

CERTIFICATE

of Product Conformity (QAL1)

Certificate No.: 0000053810 12

AMS designation:

Set CEM CERT 7MB1957 for CO, NO, NO₂, NO_x, SO₂, O₂ and CO₂

Manufacturer:

Siemens AG

Östliche Rheinbrückenstraße 50

76187 Karlsruhe

Germany

Test Laboratory:

TÜV Rheinland Energy GmbH

This is to certify that the AMS has been tested and found to comply with the standards EN 15267-1 (2009), EN 15267-2 (2009), EN 15267-3 (2007) and EN 14181 (2014).

Certification is awarded in respect of the conditions stated in this certificate (this certificate contains 37 pages). The present certificate replaces certificate 0000053810 11 of 05 November 2019.

Suitability Tested EN 15267 **QAL1** Certified Regular Surveillance

www.tuv.com ID 0000053810

Publication in the German Federal Gazette (BAnz) of 05 August 2021

This certificate will expire on: 04 August 2026

German Federal Environment Agency Dessau, 03 September 2021

TÜV Rheinland Energy GmbH Cologne, 02 September 2021

P. P. La.

 A. Dr. Marcel Langner Head of Section II 4.1

ppa. Dr. Peter Wilbring

www.umwelt-tuv.eu

Model 1

tre@umwelt-tuv.eu Phone: + 49 221 806-5200

TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

Test institute accredited to EN ISO/IEC 17025 by DAkkS (German Accreditation Body). This accreditation is limited to the accreditation scope defined in the enclosure to certificate D-PL-11120-02-00.

qal1.de

info@qal.de

Page 1 of 37

0000053810 12 / 03 September 2021

Test Report: 936/21242490/B of 03 May 2021

Initial certification: 05 March 2013
Expiry date: 04 August 2026

Publication: BAnz AT 05.08.2021 B5, chap. I No. 4.2

Approved application

The tested AMS is suitable for use at combustion plants according to Directive 2010/75/EU, chapter III (13th BlmSchV), plants in compliance with TA Luft and plants according to the 27th BlmSchV. Equipped with the SIPROCESS UV600-7MB2621 module the AMS is additionally suitable for waste incineration plants according to Directive 2010/75/EU, chapter IV (17th BlmSchV) for monitoring the components NO, NO₂ and SO₂. When equipped with the Ultramat 6, Ultramat 6-2K or Ultramat/Oxymant 6, the AMS is fit for use at plants according to EU Directive 2010/75/EU chapter IV (17th BlmSchV) for monitoring components CO, NO and SO₂. The measured ranges have been selected so as to ensure as broad a field of application as possible.

The suitability of the AMS for this application was assessed on the basis of a laboratory test and several field tests test at various waste incineration plants.

The AMS is approved for an ambient temperature range of +5 °C to 40 °C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the limit values and oxygen concentrations relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the intended purpose.

Basis of the certification

This certification is based on:

- Test report 936/21242490/B of 03 May 2021 issued by TÜV Rheinland Energy GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

0000053810_12 / 03 September 2021

Publication in the German Federal Gazette: BAnz AT 05.08.2021 B5, chap. I No. 4.2, UBA announcement dated 29 June 2021 :

AMS designation:

Set CEM CERT 7MB1957 for CO, NO, NO₂, NOx, SO₂, CO₂ and O₂

Manufacturer:

SIEMENS AG, Karlsruhe

Field of application:

Modular measuring system for plants requiring official approval and for plants according to the $27^{\text{th}}\,\text{BImSchV}$

Measuring ranges during performance testing:

						,
Component	Modul Typ	Certification range	Additiona	l ranges	Unit	Maintenace intervall
СО	Ultramat 23-7MB2355 - Z - T13 / T23 / T33 Ultramat 23-7MB2357 - Z - T13 /T23 / T33	0 - 200	0 - 1250	-	mg/m³	12 Months
	Ultramat 23-7MB2358 - Z - T13 / T23	0 - 375	0 - 1250	-	mg/m³	6 Months
	Ultramat 23-7MB2355 - Z - T14 / T24 / T34 Ultramat 23-7MB2357 - Z - T14 / T24 / T34	0 - 1250	0 - 6000	-	mg/m³	12 Months
	Ultramat 6 LR - Z + Y27 Ultramat 6-2K LR - Z + Y27 + Y 28 Ultramat/Oxymat 6 LR - Z + Y27 + Y28	0 - 75	0 - 1250	0 - 3000	mg/m³	6 Months
	Ultramat 6 HR - Z + Y27 Ultramat 6-2K HR - Z + Y27 + Y 28 Ultramat/Oxymat 6 HR - Z + Y27 + Y28	0 - 1000	0 - 10000	-	mg/m³	6 Months
	Ultramat 6-2K LR - HR - Z - Y27 + Y28	0 - 75 ³⁾ 0 - 1000 ⁴⁾	0 - 1250 ³⁾ 0 - 10000 ⁴⁾	-	mg/m³	6 Months
NOx	Ultramat 23-7MB2355 - Z - T13 / T23 / T33 Ultramat 23-7MB2357 - Z - T13 /T23 / T33	0 - 150 ¹⁾ 0 - 230 ²⁾	0 - 750 ¹⁾ 0 - 1150 ²⁾	0 - 2000 ¹⁾ 0 - 3067 ²⁾	mg/m³	12 Months
	Ultramat 23-7MB2358 - Z - T13 / T23	0 - 400 ¹⁾ 0 - 613 ²⁾	0 - 2000 ¹⁾ 0 - 3067 ²⁾	-	mg/m³	6 Months

Component	Modul Typ	Certification range	Additional	l ranges	Unit	Maintenace intervall
NO	SIPROCESS UV600 -7MB2621 - Z - Y17	0 - 50	0 - 200	0 - 2000	mg/m³	2 Weeks
	Ultramat 23-7MB2355 - Z - T14 / T24 / T34 Ultramat 23-7MB2357 - Z - T14 / T24 / T34	0 - 600	0 - 3000	-	mg/m³	12 Months
	Ultramat 6 LR - Z + Y27 Ultramat 6-2K LR - Z + Y27 + Y 28 Ultramat/Oxymat 6 LR - Z + Y27 + Y28	0 - 100	0 - 2000	-	mg/m³	6 Months
	Ultramat 6 HR - Z + Y27 Ultramat 6-2K HR - Z + Y27 + Y 28 Ultramat/Oxymat 6 HR - Z + Y27 + Y28	0 - 1000	0 - 10000	-	mg/m³	6 Months
	Ultramat 6-2K LR - HR - Z - Y27 + Y28	0 - 100 ³⁾ 0 - 1000 ⁴⁾	0 - 2000 ³⁾ 0 - 10000 ⁴⁾	-	mg/m³	6 Months
NO ₂	SIPROCESS UV600- 7MB2621 - Z - Y17	0 - 50	0 - 500	-	mg/m³	3 Months wir a weekly ad justement wi internal calibit tion cell, oth erwise 2 weeks
	Ultramat 23-7MB2355 - Z - T25 / T35 Ultramat 23-7MB2357 - Z - T25 / T35 Ultramat 23-7MB2358 - Z - T35	0 - 50	0 - 1000	-	mg/m³	4 Weeks
SO ₂	Ultramat 23-7MB2355 - Z - T13 / T23 / T33Ultramat 23- 7MB2357 - Z - T13 / T23 / T33	0 - 400	0 - 2000	0 - 7000	mg/m³	12 Months
	Ultramat 23-7MB2358 - Z - T13 / T23	0 - 400	0 - 2000	0 - 7000	mg/m³	6 Months
	SIPROCESS UV600- 7MB2621 - Z - Y17	0 - 75	0 - 130	0 - 2000	mg/m³	6 Months wir a weekly ad justement wir internal calibition cell, oth erwise 2 weeks
	Ultramat 6 LR - Z + Y27 Ultramat 6-2K LR - Z + Y27 + Y 28 Ultramat/Oxymat 6 LR - Z + Y27 + Y28	0 - 75	0 - 1500	-	mg/m³	6 Months
	Ultramat 23-7MB2355 - Z - T25 / T35 Ultramat 23-7MB2357 - Z - T25 / T35 Ultramat 23-7MB2358 - Z - T35	0 - 70	0 - 75	0 - 1250	mg/m³	4 Weeks

0000053810_12 / 03 September 2021

Component	Modul Typ	Certification range	Additiona	l ranges	Unit	Maintenace intervall
CO ₂	Ultramat 23-7MB2355 - Z - T13 / T23 / T33 Ultramat 23-7MB2357 - Z - T13 / T23 / T33	/ T23 / T33 3-7MB2357 0 - 25		-	Vol%	12 Months
	SIPROCESS GA700 Ultramat 7	0 - 25	-	-	Vol%	12 Months
O _{2 (paramagnetisch)}	Ultramat 23-7MB2355 - Z - T13/T14 Ultramat 23-7MB2357 - Z - T13/T14	0 - 25	-	-	Vol%	12 Months
	Ultramat 23-7MB2358 - Z - T13/T14	0 - 25	-	-	Vol%	6 Months
	Oxymat 6 - Z + Y27	0 - 25	0 - 5	-	Vol%	6 Months
	Ultramat / Oxymat 6 - Z + Y27 + Y28	0 - 25	0 - 5	-	Vol%	6 Months
	SIPROCESS GA700 Oxymat 7	0 - 25	0 - 5	-	Vol%	12 Months
O ₂ (elektrochemisch)	Ultramat 23-7MB2355 - Z - T23/T24/T25 Ultramat 23-7MB2357 - Z - T23/T24/T25	0 - 25	0 - 5	-	Vol%	12 Months
A state as NO	Ultramat 23-7MB2358 - Z - T23/T24/T25	0 - 25	0 - 5	-	Vol%	6 Months

1 state as NO

2 state as NO₂

3 small range

4 great range

Software versions:

ULTRAMAT 23-7MB2355	4.02.08
ULTRAMAT 23-7MB2357	4.02.08
ULTRAMAT 23-7MB2358	4.02.08
ULTRAMAT 6	4.8.8
ULTRAMAT 6-2K	4.8.8
OXYMAT 6	4.8.8
ULTRAMAT / OXYMAT 6	4.8.8

SIEMENS SIMATIC

Set CEM CERT 7MB1957 Rev. 1.0

SIPROCESS UV600-7MB2621

BCU: 9150883_3.003 Gas module: 9137582_3.002 UV Module: 9139736 3.005

SIPROCESS GA700 ULTRAMAT 7 CALC 1.70.00 / ADU 1.40.02 SIPROCESS GA700 OXYMAT 7 CALC 1.40.08 / ADU 1.30.00

Restriction:

When using the ULTRAMAT 23-7MB2355, ULTRAMAT 23-7MB2357 or ULTRAMAT 23-7MB2358 modules, the system cabinet must be equipped with an A/C unit.

