoring of the Quality Management System of the manufacturer:

Basic test

Test report: 936/21203248/B1 dated 5 January 2006 TÜV Immissionsschutz und Energiesysteme GmbH Publication: BAnz. 08 April 2006, number 70, p. 2653, chapter IV number 3.2 UBA announcement dated 21 February 2006

Notifications

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 20 December 2006 Publication: BAnz. 20 April 2007, number 75, p. 4139, chapter IV notification 1 UBA announcement dated 12 April 2007 (change of campany name)

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 10 March 2008 Publication: BAnz. 03 September 2008, number 133, p. 3243, chapter IV notification 15 UBA announcement dated 12 August 2008 (Software changes)

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 1 April 2009 Publication: BAnz. 25 August 2009, number 125, p. 2929, chapter III notification 19 UBA announcement dated 3 August 2009 (Software changes)

Statement issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH dated 23 March 2010 Publication: BAnz. 28 July 2010, number 111, p. 2597, chapter III notification 7 UBA announcement dated 12 July 2010 (pump)

Umwelt 🎲 Bundesamt

Certificate: 0000039320_02 / 14 July 2023

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 30 March 2011 Publication: BAnz. 29 July 2011, number 113, p. 2725, chapter III notification 21 UBA announcement dated 15 July 2011 (Software changes)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 17 November 2011 Publication: BAnz. 02 March 2012, number 36, p. 920, chapter V notification 1 UBA announcement dated 23 February 2012 (Software measurement cell)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 20 March 2012 Publication: BAnz AT 20.07.2012 B11, chapter IV notification 26 UBA announcement dated 6 July 2012 (pump)

Initial certification according to EN 15267

Certificate No. 0000039320_00:20 August 2013Expiry date of the certificate:22 July 2018

Test report: 936/21203248/B1 dated 5 January 2006 TÜV Immissionsschutz und Energiesysteme GmbH Addendum 936/21221382/A vom 21 March 2013 der TÜV Rheinland Energie und Umwelt GmbH Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 21 March 2013 Publication: BAnz AT 23.07.2013 B4, chapter V number 22 UBA announcement dated 3 July 2013

Notifications

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 1 October 2013 Publication: BAnz AT 01.04.2014 B12, chapter VI notification 35 UBA announcement dated 27 February 2014 (Software changes)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 29 March 2014 Publication: BAnz AT 05.08.2014 B11, chapter V notification 23 UBA announcement dated 17 July 2014 (revision of the addendum and software changes)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 22 September 2014 Publication: BAnz AT 02.04.2015 B5, chapter IV notification 19 UBA announcement dated 25 February 2015 (replacement of the solenoid valve and software changes)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 22 October 2015 Publication: BAnz AT 14.03.2016 B7, chapter V notification 15 UBA announcement dated 18 February 2016 (Software changes and alternative fan)

Renewal of certificate

Certificate No. 0000039320_01: 22 July 2018 Expiry date of the certificate: 22 July 2023

Notifications

Statement issued by TÜV Rheinland Energy GmbH dated 10 January 2019 Publication: BAnz AT 26.03.2019 B7, chapter IV notification 72 UBA announcement dated 27 February 2019 (Hardware changes)

Statement issued by TÜV Rheinland Energy GmbH dated 25 February 2021 Publication: BAnz AT 05.08.2021 B5, chapter IV notification 14 UBA announcement dated 29 June 2021 (Software changeSoftwareänderung)

Statement issued by TÜV Rheinland Energy GmbH dated 18 May 2022 Publication: BAnz AT 28.07.2022 B4, chapter III notification 48 UBA announcement dated 28 June 2022 (Hardware changes)

Renewal of certificate

Certificate No. 0000039320_02:	14 July 2023
Expiry date of the certificate:	22 July 2028