Notes:

1. When equipped with the SIPROCESS UV600-7MB2621 module for monitoring NO, NO₂ and SO₂ or with the ULTRAMAT 6, ULTRAMAT 6-2K and ULTRAMAT / OXYMAT 6 module for monitoring CO, NO and SO₂ as well as the ULTRAMAT 23-7MB2355-Z-T25/T35, ULTRAMAT 23-7MB2357-Z-T25/T35 and ULTRAMAT 23-7MB2358-Z-T25/T35 module for SO₂, the modular Set CEM CERT 7MB1957 measuring system may also be used for applications according to IED, chapter IV (17th BImSchV).

0000053810_12 / 03 September 2021

- 2. For automatic zero adjustments, the modules of the ULTRAMAT 23 series must be operated at a 24h interval. The modules of the ULTRAMAT 6 series must be operated at a one-week interval for automatic span point adjustments.
- 3. For improved cross-sensitivity to CO₂ at the CO measurement channel, the ULTRAMAT 23-7MB2355, ULTRAMAT 23-7MB2357 and ULTRAMAT 23-7MB2358 modules of the Set CEM CERT 7MB1957 series have been sold with a modified CO receiver since April 2014 which is clearly marked by serial number E4 and onwards in the middle section.
- 4. The modules ULTRAMAT 23-7MB2355, ULTRAMAT 23-7MB2357 and ULTRAMAT 23-7MB2358 need to be operated with the Thermo-AUTOCAL feature activated.
- 5. The modular Set CEM CERT 7MB1957 measuring system may alternatively be equipped with a sampling probe (SP2000H) manufactured by M&C TechGroup Germany GmbH and a sample gas cooler (EGK 2-19) manufactured by Bühler Technologies GmbH.
- 6. The sample gas cooler (EGK 2-19) manufactured by Bühler Technologies GmbH implemented in the modular CEM CERT 7MB1957 measuring system may be equipped with a PVDF or glass cooling element. In any case, a glass cooling element shall be used for the SIPROCESS UV600-7MB2621 module.
- 7. The modular Set CEM CERT 7MB1957 measuring system for determining NOx is equipped with an NOx type gas converter CG-2 manufactured by M&C Tech Group Germany GmbH.
- 8. When adding additional modules to the Set CEM CERT 7MB1957 measuring system, each combination of modules needs to be checked for functionality as part of testing proper installation and the maintenance interval has to be determined. Maintenance work must be spread over several days in order to comply with the requirements for outage times specified by the 13th BImSchV and 17th BImSchV.
- 9. The ULTRAMAT 6, ULTRAMAT 6-2K, ULTRAMAT / OXYMAT 6 and OXYMAT 6 modules need to be operated with weekly AUTO zero and AUTO span adjustments using test gases from pressurised gas bottles.
- The Set CEM CERT 7MB1957 comes with a measuring cabinet with a degree of protection of IP40. The system cabinet can be equipped with an air conditioning unit or a ventilator unit.
- 11. It is possible to integrate the central unit of the QAL1 certified LDS 6 7MB6121 NH3 and LDS 6 7MB6121 HCl measuring systems as a single module into the system cabinet of the Set CEM CERT 7MB1957 measuring system.
- 12. Supplementary test (for the maintenance interval extension of the measuring modules SIPROCESS GA700 ULTRAMAT 7 for CO₂ and SIPROCESS GA700 OXYMAT 7 for O₂) as regards the notices of the Federal Environment Agency (UBA) of 28 June 2019 (BAnz. AT 22.07.2019, B8, chapter I, 1.5) and of 31 March 2021 (BAnz AT 03.05.2021, B9, chapter III, notification 58).

Test Report:

TÜV Rheinland Energy GmbH, Cologne Report no.: 936/21242490/B of 03 May 2021

Certified product

This certification applies to automated measurement systems conforming to the following description:

The complete tested modular Set CEM CERT-7MB2621 measuring system comprises a heated sampling probe, a heated sample gas line, a two-stage test gas cooler, the sample gas pump and a maximum of three measurement component analysers from the Ultramat 6, Ultramat 6 2-K, Oxymat 6, Ultramat/Oxymat 6, Ultramat 23-7MB2355, Ultramat 23-7MB2357, Ultramat 23-7MB2358, SIPROCESS GA700-Ultramat 7, SIPROCESS GA700-Oxymat 7 or SIPROCESS UV600-7MB2621.

Measuring cabinet	Set CEM CER	T 7MB1957 system cabinet
Probe	Manufacturer	Bühler Technologies GmbH
	Туре	Gas 222.20-Cal-twin incl. ceramic filter
Alternative probe	Manufacturer	M&C TechGroup Germany GmbH
	Туре	SP2000-H incl. ceramic filter (length 100 cm), heated to 180 °C
Heated sample gas line	Temperature	180 °C
	Length:	50 m in the field, 10 m in the lab
	Diameter	(inner):4 mm
	Material	PTFE
Compressor cooler	Manufacturer	M&C TechGroup Germany GmbH
	Туре	CSS V1-S
Alternative cooler	Manufacturer	Bühler Technologies GmbH
	Туре	EGK 2-19, 2 stage, dew point 3 °C
Sample gas pump	Manufacturer	Bühler Technologies GmbH
	Туре	P2.3:
NO _x converter	Manufacturer	M&C TechGroup Germany GmbH
	Туре	Gas Konverter CG-2
Analyser modules	Manufacturer	Siemens AG
	Туре	Ultramat 6 Ultramat 6 2-K Oxymat 6 Ultramat / Oxymat 6 Ultramat 23-7MB2355 Ultramat 23-7MB2357 Ultramat 23-7MB2358 SIPROCESS UV600
		SIPROCESS GA700 Ultramat 7/Oxymat 7

The Set CEM CERT 7MB1957 comes with a measuring cabinet with housing protection class IP40. The system cabinet can be equipped with an air conditioning unit or a ventilator unit.

A sample gas pump with integrated vapour recovery for the purpose of controlling sample gas flows is situated between the first and the second stage of cooling. A fine particle filter for dust separation is integrated in the cooler housing. Downstream of the sample gas cooler, the gas flow is divided into two to three partial flows to simultaneously supply analyser modules arranged in parallel with sample gas. Gas oversupply is led out via a bypass. A condensate filter is placed immediately upstream of each analyser modules which blocks the gas path in the event of moisture coming through in order to protect the analysers. In the Ultramat 23 measuring modules, a (heated) converter is placed upstream of the condensate filter for measuring NO_x. A three-way valve is placed in front of the pump which serves to feed zero gas for automatic zero gas adjustment (AutoCal) and is controlled via the SIMATIC. A second three-way valve is installed downstream of the pump which, controlled by SIMATIC, is able to time the supply of zero/test gases for automatic adjustments of zero and span points. Test gases may alternatively be fed manually via a third three-way valve.

General remarks

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacturing process for the certified product. Both the product and the quality management systems shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate.

This document as well as the certification mark remains property of TÜV Rheinland Energy GmbH. Upon revocation of the publication the certificate loses its validity. After the expiration of the certificate and on request of TÜV Rheinland Energy GmbH this document shall be returned and the certificate mark must no longer be used.

The relevant version of this certificate and its expiration date are also accessible on the internet at **qal1.de**.

0000053810 12 / 03 September 2021

Document history

Certification of the Set CEM CERT 7MB1957 measuring system is based on the documents listed below and the regular, continuous surveillance of the manufacturer's quality management system:

Initial certification according to EN 15267

Certificate no. 1630664-ts:

05 March 2013

Expiry date of the certificate:

04 March 2018

Test Report: 1630664 of 15 September 2012, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 05.03.2013 B10, chapter I number 6.1

UBA announcement dated 12 February 2013

Supplementary testing according to EN 15267

Certificate no. 1630664.2-ts:

23 July 2013

Expiry date of the certificate:

04 March 2018

Test Report: 1630664-2 of 15 March 2013, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 23.07.2013 B4, chapter I number 4.1

UBA announcement dated 03 July 2013

Notifications

Statement issued by TÜV Süd Industrie Service GmbH dated 17 March 2013

Publication: BAnz AT 23.07.2013 B4, chapter V notification 26

UBA announcement dated 03 July 2013

(New software version)

Supplementary testing according to EN 15267

Certificate no. 1630664.3-ts:

01 April 2014

Expiry date of the certificate:

04 March 2018

Test Report: 1630664-3 of 18 December 2013, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 01.04.2014 B12, chapter I number 4.2

UBA announcement dated 27 February 2014

Certificate no. 1630664.4a-ts

05 August 2014

Expiry date of the certificate:

04 March 2018

Test Report: 1630664-4a of 28 February 2014, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 05.08.2014 B11, chapter I number 5.3

UBA announcement dated 17 July 2014

Notifications

Statement issued by TÜV Süd Industrie Service GmbH dated 19 March 2014 Publication: BAnz AT 05.08.2014 B11, chapter V notification 3 UBA announcement dated 17 July 2014 (New software version)

Supplementary testing according to EN 15267

Certificate no. 1630664.4b-ts

05 August 2014

Expiry date of the certificate:

04 March 2018

Test Report: 1630664-4b of 28 February 2014, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 05.08.2014 B11, chapter I number 5.4

UBA announcement dated 17 July 2014

gal1.de

info@gal.de

Page 9 of 37

0000053810_12 / 03 September 2021

Certificate no. 1797266-ts:

15 April 2015

Expiry date of the certificate:

04 March 2018

Test Report: 1797266 of 18 September 2014, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 02.04.2015 B5, chapter I number 4.1

UBA announcement dated 25 February 2015

Notifications

Statement issued by TÜV Süd Industrie Service GmbH dated 18 September 2015 Publication: BAnz AT 02.04.2015 B5, chapter IV notification 43 UBA announcement dated 25 February 2015

(New software version)

Correction issued by the Federal Environment Agency on 22 July 2015

Publication: BAnz AT 26.08.2015 B4, chapter IV correction 1

UBA announcement dated 22 July 2015

(Missing second supplementary measuring range for NO_X for the

Ultramat module 23-7MB2357-Z-T13)

Supplementary testing according to EN 15267

Certificate no. 2219424-ts

08 September 2015

Expiry date of the certificate:

04 March 2018

Test Report: 2219424 of 20 March 2015, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 26.08.2015 B4, chapter I number 3.2

UBA announcement dated 22 July 2015

Notifications

Statement issued by TÜV Süd Industrie Service GmbH dated 15 October 2015

Publication: BAnz AT 14.03.2016 B7, chapter IV correction 1

UBA announcement dated 18 February 2016

(Additional second measuring range for CO for module Ultramat 23-7MB2357-Z-T13)

Supplementary testing according to EN 15267

Certificate no. 2435071ts

26 April 2016

Expiry date of the certificate:

04 March 2018

Test Report: 2435071 of 30 September 2015, TÜV SÜD Industrie Service GmbH

Publication: BAnz AT 14.03.2016 B7, chapter I number 5.1

UBA announcement dated 18 February 2016

Notifications

Statement issued by TÜV Süd Industrie Service GmbH dated 29 February 2016 Publication: BAnz AT 01.08.2016 B11, chapter V notification 29

UBA announcement dated 14 July 2016

(new software version)

Supplementary testing according to EN 15267

Certificate no. 0000053810 08

25 April 2017

Expiry date of the certificate:

04 March 2018

Test Report: 936/21230405/A of 31 August 2016 TÜV Rheinland Energy GmbH, Cologne

Publication: BAnz AT 15.03.2017 B6, chapter I number 4.1

UBA announcement dated 22 February 2017

0000053810_12 / 03 September 2021

Certificate no. 0000053810_09 08 September 2017 Expiry date of the certificate: 04 March 2018 Test Report: 936/21230405/C of 22 December 2016

TÜV Rheinland Energy GmbH, Cologne

Publication: BAnz AT 31.07.2017 B12, chapter I number 3.1

UBA announcement dated 13 July 2017

Renewal of the certificate

Certificate no. 0000053810_10: 05 March 2018 Expiry date of the certificate: 04 March 2023

Notifications

Statement issued by TÜV Rheinland Energy GmbH dated 08 December 2017 Publication: BAnz AT 26.03.2018 B8, chapter V notification 48 UBA announcement dated 21 February 2018

(Software and hardware change)

Statement issued by TÜV Rheinland Energy GmbH dated 02 May 2018 Publication: BAnz AT 17.07.2018 B9, chapter III notification 23 UBA announcement dated 03 July 2018 (Software updates)

Statement issued by TÜV Rheinland Energy GmbH dated 09 October 2018 Publication: BAnz AT 26.03.2019 B7, chapter IV notification 63 UBA announcement dated 27 February 2019 (Design and software changes)

Supplementary testing according to EN 15267

Certificate no. 0000053810_11: 05 November 2019 Expiry date of the certificate: 21 July 2024 Test Report: 936/21242490/A of 27 February 2019

TÜV Rheinland Energy GmbH, Cologne

Publication: BAnz AT 22.07.2019 B8, chapter I number 1.5

UBA announcement dated 28 June 2019

Notifications

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 17 December 2019 Publication: BAnz AT 07.05.2020 B8, chapter III notification 5 UBA announcement dated 31 March 2020 (Design and software changes)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 11. September 2020. Publication: BAnz AT 03.05.2021 B9, chapter III notification 58 UBA announcement dated 31 March 2021 (Design and software changes)

Supplementary testing according to EN 15267

Certificate no. 0000053810_12: 03 September 2021 Expiry date of the certificate: 04 August 2026 Test Report: 936/21242490/B of 03 May 2021 TÜV Rheinland Energy GmbH, Cologne

Publication: BAnz AT 05.08.2021 B5, chap. I No. 4.2

UBA announcement dated 29 June 2021:

Measuring system					
Manufacturer	Siemens AG				
AMS designation	Set CEM CERT 7MB1957 Ultra			amat 6	
Serial number of units under test	Syste	em 1 / Sy	stem 3 / Systen	1 2 / Sys	stem 4
Measuring principle	NDIR				
Test report	936/2	1230405			
Test laboratory	TÜV	Rheinland	t		
Date of report	2016-	-12-22			
Measured component	CO				
Certification range	0 -	75	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)		0.00			
Sum of positive CS at zero point			mg/m³		
Sum of negative CS at zero point			mg/m³		
Sum of postive CS at span point			mg/m³		
Sum of negative CS at span point			mg/m³		
Maximum sum of cross-sensitivities		1.00	mg/m³		
Uncertainty of cross-sensitivity	ui	0.576	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	u _D	0.614	mg/m³	0.377	(mg/m³)²
Lack of fit			mg/m³	0.052	(mg/m³)²
Zero drift from field test	U _{lof}		mg/m³	0.423	(mg/m³)²
Span drift from field test	u _{d,z}		mg/m³	0.423	, ,
	U _{d,s}		mg/m³	0.854	(mg/m³)²
Influence of ambient temperature at span	U _t		mg/m³	0.007	(mg/m³)²
Influence of supply voltage	u _v		•		
Cross-sensitivity (interference)	u _i		mg/m³	0.332	(mg/m³)²
Influence of sample gas flow	u _p	-0.079	mg/m³	0.006	$(mg/m^3)^2$
Uncertainty of reference material at 70% of certification range	u _{rm}	0.606	mg/m³	0.368	(mg/m³)²
* The larger value is used : "Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Combined standard uncertainty (u _C)	$u_c = $	$\sqrt{\sum} \left(u_{ma} \right)$	ax. i) ²	1.67	mg/m³
Total expanded uncertainty	U = u	$l_c * k = u$	ı _c * 1.96	3.27	•
Relative total expanded uncertainty	U in	% of the	ELV 50 mg/m ³		6.5
Requirement of 2010/75/EU	U in	% of the	ELV 50 mg/m ³		10.0
Requirement of EN 15267-3	U in 9	% of the I	ELV 50 mg/m³		7.5

Measuring system					
Manufacturer	Sien	nens AG			
AMS designation	Set (
Serial number of units under test	Svst	em 4			
Measuring principle	NDIF	-		, , ,	
OF THE					
Test report	936/	21230405/	С		
Test laboratory	ΤÜV	Rheinland			
Date of report	2016	-12-22			
Measured component	CO				
Certification range	0 -	1000	mg/m³		
Evaluation of the cross-sensitivity (CS) (system with largest CS)					
Sum of positive CS at zero point		0.00	mg/m³		
Sum of negative CS at zero point		0.00	mg/m³		
Sum of postive CS at span point			mg/m³		
Sum of negative CS at span point			mg/m³		
Maximum sum of cross-sensitivities			mg/m³		
Uncertainty of cross-sensitivity	Ui		mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				u²	
Standard deviation from paired measurements under field conditions *	u_D	2.042	mg/m³	4.170	$(mg/m^3)^2$
Lack of fit	U _{lof}		mg/m³	3.000	(mg/m³)²
Zero drift from field test	u _{d,z}		mg/m³	11.999	(mg/m³)²
Span drift from field test	U _{d,s}	-13.279	-	176.332	
Influence of ambient temperature at span	U _t		mg/m³	32.490	1 7
Influence of supply voltage	u _v		mg/m³	12.595	
Cross-sensitivity (interference)	u _i		mg/m³	24.651	(mg/m³)²
Influence of sample gas flow			mg/m³	0.709	(mg/m³)²
Uncertainty of reference material at 70% of certification range	u _p u _{rm}	8.083	•	65.333	(mg/m³)²
* The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"	urm	0.000	9	00.000	(9/ /
Combined standard uncertainty (u _C)	П =	$\sqrt{\sum (u_{ma})}$)2	18.20	mg/m³
Total expanded uncertainty		√ <u>/</u> (u ma u _c * k = u		35.67	•
Total expanded uncertainty	0 -	u _c K – u	c 1.30	33.07	mg/m
Relative total expanded uncertainty	U in	% of the	ELV 500 mg	g/m³	7.1
Requirement of 2010/75/EU	U in	% of the	ELV 500 mg	g/m³	10.0
Requirement of EN 15267-3	U in	% of the E	LV 500 mg/	m³	7.5