Expanded uncertainty laboratory, system 1

Measured component: O3 Th-Allert treeshold: Total treeshold:	Measuring device:	Thermo Fisher Scientific Model 49i					Serial number:	r. Gerät 1	
$ \begin{array}{ $	ured component:					ŧ	Alert threshold		Iom/Iomu
	No.	Performance characteristic	Perform	ance criterion	Result	Partial	uncertainty	Square of partial uncertainty	
	-	Repeatability standard deviation at zero		.0 nmol/mol	0,100	u _{r,z}	0,03	0,0007	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Repeatability standard deviation at 1h-limit value		3.0 nmol/mol	0,100	Ur,Ih	0,03	0,0007	
Sensitivity coefficient of sample gas pressure at th-limit value<	e	"lack of fit" at 1h-limit value		6 of meas. value	1,500	ui,Ih	1,04	1,0800	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	Sensitivity coefficient of sample gas pressure at 1h-limit value		nmol/mol/kPa	0,100	ugp	1,04	1,0800	
Sensitivity coefficient of surrounding temperature at fh-limit value is 1.0 mol/mol/M is 0.230 us 0.5392 Sensitivity coefficient of electrical voltage at 1h-limit value is 0.000 uv 0.30 0.30 0.0865 Interferent H ₂ 0 with 21 mmol/mol is 0.0100 uvizo 0.300 uvizo 0.107 1.1427 Interferent H ₂ 0 with 21 mmol/mol is 0.100 uvizo 0.100 uvizo 1.107 1.1427 Interferent H ₂ 0 with 21 mmol/mol is 0.100 uvizo 0.760 uvizo 1.107 1.1427 Interferent Toluene with 0,5 µmol/mol is 0.100 uvizo 0.100 uvizo 0.107 0.707 Interferent Xylene with 0,5 µmol/mol is 0.100 uvizo 0.700 uvizo 0.706 0.707 Interferent Xylene with 0,5 µmol/mol is 0.100 uvizo 0.700 uvizo 0.706 0.706 0.706 0.707 0.707 0.706 0.6280 0.6280 0.6280 0.6280 0.6280 0.6280 0.6280 0.6280 0.6280 0.6280	5	Sensitivity coefficient of sample gas temperature at 1h-limit value		0 nmol/mol/K	0,054	ugt	0,56	0,3149	ž
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Sensitivity coefficient of surrounding temperature at 1h-limit value		0 nmol/mol/K	-0,230	u _{st}	-1,59	2,5392	
Interferent H ₂ 0 with 21 mmol/mol is 10 mmol/mol (Sen) -1,07 -1,07 1,1427 Interferent H ₂ 0 with 21 mmol/mol is 10 mmol/mol (Sen) -1,640 Untpos -1,07 1,1427 Interferent Toluene with 0,5 µmol/mol is 5.0 mmol/mol (Zero) 0,100 Untpos 0,79 0,6520 Interferent Xylene with 0,5 µmol/mol is 5.0 mmol/mol (Zero) 0,070 or 0,6520 Interferent Xylene with 0,5 µmol/mol is 5.0 mmol/mol (Zero) 0,070 or 0,6520 Interferent Xylene with 0,5 µmol/mol is 5.0 mmol/mol (Zero) 0,070 or 0,6520 Interferent Xylene with 0,5 µmol/mol is 0,940 Unt.neg 3,150 Unt.neg 0,736 Interferent Xylene with 0,5 µmol/mol is 0,940 Untneg 0,79 0,65280 0,6000 Interference sample/calibration port is 1% 0,000 Unterference 1,4400 0,0000 0,0000 0,0000 0,600 <	7	Sensitivity coefficient of electrical voltage at 1h-limit value		30 nmol/mol/V	0,020	۸v	0,30	0,0885	
$\frac{1.14}{1.14} = \frac{1.14}{1.14} = \frac{1.11}{1.14} = \frac{1.11}{1.11} = \frac{1.11}{1.14} = \frac{1.11}{1.14$	cœ	Interferent H_0.0.1 thereofered		nmol/mol (Zero)	-0,980		1 07	1 1127	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00		1	imol/mol (Span)	-1,640	uH20	10.1-	1,1421	
$\frac{1}{10000000000000000000000000000000000$	48 A	Interferent Toluene with 0.5 umol/mol		nmol/mol (Zero)	0,100	Uint,pos			
Interferent Xylene with 0,5 µmol/mol \leq 5.0 mmol/mol (Zero) 0,100 0,130 0,130 Nerraging effect \leq 5.0 mmol/mol (Span) 0,940 $u_{int, neg}$ 0,73 Nerraging effect \leq 7.0% of meas. value 3,150 u_{ev} 2,18 4,7628 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 2,18 4,7628 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 2,18 4,7628 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 0,000 0,000 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 0,000 0,000 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 0,000 0,000 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 0,000 0,000 Nomentation port \leq 7.0% of meas. value 3,150 u_{ev} 1,200 1,4400 Nomentation port \leq 7.0% of meas. value 2,000 u_{ev} 1,200 1,4400 Nomentation port \leq 7.0% \leq 7.0% u_{ev} u_{ev} 0,000 Nomentation port \leq 7.0% \leq 7.0% u_{ev} u_{ev}	8			mol/mol (Span)	0,970		02.0	0 6380	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	00	jo meljo mer. ∃ V daživi o noriji X ta osnobrotku		nmol/mol (Zero)	0,100	5	0,13	0,0200	
Averaging effect \leq 7.0% of meas. value $3,150$ u_{av} $2,18$ $4,7628$ Difference sample/calibration port \leq 1% $0,000$ u_{avc} $0,000$ $0,000$ Nucertainty of test gas \leq 3% $2,000$ u_{cg} $1,20$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $1,200$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $1,200$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $1,200$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $0,000$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $0,000$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $0,000$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $0,000$ $0,000$ Amountainty of test gas \leq 3% $2,000$ u_{cg} $0,000$ $0,000$ Amountainto u_{cg} u_{cg} $0,000$ u_{cg} $0,000$ Amountainto u_{cg} u_{cg} u_{cg} u_{cg} u_{cg} <td>00</td> <td></td> <td></td> <td>1mol/mol (Span)</td> <td>0,940</td> <td>Uint, neg</td> <td></td> <td></td> <td></td>	00			1mol/mol (Span)	0,940	Uint, neg			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	9	Averaging effect		6 of meas. value	3,150	Uav	2,18	4,7628	
Uncertainty of test gas ≤ 3% 2,000 U ₂ 1,20 1,4100 Combined standard uncertainty Uc 3,6163 Expanded uncertainty U 7,2326 Relative expanded uncertainty W 6,03 Maximum allowed expanded uncertainty Wreq 15	18	Difference sample/calibration port	v	1%	0,000	U _{Asc}	0,00	0,0000	
u _c 3,6163 U 7,2326 W 6,03 Meq 15	21	Uncertainty of test gas	v	3%	2,000	u _{cg}	1,20	1,4400	
U 7,2326 W 6,03 W _{req} 15				Combi	ned standa	rd uncertainty	uc	3,6163	Inmol/mol
W 6,03 M/req 15					Expande	ed uncertainty	n	7,2326	nmol/mol
Wreq 15				Relat	ive expande	ed uncertainty		6,03	%
				Maximum allow	ed expande	ed uncertainty		15	%