0000053810_12 / 03 September 2021

Managering system					
Measuring system	Cion	ens AG			
Manufacturer			7MB1957 L	lltramet 22	
AMS designation					1
Serial number of units under test			item 3 / Sys	tem 2 / Syste	em 4
Measuring principle	NDIR	(
Test report	936/2	21230405/0			
Test laboratory	TÜV	Rheinland			
Date of report	2016	-12-22			
Manuadamana	00				
Measured component	CO	4050	, ,		
Certification range	0 -	1250	mg/m³		
Evaluation of the cross-sensitivity (CS) (system with largest CS)					
Sum of positive CS at zero point		0.00	mg/m³		
Sum of negative CS at zero point		0.00	mg/m³		
Sum of postive CS at span point		7.75	mg/m³		
Sum of negative CS at span point		-23.38	mg/m³		
Maximum sum of cross-sensitivities		-23.38	mg/m³		
Uncertainty of cross-sensitivity	ui	-13.496	mg/m³		
Chookami, or oroco containing	и	-10.400	g/		
Calculation of the combined standard uncertainty					
Tested parameter				u²	
Standard deviation from paired measurements under field conditions *	u_D	2.228	mg/m³	4.964	(mg/m³)²
Lack of fit	U _{lof}	3.464	mg/m³	11.999	(mg/m³)²
Zero drift from field test	$u_{d,z}$	3.608	mg/m³	13.018	$(mg/m^3)^2$
Span drift from field test	$u_{d,s}$	7.939	mg/m³	63.028	$(mg/m^3)^2$
Influence of ambient temperature at span	u _t	8.609	mg/m³	74.115	$(mg/m^3)^2$
Influence of supply voltage	u_v	0.688	mg/m³	0.473	$(mg/m^3)^2$
Cross-sensitivity (interference)	ui	-13.496	mg/m³	182.142	(mg/m³)²
Influence of sample gas flow	u_p	0.000	mg/m³	0.000	(mg/m³)²
Uncertainty of reference material at 70% of certification range	u _{rm}	10.104	mg/m³	102.083	$(mg/m^3)^2$
* The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"					
Combined standard uncertainty (u _C)	u _c =	$\sqrt{\sum \left(u_{\text{max}}\right)}$	<u>)</u> 2	21.26	mg/m³
Total expanded uncertainty	υ = ι	$u_c * k = u_c$	* 1.96	41.66	mg/m³
Relative total expanded uncertainty	Uin	% of the F	LV 600 mg/	m ³	6.9
Requirement of 2010/75/EU			LV 600 mg/		10.0
			•		7.5
Requirement of EN 15267-3	U In	% of the E	LV 600 mg/r	11-	7.5

Measuring system									
Manufacturer	Siem	ens AG							
AMS designation	Set CEM CERT 7MB1957 Ultramat 6								
Serial number of units under test	System 1 / System 3 / System 2 / System 4								
Measuring principle	NDIR			0 , 0					
modeling principle	110								
Test report	936/2	1230405	/C						
Test laboratory	TÜV	Rheinlan	d						
Date of report		-12-22							
Sale of Topolic	20.0								
Measured component	NO								
Certification range	0 -	100	mg/m³						
Evaluation of the cross-sensitivity (CS) (system with largest CS)									
Sum of positive CS at zero point		3.06	mg/m³						
Sum of negative CS at zero point		0.00	3						
Sum of postive CS at span point		3.20	mg/m³						
Sum of negative CS at span point		-0.50	mg/m³						
Maximum sum of cross-sensitivities		3.20	mg/m³						
Uncertainty of cross-sensitivity	ui	1.848	mg/m³						
	~								
Calculation of the combined standard uncertainty									
Tested parameter				U ²					
Standard deviation from paired measurements under field conditions *	u_D	0.628	mg/m³	0.394	(mg/m³)²				
Lack of fit	U _{lof}	-0.924	mg/m³	0.854	(mg/m³)²				
Zero drift from field test	$u_{d,z}$	1.386	mg/m³	1.921	(mg/m³)²				
Span drift from field test	U _{d,s}	0.751	mg/m³	0.564	(mg/m³)²				
Influence of ambient temperature at span	ut	0.896	mg/m³	0.803	(mg/m³)²				
Influence of supply voltage	u_v	0.582	mg/m³	0.339	(mg/m³)²				
Cross-sensitivity (interference)	ui	1.848	mg/m³	3.415	(mg/m³)²				
Influence of sample gas flow	u_p	-0.120	mg/m³	0.014	(mg/m³)²				
Uncertainty of reference material at 70% of certification range	u _{rm}	0.808	mg/m³	0.653	(mg/m³)²				
* The larger value is used :									
"Repeatability standard deviation at set point" or									
"Standard deviation from paired measurements under field conditions"									
Combined standard uncertainty (u.)		$\sqrt{\sum (u_m)}$	<u>}2</u>	2.00					
Combined standard uncertainty (u _C)		√∠ (u _m l _c * k = ι		2.99	mg/m³				
Total expanded uncertainty	0 = 0	ı _c κ = ι	J _C 1.90	5.87	mg/m³				
Relative total expanded uncertainty	Uin	% of the	ELV 40 mg/m ³		14.7				
Requirement of 2010/75/EU			ELV 40 mg/m ³		20.0				
Requirement of EN 15267-3			ELV 40 mg/m³		15.0				

Measuring system							
Manufacturer		Sien	nens AG				
AMS designation		Set CEM CERT 7MB1957 Ultramat 6					
Serial number of un	its under test		System 1 / System 3 / System2 / Syste				
Measuring principle		NDIF	-	stem o / O	/Sternz / Gyste	7111 4	
weasumy principle		NDIF	`				
Test report		936/	21230405/	С			
Test laboratory		TÜV	Rheinland				
Date of report		2016	6-12-22				
Measured compor	nent	NO					
Certification range		0 -	1000	mg/m³			
(system with larges	cross-sensitivity (CS)						
Sum of positive CS			0.00	mg/m³			
Sum of negative CS			0.00				
Sum of postive CS			0.00	-			
Sum of negative CS			-33.10				
Maximum sum of ci			-33.10	mg/m³			
Uncertainty of cross		ui	-19.110	•			
Oriocitality of Globa	Constant	ч	10.110	9/			
Calculation of the	combined standard uncertainty						
Tested parameter					U ²		
Standard deviation f	rom paired measurements under field conditions *	u_D	5.941	mg/m³	35.295	$(mg/m^3)^2$	
Lack of fit		U _{lof}	4.041	mg/m³	16.330	$(mg/m^3)^2$	
Zero drift from field t	est	$u_{d,z}$	5.774	mg/m³	33.339	(mg/m³)²	
Span drift from field	test	$u_{\text{d},\text{s}}$	10.970	mg/m³	120.341	(mg/m³)²	
Influence of ambient	temperature at span	u _t	6.275	mg/m³	39.376	(mg/m³)²	
Influence of supply	voltage	\mathbf{u}_{v}	1.851	mg/m³	3.426	(mg/m³)²	
Cross-sensitivity (in	terference)	ui	-19.110	mg/m³	365.192	$(mg/m^3)^2$	
Influence of sample	gas flow	u_p	-0.722	mg/m³	0.521	(mg/m³)²	
Uncertainty of refere	ence material at 70% of certification range	u_{rm}	8.083	mg/m³	65.333	$(mg/m^3)^2$	
* The larger value is a							
	ard deviation at set point" or						
Standard deviation	from paired measurements under field conditions"						
Combined standard	uncertainty (u _C)	u _c =	$\sqrt{\sum \left(u_{\text{max}}\right)}$	${(i)^2}$	26.06	mg/m³	
Total expanded unc		U =	$u_c * k = u_c$	* 1.96	51.08	J	
					330	.3	
Relative total exp	anded uncertainty	U in	% of the I	ELV 500 m	g/m³	10.2	
Requirement of 20	010/75/EU	U in	% of the I	ELV 500 m	g/m³	20.0	
Requirement of EN	15267-3	U in	% of the E	LV 500 mg	g/m³	15.0	

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	Sieme	ens AG				
AMS designation	Set C	EM CEF				
Serial number of units under test	Syste	em 1 / Sv	stem 3 / S	ystem 2 / Sys	stem 4	
Measuring principle	NDIR			,		
Test report	936/2	1230405	/C			
Test laboratory	TÜV F	Rheinlan	d			
Date of report	2016-	12-22				
Measured component	NO					
Certification range	0 -	600	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.00	mg/m³			
Sum of negative CS at zero point		0.00	mg/m³			
Sum of postive CS at span point		0.00	mg/m³			
Sum of negative CS at span point		-17.04	mg/m³			
Maximum sum of cross-sensitivities		-17.04	mg/m³			
Uncertainty of cross-sensitivity	ui	-9.838	mg/m³			
Calculation of the combined standard uncertainty						
Tested parameter			, ,	U ²	/ / 2\2	
Standard deviation from paired measurements under field conditions *	\mathbf{u}_{D}	2.338	mg/m³	5.466	(mg/m³)²	
Lack of fit	U _{lof}	1.732	mg/m³	3.000	(mg/m³)²	
Zero drift from field test	$u_{d,z}$	4.850	mg/m³	23.523	(mg/m³)²	
Span drift from field test	$u_{d,s}$	6.582	mg/m³	43.323	(mg/m³)²	
Influence of ambient temperature at span	u _t	3.005	mg/m³	9.030	(mg/m³)²	
Influence of supply voltage	u _v	1.787	mg/m³	3.193	$(mg/m^3)^2$	
Cross-sensitivity (interference)	U _i	-9.838	mg/m³	96.786	$(mg/m^3)^2$	
Influence of sample gas flow	u _p	0.577 4.850	mg/m³	0.333 23.520	(mg/m³)² (mg/m³)²	
Uncertainty of reference material at 70% of certification range	u _{rm}	4.000	mg/m³	23.520	(IIIg/III)	
* The larger value is used : "Repeatability standard deviation at set point" or						
"Standard deviation from paired measurements under field conditions"						
Combined standard uncertainty (u _C)	$u_c = 4$	$\sqrt{\sum (u_m)}$	ax, j) ²	14.43	mg/m³	
Total expanded uncertainty	U = u	$\frac{1}{c} * k = \iota$	ı _c * 1.96	28.28	mg/m³	
Relative total expanded uncertainty	U in 9	% of the	ELV 200 m	ng/m³	14.1	
Requirement of 2010/75/EU			ELV 200 m	_	20.0	
Requirement of EN 15267-3	U in 9	% of the	ELV 200 m	g/m³	15.0	

Page 17 of 37

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	Siem	ens AG				
AMS designation	Set CEM CERT 7MB1957 Ultra			amat 6		
Serial number of units under test	Syste	em 1 / Sy	stem 3 / Syster	n 2 / Sys	stem 4	
Measuring principle	NDIR	2				
Test report	936/21230405/C					
Test laboratory	TÜV	Rheinland	d			
Date of report	2016	-12-22				
	00					
Measured component	SO ₂					
Certification range	0 -	75	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		1.99	mg/m³			
Sum of negative CS at zero point		-0.84	J			
Sum of postive CS at span point		1.10	9			
Sum of negative CS at span point		-2.80	mg/m³			
Maximum sum of cross-sensitivities		-2.80	mg/m³			
Uncertainty of cross-sensitivity	ui	-1.615	mg/m³			
Calculation of the combined standard uncertainty						
Tested parameter				u²		
Standard deviation from paired measurements under field conditions *	u _D	1.066	mg/m³	1.136	(mg/m³)²	
Lack of fit	u _{lof}	-0.637	mg/m³	0.406	(mg/m³)²	
Zero drift from field test	u _{d,z}	0.953	mg/m³	0.908	(mg/m³)²	
Span drift from field test	u _{d.s}		mg/m³	0.992	(mg/m³)²	
Influence of ambient temperature at span	U _t		mg/m³	1.631	(mg/m³)²	
Influence of supply voltage	u _v	0.448	mg/m³	0.201	(mg/m³)²	
Cross-sensitivity (interference)	u _i	-1.615	mg/m³	2.608	(mg/m³)²	
Influence of sample gas flow	Up	-0.135	mg/m³	0.018	$(mg/m^3)^2$	
Uncertainty of reference material at 70% of certification range	u _{rm}	0.606	mg/m³	0.368	$(mg/m^3)^2$	
* The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"						
			<u> </u>			
Combined standard uncertainty (u _C)	u _c =	$\sqrt{\sum} (u_m)$	ax, j) ²	2.88	mg/m³	
Total expanded uncertainty		$J_c * k = 0$		5.64	•	
Relative total expanded uncertainty			ELV 50 mg/m ³		11.3	
Requirement of 2010/75/EU	U in	% of the	ELV 50 mg/m ³		20.0	
Requirement of EN 15267-3	U in	% of the	ELV 50 mg/m ³		15.0	

info@qal.de

Measuring system								
Manufacturer	Siemens AG							
AMS designation	Set C	CEM CEF						
Serial number of units under test	Syste	em1 / Sy	stem 3 / Sys	tem 2 / Sys	tem 4			
Measuring principle	NDIR							
Test report	936/2	21230405	/C					
Test laboratory	TÜV	Rheinlan	d					
Date of report	2016	-12-22						
	00							
Measured component	CO ₂							
Certification range	0 -	25	Vol%					
Evaluation of the cross-sensitivity (CS)								
(system with largest CS)								
Sum of positive CS at zero point			Vol%					
Sum of negative CS at zero point			Vol%					
Sum of postive CS at span point			Vol%					
Sum of negative CS at span point			Vol%					
Maximum sum of cross-sensitivities			Vol%					
Uncertainty of cross-sensitivity	ui	-0.173	Vol%					
Calculation of the combined standard uncertainty								
Tested parameter				U ²				
Standard deviation from paired measurements under field conditions *	\mathbf{u}_{D}	0.740	Vol%		(Vol%) ²			
Lack of fit	U _{lof}		Vol%		(Vol%) ²			
Zero drift from field test	$u_{d,z}$		Vol%	0.084	,			
Span drift from field test	$u_{d,s}$		Vol%		(Vol%) ²			
Influence of ambient temperature at span	u _t		Vol%	0.084	,			
Influence of supply voltage	u_v		Vol%	0.004	,			
Cross-sensitivity (interference)	Ui		Vol%		(Vol%) ²			
Influence of sample gas flow	u _p		Vol%	0.000	(Vol%) ²			
Uncertainty of reference material at 70% of certification range	u _{rm}	0.202	Vol%	0.041	(Vol%) ²			
* The larger value is used : "Repeatability standard deviation at set point" or								
"Standard deviation from paired measurements under field conditions"								
Combined standard uncertainty (u _C)	$u_c =$	$\sqrt{\sum (u_m)}$	ax, i)2	0.93	Vol%			
Total expanded uncertainty		$l_c * k = l$		1.82	Vol%			
Polotive total expended upgertaints	11.1-	0/ af 4h -	ronge OF W	al 0/	7.0			
Relative total expanded uncertainty			range 25 Vo		7.3 10.0 **			
Requirement of 2010/75/EU			_					
Requirement of EN 15267-3	U in '	% OI THE	range 25 Vol	70	7.5			

^{**} EU Directive 2010/75/EU on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Measuring system							
Manufacturer	Siemens AG						
AMS designation	Set C	EM CEF					
Serial number of units under test	Syste	m 1 / Sy	stem 3 / Sy	stem 2 / Sys	stem 4		
Measuring principle	param	nagnetic					
Test report	936/2						
Test laboratory	TÜV F	Rheinlan	d				
Date of report	2016-	12-22					
Measured component	O ₂						
Certification range	0 -	25	Vol%				
Evaluation of the cross-sensitivity (CS) (system with largest CS)							
Sum of positive CS at zero point		0.00	Vol%				
Sum of negative CS at zero point		0.00	Vol%				
Sum of postive CS at span point		0.00	Vol%				
Sum of negative CS at span point		0.00	Vol%				
Maximum sum of cross-sensitivities			Vol%				
Uncertainty of cross-sensitivity	ui	0.000	Vol%				
Calculation of the combined standard uncertainty				U ²			
Tested parameter Standard deviation from paired measurements under field conditions *		0.002	Vol%		(Vol%) ²		
Lack of fit	u _D u _{lof}		Vol%		(Vol%) ²		
Zero drift from field test	U _{d.z}		Vol%		(Vol%) ²		
Span drift from field test	u _{d,z}		Vol%		(Vol%) ²		
Influence of ambient temperature at span	u _{a,s}		Vol%		(Vol%) ²		
Influence of supply voltage	u _v		Vol%		(Vol%) ²		
Cross-sensitivity (interference)	u _i		Vol%		(Vol%) ²		
Influence of sample gas flow	u _p		Vol%		(Vol%) ²		
Uncertainty of reference material at 70% of certification range	u _{rm}		Vol%		(Vol%) ²		
* The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"							
Combined standard uncertainty (u.)		$\sqrt{\sum (u_m)}$)2	0.05	Val. 0/		
Combined standard uncertainty (u _C)		/ <u>Σ</u> (u _{m.} . * k = ι			Vol%		
Total expanded uncertainty	U = u,	с″к= ι	J _C " 1.96	0.49	Vol%		
Polotive total expended uncertainty	II im 0	/ of the	rongo 2F V	al 9/	2.0		
Relative total expanded uncertainty			range 25 Vo		2.0 10.0 **		
Requirement of 2010/75/EU Paguirement of EN 15267 3					7.5		
Requirement of EN 15267-3	U In 9	o oi the i	range 25 Vol	70	7.5		

^{**} EU Directive 2010/75/EU on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Siem	ens AG			
AMS designation	Set C	CEM CEF	RT 7MB 1957		
Serial number of units under test	TÜV	1 / TÜV 2	2		
Measuring principle	elect	rochemic	al		
Test report	936/2	21230405	/B		
Test laboratory	TÜV	Rheinlan	d		
Date of report	2016	-09-12			
Measured component	02				
Certification range	0 -	25	Vol%		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)		0.407			
Uncertainty of cross-sensitivity	ui	0.167	Vol%		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *		0.056	Vol%	0.003	(Vol%) ²
Lack of fit	u _D		Vol%	0.003	` '
Zero drift from field test	U _{lof}		Vol%		(Vol%) ²
Span drift from field test	u _{d,z} u _{d,s}		Vol%	0.010	,
Influence of ambient temperature at span	u _{d.s}		Vol%	0.002	
Influence of supply voltage	u _v		Vol%	0.000	` '
Cross-sensitivity (interference)	u _i		Vol%	0.028	(Vol%) ²
Influence of sample gas flow	u _p		Vol%	0.001	(Vol%) ²
Uncertainty of reference material at 70% of certification range	u _{rm}	0.202	Vol%	0.041	(Vol%) ²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions					
Compliand standard uncertainty (v.)	ш –	$\sqrt{\sum (u_m)}$	1/2	0.24	Vol%
Combined standard uncertainty (u _C)		-			
Total expanded uncertainty	0 = 1	$l_c * k = l$	J _C 1.96	0.67	Vol%
Relative total expanded uncertainty	Him	0/ of the	range 25 Vol.	0/	2.7
Requirement of 2010/75/EU			range 25 Vol.		25.0 **
Requirement of EN 15267-3			range 25 Vol%		7.5
Troquitorion of E14 10201 o	O III	o or trie	Tange 25 vol76	, 	7.0