Expanded uncertainty laboratory, system 2

Measured component:								
	03				1h-Al	1h-Alert threshold:	120	nmol/mol
No.	Performance characteristic	Perfo	Performance criterion	Result	Partial ui	Partial uncertainty	Square of partial uncertainty	
1	Repeatability standard deviation at zero	VI	1.0 nmol/mol	0,100	Ur, Z	0,03	0,0007	
2	Repeatability standard deviation at 1h-limit value	VI	3.0 nmol/mol	0,100	Ur,IV	0,03	0,0007	
e	"lack of fit" at 1h-limit value	A 4	4.0% of meas. value	1,600	N ¹ IN	1,11	1,2288	
4	Sensitivity coefficient of sample gas pressure at 1h-limit value	vi	2.0 nmol/mol/kPa	0,090	ugp	0,94	0,8748	
5 S	Sensitivity coefficient of sample gas temperature at 1h-limit value	VI	1.0 nmol/mol/K	0,003	ugt	0,03	0,0010	
6 S	Sensitivity coefficient of surrounding temperature at 1h-limit value	VI	1.0 nmol/mol/K	-0,290	Ust	-2,01	4,0368	
7	Sensitivity coefficient of electrical voltage at 1h-limit value	VI	0.30 nmol/mol/V	0,030	۸n	0,45	0,1992	
g	Interferent H-0 with 31 mmol/mol	vi	10 nmol/mol (Zero)	-0,800		00 0-	0.9819	
00			10 nmol/mol (Span)	-1,570	CH2O	00.0	6 6 6	
å	Interferent Toli iene with 0.5 i imol/mol	vi Vi	5.0 nmol/mol (Zero)	0,070	Uint, pos			
0		S ∨I	5.0 nmol/mol (Span)	0,540	ð	07.0	0 1961	
0.0	Internet Vilane	VI	5.0 nmol/mol (Zero)	0,040	5	0,40	0,1004	
00		S 5	5.0 nmol/mol (Span)	0,500	Uint, neg			
9	Averaging effect	≤ 7	7.0% of meas. value	3,760	Uav	2,61	6,7860	
18	Difference sample/calibration port	VI	1%	0,000	UDsc	0,00	0,0000	
21	Uncertainty of test gas	VI	3%	2,000	ncg	1,20	1,4400	
			Combin	ed standard	Combined standard uncertainty	uc	3,9669	nmol/mol
				Expanded	Expanded uncertainty	n	7,9338	nmol/mol
			Relativ	e expanded	Relative expanded uncertainty	N	6,61	%
			Maximum allowed expanded uncertainty	d expanded	d uncertainty	Wred	15	%