 $^{^{\}star\star}$ The EU-directive 2010/75/EU on industrial emissions provides no requirements for this component. A value of 25.0 % was used for this.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system	
Manufacturer	Siemens AG
AMS designation	Set CEM CERT 7MB 1957 SIPROCESS UV 600
Serial number of units under test	TÜV 1 / TÜV 2
Measuring principle	UV-RAS
Test report	936/21230405/B
Test laboratory	TÜV Rheinland
Date of report	2016-09-12
Measured component	SO ₂
Certification range	0 - 75 mg/m³
Evaluation of the cross-sensitivity (CS)	
(system with largest CS)	
Uncertainty of cross-sensitivity	u _i 1.589 mg/m³
Calculation of the combined standard uncertainty	
Tested parameter	u²
Standard deviation from paired measurements under field conditions *	u _D 0.586 mg/m³ 0.343 (mg/m³)²
Lack of fit	u_{lof} 0.403 mg/m ³ 0.162 (mg/m ³) ²
Zero drift from field test	$u_{d.z}$ -1.212 mg/m³ 1.469 (mg/m³)²
Span drift from field test	u _{d.s} -1.256 mg/m³ 1.578 (mg/m³)²
Influence of ambient temperature at span	u _t 0.872 mg/m³ 0.760 (mg/m³)²
Influence of supply voltage	$u_v = 0.179 \text{ mg/m}^3 = 0.032 \text{ (mg/m}^3)^2$
Cross-sensitivity (interference)	u_i 1.589 mg/m ³ 2.525 (mg/m ³) ²
Influence of sample gas flow	u_p -0.264 mg/m ³ 0.070 (mg/m ³) ²
Uncertainty of reference material at 70% of certification range	u_{rm} 0.606 mg/m³ 0.368 (mg/m³)²
* The larger value is used :	
"Repeatability standard deviation at set point" or	
"Standard deviation from paired measurements under field conditions"	
Outlied to test and state ($u_{c} = \sqrt{\sum (u_{\text{max j}})^{2}}$ 2.70 mg/m ³
Combined standard uncertainty (u _C)	
Total expanded uncertainty	$U = u_c * k = u_c * 1.96$ 5.30 mg/m ³
Relative total expanded uncertainty	U in % of the ELV 50 mg/m ³ 10.6
Requirement of 2010/75/EU	U in % of the ELV 50 mg/m ³ 20.0
Requirement of EN 15267-3	U in % of the ELV 50 mg/m³ 15.0

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Siem	ens AG			
AMS designation	Set C	EM CEF	RT 7MB 1957 Ultr	amat 23	
Serial number of units under test	TÜV	1 / TÜV 2			
Measuring principle	NDIR				
Test report	936/2	1242490	/A		
Test laboratory	TÜV I	Rheinlan	d		
Date of report	2019-	02-27			
Measured component	CO				
Certification range	0 -	375	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Uncertainty of cross-sensitivity	Ui	2.165	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	u _D	1.656	mg/m³	2.742	(mg/m³)²
Lack of fit	U _{lof}	-1.155	mg/m³	1.334	(mg/m³)²
Zero drift from field test	u _{d.z}	1.443	mg/m³	2.082	(mg/m³)²
Span drift from field test	U _{d.s}	1.443	mg/m³	2.082	(mg/m³)²
Influence of ambient temperature at span	U _t	1.277	mg/m³	1.631	(mg/m³)²
Influence of supply voltage	U _v	1.392	mg/m³	1.938	(mg/m³)²
Cross-sensitivity (interference)	ui	2.165	mg/m³	4.687	(mg/m³)²
Influence of sample gas flow	Up	-0.217	mg/m³	0.047	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	3.031	mg/m³	9.188	(mg/m³)²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Outlied design and the Co	11 -	$\sqrt{\sum (u_m)}$	<u>}2</u>	F 07	
Combined standard uncertainty (u _C)	u _c –	V Z (um	ax, j /	5.07	U
Total expanded uncertainty	U = U	_c * k = ι	J _c ~ 1.96	9.94	mg/m³
Relative total expanded uncertainty	II in 1	0/ of the	ELV 450 m s/3		6.6
			ELV 150 mg/m ³		10.0
Requirement of 2010/75/EU			ELV 150 mg/m ³		
Requirement of EN 15267-3	U in 9	% of the	ELV 150 mg/m ³		7.5

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Siem	ens AG			
AMS designation	Set C	EM CEF	RT 7MB 1957 Ultr	amat 23	
Serial number of units under test	TÜV :	3 / TÜV 4			
Measuring principle	NDIR				
Test report	936/2	1242490	/A		
Test laboratory	TÜV I	Rheinlan	d		
Date of report	2019-	02-27			
Measured component	CO				
Certification range	0 -	375	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Uncertainty of cross-sensitivity	Ui	2.165	mg/m³		
			7		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	u_D	1.656	mg/m³	2.742	(mg/m³)²
Lack of fit	U _{lof}	-1.155	mg/m³	1.334	(mg/m³)²
Zero drift from field test	$u_{d.z}$	1.443	mg/m³	2.082	$(mg/m^3)^2$
Span drift from field test	U _{d.s}	1.443	mg/m³	2.082	(mg/m³)²
Influence of ambient temperature at span	u _t	1.277	mg/m³	1.631	(mg/m³)²
Influence of supply voltage	u _v	1.568	mg/m³	2.459	$(mg/m^3)^2$
Cross-sensitivity (interference)	u _i	2.165	mg/m³	4.687	(mg/m³)²
Influence of sample gas flow	Up	-0.303	mg/m³	0.092	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	3.031	mg/m³	9.188	(mg/m³)²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Combined standard uncertainty (u _C)	u. = .	$\sqrt{\sum (u_m)}$.)2	5 13	mg/m³
Total expanded uncertainty		ν <u> — </u>			mg/m³
rotal expanded uncertainty	0 – u	ic K – L	JC 1.30	10.03	mg/m
Relative total expanded uncertainty	II in	% of the	ELV 150 mg/m ³		6.7
Requirement of 2010/75/EU			ELV 150 mg/m ³		10.0
Requirement of EN 15267-3			ELV 150 mg/m³		7.5
requirement of ETV 10207-0	O III 7	o or trie i	LLV 130 mg/m		7.5

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system							
Manufacturer	Sieme	ens AG					
AMS designation	Set C	Set CEM CERT 7MB 1957 Ultramat 23					
Serial number of units under test	TÜV 1	1 / TÜV 2	2				
Measuring principle	NDIR						
Test report	936/2	1230405	/B				
Test laboratory	TÜV I	Rheinlan	d				
Date of report	2016-	09-12					
Measured component	NO						
Certification range	0 -	150	mg/m³				
Evaluation of the cross-sensitivity (CS)							
(system with largest CS)							
Uncertainty of cross-sensitivity	ui	-3.464	mg/m³				
Calculation of the combined standard uncertainty				•			
Tested parameter				U ²			
Standard deviation from paired measurements under field conditions *	u_D		mg/m³	0.383	(mg/m³)²		
Lack of fit	u _{lof}	0.753	mg/m³	0.567	(mg/m³)²		
Zero drift from field test	$u_{d.z}$		mg/m³	1.469	(mg/m³)²		
Span drift from field test	$u_{d.s}$		mg/m³	5.072	(mg/m³)²		
Influence of ambient temperature at span	u _t		mg/m³	0.694	(mg/m³)²		
Influence of supply voltage	u_v		mg/m³	1.228	(mg/m³)²		
Cross-sensitivity (interference)	u _i	-3.464	mg/m³	11.999	(mg/m³)²		
Influence of sample gas flow	u _p	0.381	mg/m³	0.145	(mg/m³)²		
Uncertainty of reference material at 70% of certification range	U _{rm}	1.212	mg/m³	1.470	(mg/m³)²		
* The larger value is used :							
"Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions							
otalidate deviation from paired incastrements under field containions							
Combined standard uncertainty (u _C)	$u_c = a$	$\sqrt{\sum (u_m)}$	ax i)2	4.80	mg/m³		
Total expanded uncertainty			u _c * 1.96	9.41	mg/m³		
					3		
Relative total expanded uncertainty	U in 9	% of the	ELV 65.2 mg	g/m³	14.4		
Requirement of 2010/75/EU			ELV 65.2 m	_	20.0		
Requirement of EN 15267-3			ELV 65.2 mg		15.0		
	/						

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system Manufacturer AMS designation Serial number of units under test Measuring principle Test report Test laboratory Date of report	Siemens AG Set CEM CERT 7MB 1957 Ultramat 23 TÜV 1 / TÜV 2 NDIR 936/21230405/B TÜV Rheinland 2016-09-12	
Measured component	NO	
Certification range	0 - 400 mg/m³	
Evaluation of the cross-sensitivity (CS) (system with largest CS) Uncertainty of cross-sensitivity	u _i -6.928 mg/m³	
Calculation of the combined standard uncertainty Tested parameter Standard deviation from paired measurements under field conditions * Lack of fit Zero drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n/m³)² n/m³)² n/m³)² n/m³)² n/m³)² n/m³)² n/m³)² n/m³)²
"Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"		
Combined standard uncertainty (u _C) Total expanded uncertainty	$u_c = \sqrt{\sum (u_{\text{max j}})^2}$ 9.73 mg/ $U = u_c * k = u_c * 1.96$ 19.07 mg/	
Relative total expanded uncertainty	U in % of the ELV 130.4 mg/m³	14.6
Requirement of 2010/75/EU Requirement of EN 15267-3	U in % of the ELV 130.4 mg/m³ U in % of the ELV 130.4 mg/m³	20.0 15.0

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Siem				
AMS designation	Set 0				
Serial number of units under test	ΤÜV	1 / TÜV 2	2		
Measuring principle	NDIR	2			
Test report	936/2	21230405	/B		
Test laboratory		Rheinlan	d		
Date of report	2016	-09-12			
Measured component	NO	400	, ,		
Certification range	0 -	400	mg/m³		
Evaluation of the areas considuity (CS)					
Evaluation of the cross-sensitivity (CS) (system with largest CS)					
		6 028	mg/m³		
Uncertainty of cross-sensitivity	ui	-0.920	mg/m²		
Calculation of the combined standard uncertainty					
Tested parameter				u²	
Standard deviation from paired measurements under field conditions *	u_D	1.750	mg/m³	3.063	(mg/m³)²
Lack of fit	U _{lof}	-1.155		1.334	(mg/m³)²
Zero drift from field test	u _{d.z}	3.233	mg/m³	10.452	(mg/m³)²
Span drift from field test	u _{d.s}	3.695	mg/m³	13.653	(mg/m³)²
Influence of ambient temperature at span	Ut	2.117	mg/m³	4.482	(mg/m³)²
Influence of supply voltage	u _v	2.824	mg/m³	7.975	$(mg/m^3)^2$
Cross-sensitivity (interference)	ui	-6.928	mg/m³	47.997	$(mg/m^3)^2$
Influence of sample gas flow	u _p	0.531	mg/m³	0.282	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	3.233	mg/m³	10.453	(mg/m³)²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Combined standard uncertainty (u _C)	u. =	$\sqrt{\sum (u_m)}$)2	0.00	mg/m³
Total expanded uncertainty		$J_c * k = \iota$			mg/m³
Total expanded uncertainty	0 - (AC K - C	IC 1.30	19.57	mg/m
Relative total expanded uncertainty	Uin	% of the	ELV 130.4	mg/m³	15.0
Requirement of 2010/75/EU			ELV 130.4	_	20.0
Requirement of EN 15267-3			ELV 130.4 i	_	15.0
	0 111	,, 01 1110	100.41	9,	10.0

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Siem	ens AG			
AMS designation	Set 0	S UV 600			
Serial number of units under test	TÜV	1 / TÜV 2	2		
Measuring principle	UV-F	RAS			
Test report	936/2	21230405	/B		
Test laboratory	TÜV	Rheinlan	d		
Date of report	2016	-09-12			
Measured component	NO				
Certification range	0 -	50	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Uncertainty of cross-sensitivity	Ui	0.967	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	u_D	0.350	mg/m³	0.123	$(mg/m^3)^2$
Lack of fit	U _{lof}	-0.289	mg/m³	0.084	$(mg/m^3)^2$
Zero drift from field test	u _{d.z}	0.866	mg/m³	0.750	$(mg/m^3)^2$
Span drift from field test	u _{d.s}	-0.693	mg/m³	0.480	$(mg/m^3)^2$
Influence of ambient temperature at span	Ut	0.624	mg/m³	0.389	$(mg/m^3)^2$
Influence of supply voltage	u _v	0.096	mg/m³	0.009	$(mg/m^3)^2$
Cross-sensitivity (interference)	ui	0.967	mg/m³	0.935	$(mg/m^3)^2$
Influence of sample gas flow	uр	-0.136	mg/m³	0.018	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	0.404	mg/m³	0.163	$(mg/m^3)^2$
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions					
Outlied detailed and side (11 -	$\sqrt{\sum (u_m)}$	γ2	4.70	
Combined standard uncertainty (u _C)					mg/m³
Total expanded uncertainty	U = 1	u _c * k = ι	л _с * 1.96	3.37	mg/m³
Relative total expanded uncertainty	Him	0/ of the	ELV 32.6 mg/m	3	10.3
Requirement of 2010/75/EU			ELV 32.6 mg/m		20.0
Requirement of EN 15267-3			_		15.0
Nequirement of EN 19201-9	U in	% OI IIIE	ELV 32.6 mg/m³		15.0

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Sieme				
AMS designation	Set C				
Serial number of units under test	TÜV 1	/ TÜV 2	2		
Measuring principle	NDIR				
Test report	936/2	1230405	/B		
Test laboratory	TÜV F	Rheinlan	d		
Date of report	2016-0	09-12			
Measured component	SO ₂				
Certification range	0 -	400	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Uncertainty of cross-sensitivity	ui	-6.928	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	u_D	2.475	mg/m³	6.126	(mg/m³)²
Lack of fit	U _{lof}	-2.309	mg/m³	5.331	(mg/m³)²
Zero drift from field test	u _{d.z}	6.235	mg/m³	38.875	$(mg/m^3)^2$
Span drift from field test	u _{d.s}	4.850	mg/m³	23.523	(mg/m³)²
Influence of ambient temperature at span	u _t	4.414	mg/m³	19.483	(mg/m³)²
Influence of supply voltage	u _v	2.217	mg/m³	4.915	(mg/m³)²
Cross-sensitivity (interference)	u _i	-6.928	mg/m³	47.997	(mg/m³)²
Influence of sample gas flow	u _p	-2.215	mg/m³	4.906	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	3.233	mg/m³	10.453	(mg/m³)²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions	"				
		$\sqrt{\sum (u_m)}$	1/2		
Combined standard uncertainty (u _C)				12.71	3
Total expanded uncertainty	$U = u_0$. * k = ι	ı _c * 1.96	24.92	mg/m³
Relative total expanded uncertainty			ELV 200 mg		12.5
Requirement of 2010/75/EU			ELV 200 mg	-	20.0
Requirement of EN 15267-3	U in %	of the	ELV 200 mg	/m³	15.0

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system					
Manufacturer	Sieme				
AMS designation	Set C				
Serial number of units under test	TÜV 3	3 / TÜV 4	1		
Measuring principle	NDIR				
Test report	936/2	1230405	/B		
Test laboratory	TÜV I	Rheinlan	d		
Date of report	2016-	09-12			
Measured component	SO ₂				
Certification range	0 -	400	mg/m³		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Uncertainty of cross-sensitivity	Ui	-6.928	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	un	2.475	mg/m³	6.126	(mg/m³)²
Lack of fit	U _{lof}	-2.309	mg/m³	5.331	(mg/m³)²
Zero drift from field test	u _{d.z}	6.235	mg/m³	38.875	$(mg/m^3)^2$
Span drift from field test	U _{d.s}	4.850	mg/m³	23.523	(mg/m³)²
Influence of ambient temperature at span	U _t	4.414	mg/m³	19.483	(mg/m³)²
Influence of supply voltage	u _v	2.564	mg/m³	6.574	$(mg/m^3)^2$
Cross-sensitivity (interference)	ui	-6.928	mg/m³	47.997	(mg/m³)²
Influence of sample gas flow	u _p	-2.215	mg/m³	4.906	(mg/m³)²
Uncertainty of reference material at 70% of certification range	U _{rm}	3.233	mg/m³	10.453	(mg/m³)²
* The larger value is used :					
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
	11 -	$\sqrt{\sum (u_m)}$)2	40.70	
Combined standard uncertainty (u _C)		. —		12.78	3
Total expanded uncertainty	U = u	c * k = ι	J _c * 1.96	25.04	mg/m³
Relative total expanded uncertainty			ELV 200 m	_	12.5
Requirement of 2010/75/EU			ELV 200 m	_	20.0
Requirement of EN 15267-3	U in 9	6 of the	ELV 200 mg	g/m³	15.0

Siemens AG

Measuring system

Manufacturer

AMS designation Set CEM CERT 7MB 1957 Serial number of units under test TÜV 1 / TÜV 2 **NDIR** Measuring principle Test report 936/21230405/B Test laboratory TÜV Rheinland 2016-09-12 Date of report Measured component CO Certification range 200 mg/m³ Evaluation of the cross-sensitivity (CS) (system with largest CS) Uncertainty of cross-sensitivity 1.998 mg/m³ U_i Calculation of the combined standard uncertainty Tested parameter U² Standard deviation from paired measurements under field conditions * 0.588 mg/m³ 0.346 (mg/m³)² Lack of fit 0.854 -0.924 mg/m³ $(mg/m^3)^2$ Ulof Zero drift from field test 3.415 (mg/m³)² 1.848 mg/m³ $u_{d.z}$ Span drift from field test -1.732 mg/m³ 3.000 $(mg/m^3)^2$ $u_{d,s}$ Influence of ambient temperature at span 0.493 mg/m³ 0.243 (mg/m³)² Ut Influence of supply voltage 0.484 mg/m³ 0.234 $(mg/m^3)^2$ $\boldsymbol{u}_{\boldsymbol{v}}$ Cross-sensitivity (interference) 1.998 mg/m³ 3.992 $(mg/m^3)^2$ u_{i} 0.011 Influence of sample gas flow -0.107 mg/m³ $(mg/m^3)^2$ uр 2.613 (mg/m³)² Uncertainty of reference material at 70% of certification range 1.617 mg/m³

* The larger value is used :

"Repeatability standard deviation at set point" or

"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u _C)	$u_c = \sqrt{\sum (u_{\text{max, j}})^2}$	3.84	mg/m³
Total expanded uncertainty	$U = u_c * k = u_c * 1.96$	7.52	mg/m³

Relative total expanded uncertainty	U in % of the ELV 100 mg/m ³	7.5
Requirement of 2010/75/EU	U in % of the ELV 100 mg/m ³	10.0
Requirement of EN 15267-3	U in % of the ELV 100 mg/m ³	7.5

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system	
Manufacturer	Siemens AG
AMS designation	Set CEM CERT 7MB 1957 SIPROCESS UV 600
Serial number of units under test	TÜV 1 / TÜV 2
Measuring principle	UV-RAS
Test report	936/21230405/B
Test laboratory	TÜV Rheinland
Date of report	2016-09-12
Measured component	NO ₂
Certification range	0 - 50 mg/m³
Evaluation of the cross-sensitivity (CS)	
(system with largest CS)	
Uncertainty of cross-sensitivity	u _i 1.065 mg/m³
Calculation of the combined standard uncertainty	
Tested parameter	U ²
Standard deviation from paired measurements under field conditions *	$u_D = 0.372 \text{ mg/m}^3 = 0.138 \text{ (mg/m}^3)^2$
Lack of fit	u_{lof} 0.231 mg/m ³ 0.053 (mg/m ³) ²
Zero drift from field test	$u_{d.z}$ 0.606 mg/m ³ 0.367 (mg/m ³) ²
Span drift from field test	$u_{d.s}$ -0.808 mg/m ³ 0.653 (mg/m ³) ²
Influence of ambient temperature at span	u _t 0.643 mg/m³ 0.413 (mg/m³)²
Influence of supply voltage	$u_v = 0.200 \text{ mg/m}^3 = 0.040 \text{ (mg/m}^3)^2$
Cross-sensitivity (interference)	u _i 1.065 mg/m ³ 1.134 (mg/m ³) ²
Influence of sample gas flow	u_0 -0.075 mg/m ³ 0.006 (mg/m ³) ²
Uncertainty of reference material at 70% of certification range	u _{rm} 0.404 mg/m³ 0.163 (mg/m³)²
* The larger value is used :	
"Repeatability standard deviation at set point" or	
"Standard deviation from paired measurements under field conditions"	
	$u_{c} = \sqrt{\sum (u_{\text{max j}})^{2}}$ 1.72 mg/m ³
Combined standard uncertainty (u _C)	
Total expanded uncertainty	$U = u_c * k = u_c * 1.96$ 3.38 mg/m ³
Relative total expanded uncertainty	U in % of the ELV 50 mg/m ³ 6.8
Requirement of 2010/75/EU	U in % of the ELV 50 mg/m ³ 20.0
Requirement of EN 15267-3	U in % of the ELV 50 mg/m³ 15.0