Combined uncertainty, laboratory and field, system 1

Performance criterion
1.0 nmol/mol
3.0 nmol/mol
4.0% of meas. value
2.0 nmol/mol/kPa
1.0 nmol/mol/K
1.0 nmol/mol/K
0.30 nmol/mol/V
10 nmol/mol (Zero)
10 nmol/mol (Span)
5.0 nmol/mol (Zero)
5.0 nmol/mol (Span)
5.0 nmol/mol (Zero)
5.0 nmol/mol (Span)
7.0% of meas. value
5.0% of 3 month average
5.0 nmol/mol
5.0% of max. of cert. range
1%
3%

Combined uncertainty, laboratory and field, system 2

						Serial number:	Gerät 2	
Measured component:	03					1h-Alert threshold:	120	nmol/mol
No.	Performance characteristic		Performance criterion	Result	Parti	Partial uncertainty	Square of partial uncertainty	
1	Repeatability standard deviation at zero	vi	1.0 nmol/mol	0,100	Ur, z	0,03	0,0007	
N	Repeatability standard deviation at 1h-limit value	VI	3.0 nmol/mol	0,100	ц. Н	not considered, as ur,lh = 0,02 < ur,f		
3	"lack of fit" at 1h-limit value	vi	4.0% of meas. value	1,600	Ч [,] іл	1,11	1,2288	2
4	Sensitivity coefficient of sample gas pressure at 1h-limit value	vi	2.0 nmol/mol/kPa	0;090	ugp	0,94	0,8748	
5	Sensitivity coefficient of sample gas temperature at 1h-limit value	vi	1.0 nmol/mol/K	0,003	ugt	0,03	0,0010	
9	Sensitivity coefficient of surrounding temperature at 1h-limit value	vi	1.0 nmol/mol/K	-0,290	Ust	-2,01	4,0368	
7	Sensitivity coefficient of electrical voltage at 1h-limit value	vi	0.30 nmol/mol/V	0,030	Ν	0,45	0,1992	
č	Interferent H.O. with 21 mm//mol	vi	10 nmol/mol (Zero)	-0,800		00 0-	0.0810	1
00		vi	10 nmol/mol (Span)	-1,570	uH20	66°0-	0, 30 13	
ď	Interferent Tolviene with 0.6 umol/mol	VI	5.0 nmol/mol (Zero)	0,070	Uint, pos			
3		vi	5.0 nmol/mol (Span)	0,540	č	0.40	0 1964	
00	Interferent Villane with 0 E umel/mel	VI	5.0 nmol/mol (Zero)	0,040	5	0,43	0, 1004	
ò	Interrerent Aylene with U.5 µmol/mol	VI	5.0 nmol/mol (Span)	0,500	Uint, neg			
6	Averaging effect	VI	7.0% of meas. value	3,760	Uav	2,61	6,7860	
10	Reproducibility standard deviation under field conditions	VI	5.0% of 3 month average	0,826	Ur,f	0,99	0,9825	
11	Long term drift at zero level	vi	5.0 nmol/mol	1,040	nd, I, z	0,60	0,3605	
12	Long term drift at 1h-limit value	VI	5.0% of max. of cert. range	-1,480	nd,i,hh	-1,03	1,0514	
18	Difference sample/calibration port	vi	1%	0,000	UASC	0,00	0,0000	
21	Uncertainty of test gas	vi	3%	2,000	u _{cg}	1,20	1,4400	
-			Combine	∋d standaro	Combined standard uncertainty	'n	4,2579	Iom/Iomu
				Expanded	Expanded uncertainty		8,5159	nmol/mol
			Relativ	expanded	Relative expanded uncertainty	M	7,10	%

info@qal.de