Measuring system					
Manufacturer	Siemens AG	3			
AMS designation	Set CEM CE	ERT Ultramat 2	3		
Serial number of units under test	System 1 / S	stem 4			
Measuring principle	paramagneti				
OF THE					
Test report	936/2123040	05/C			
Test laboratory	TÜV Rheinla	ind			
Date of report	2016-12-22				
Measured component	O_2				
Certification range	0 - 2	5 Vol%			
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Sum of positive CS at zero point	0.00	O Vol%			
Sum of negative CS at zero point		0 Vol%			
Sum of postive CS at span point		O Vol%			
Sum of negative CS at span point		O Vol%			
Maximum sum of cross-sensitivities) Vol%			
Uncertainty of cross-sensitivity	u _i 0.000) Vol%			
Calculation of the combined standard uncertainty					
Tested parameter			U ²	0.4 1 0/32	
Repeatability standard deviation at set point *) Vol%	0.003	,	
Lack of fit		3 Vol%	0.003		
Zero drift from field test	u,2	2 Vol%		(Vol%) ²	
Span drift from field test	-,-	1 Vol%		(Vol%) ²	
Influence of ambient temperature at span		6 Vol%		(Vol%) ²	
Influence of supply voltage		5 Vol%		(Vol%) ²	
Cross-sensitivity (interference)) Vol%		(Vol%) ²	
Influence of sample gas flow		3 Vol%	0.000	,	
Uncertainty of reference material at 70% of certification range	u _{rm} 0.202	2 Vol%	0.041	(Vol%) ²	
* The larger value is used : "Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Combined standard uncertainty (u _C)	$u_c = \sqrt{\sum (u)}$	max i)2	0.27	Vol%	
Total expanded uncertainty	U = u _c * k =	u _c * 1.96	0.53	Vol%	
Relative total expanded uncertainty	U in % of th	e range 25 Vo	ol%	2.1	
Requirement of 2010/75/EU		e range 25 Vo		10.0 **	
Requirement of EN 15267-3		e range 25 Vol.		7.5	
	5 III /0 OI till		, 0		

^{**} EU Directive 2010/75/EU on industrial emissions does not define requirements for this component. A value of 10 % was used instead.

Measuring system						
Manufacturer	Sieme	ens AG				
AMS designation	Set C	EM CER	T 7MB195	7 (Oxymat 7)		
Serial number of units under test	N1K1	200172 /	N1JN200	171		
Measuring principle	paran	nagnetic				
Test report	936/2	1242490	/A	936/2124249	0/B	
Test laboratory	TÜV I	Rheinlan	d	TÜV Rheinlar	nd	
Date of report	2019-	-02-27		2021-05-03		
Measured component	O ₂					
Certification range	0 -	25	Vol%			
Evaluation of the cross-sensitivity (CS) (system with largest CS) Sum of positive CS at zero point Sum of negative CS at zero point			Vol%			
· ·			Vol%			
Sum of postive CS at span point Sum of negative CS at span point			Vol%			
Maximum sum of cross-sensitivities			Vol%			
Uncertainty of cross-sensitivity	u _i		Vol%			
Officertainty of cross-sensitivity	ui	0.000	VOI /0			
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	u_D	0.086	Vol%		(Vol%) ²	
Lack of fit	u_{lof}	0.058	Vol%		(Vol%) ²	
Zero drift from field test	$u_{d,z}$		Vol%		(Vol%) ²	
Span drift from field test	$u_{d,s}$	0.110	Vol%		(Vol%) ²	
Influence of ambient temperature at span	u_t	0.122	Vol%		(Vol%) ²	
Influence of supply voltage	u_v	0.021	Vol%		(Vol%) ²	
Cross-sensitivity (interference)	u _i	0.000	Vol%	0.000	(Vol%) ²	
Influence of sample gas flow	u_p	0.021	Vol%	0.000	(Vol%) ²	
Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"	u _{rm}	0.202	Vol%	0.041	(Vol%) ²	
Combined standard uncertainty (u _C)	11 -	$\sqrt{\sum (u_m)}$)2	0.30	Vol%	
Total expanded uncertainty		√			Vol%	
i otai expanded uncertainty	0 – u	c K – U	1.90	0.56	V UI70	
Relative total expanded uncertainty	U in 9	% of the	range 25	Vol%	2.3	
Requirement of 2010/75/EU	U in 9	% of the	range 25	Vol%	10.0 *	**
Requirement of EN 15267-3	U in %	% of the r	ange 25 V	′ol%	7.5	

^{**} The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Measuring system					
Manufacturer	Sieme	ens AG			
AMS designation	Set C	EM CER	T 7MB1957 (Ultra	mat 7)	
Serial number of units under test	N1K1100191 / N1JN100185				
Measuring principle	NDIR				
Test report	936/2	1242490	/A		
Test laboratory	TÜV F	Rheinlan	d		
Date of report	2019-	02-27			
Measured component	CO_2				
Certification range	0 -	30	Vol%		
Evaluation of the cross-sensitivity (CS)					
(system with largest CS)					
Sum of positive CS at zero point		0.00	Vol%		
Sum of negative CS at zero point			Vol%		
Sum of postive CS at span point			Vol%		
Sum of negative CS at span point			Vol%		
Maximum sum of cross-sensitivities			Vol%		
Uncertainty of cross-sensitivity	u _i		Vol%		
Calculation of the combined standard uncertainty					
Tested parameter				u²	
Standard deviation from paired measurements under field conditions *	\mathbf{u}_{D}		Vol%	0.002	(Vol%) ²
Lack of fit	u_{lof}		Vol%		(Vol%) ²
Zero drift from field test	$u_{d,z}$		Vol%		(Vol%) ²
Span drift from field test	$u_{d,s}$		Vol%		(Vol%) ²
Influence of ambient temperature at span	u _t		Vol%		(Vol%) ²
Influence of supply voltage	u_v		Vol%	0.000	(Vol%) ²
Cross-sensitivity (interference)	u _i		Vol%	0.054	(Vol%) ²
Influence of sample gas flow	u_p		Vol%	0.000	(Vol%) ²
Uncertainty of reference material at 70% of certification range	u _{rm}	0.242	Vol%	0.059	(Vol%) ²
* The larger value is used : "Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
			12		
Combined standard uncertainty (u _C)	$u_c = A$	$\sqrt{\sum} \left(u_{m} \right)$	ax, j)²	0.49	Vol%
Total expanded uncertainty	U = u	* k = u	, * 1.96	0.95	Vol%
Relative total expanded uncertainty	U in %	% of the	range 30 Vol%		3.2
Requirement of 2010/75/EU	U in %	% of the	range 30 Vol%		10.0 **
Requirement of EN 15267-3	U in %	% of the r	ange 30 Vol%		7.5

^{**} The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Measuring system					
Manufacturer	Siem	ens AG			
AMS designation	Set CEM CERT 7MB1957 (Ultramat 23))
Serial number of units under test	JN-820 / JN-821				
Measuring principle	UV Absorption				
Test report	936/2	21242490	/A		
Test laboratory	TÜV	Rheinland	d		
Date of report	2019-	-02-27			
	NO				
Measured component	NO_2				
Certification range	0 -	50	mg/m³		
Evaluation of the cross-sensitivity (CS) (system with largest CS)					
Sum of positive CS at zero point		1.61	mg/m³		
Sum of negative CS at zero point		0.00	mg/m³		
Sum of postive CS at span point		0.30	mg/m³		
Sum of negative CS at span point		-0.70	mg/m³		
Maximum sum of cross-sensitivities		1.61	mg/m³		
Uncertainty of cross-sensitivity	ui	0.930	mg/m³		
Calculation of the combined standard uncertainty					
Tested parameter				U ²	
Standard deviation from paired measurements under field conditions *	\mathbf{u}_{D}	0.096	mg/m³	0.009	(mg/m³)²
Lack of fit	U _{lof}	0.346	mg/m³	0.120	(mg/m³)²
Zero drift from field test	$u_{d,z}$		mg/m³	0.030	(mg/m³)²
Span drift from field test	$u_{d,s}$	-0.751	mg/m³	0.564	(mg/m³)²
Influence of ambient temperature at span	Ut		mg/m³	0.224	(mg/m³)²
Influence of supply voltage	U _v	0.031	mg/m³	0.001	(mg/m³)²
Cross-sensitivity (interference)	Ui	0.930	mg/m³	0.865	(mg/m³)²
Influence of sample gas flow	u _p	0.030	mg/m³	0.001	(mg/m³)²
Uncertainty of reference material at 70% of certification range * The larger value is used: "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"	u _{rm}	0.404	mg/m³	0.163	(mg/m³)²
		$\sum f_{ij}$)2		
Combined standard uncertainty (u _C)	$u_c = 1$	$\sqrt{\sum_{m}} \left(u_{m} \right)$	ax, j)	1.41	O .
Total expanded uncertainty	U = u	ı _c * k = ι	ı _c * 1.96	2.76	mg/m³
Polotive total expanded uncertainty	II in i	0/ of the	EI V 22 2 ***	1/m3	8.3
Relative total expanded uncertainty Requirement of 2010/75/EU			ELV 33.3 mg ELV 33.3 mg		20.0
Requirement of EN 15267-3					15.0
requirement of EN 19207-3	U III S	% of the f	ELV 33.3 mg/	1111"	15.0

est report est laboratory late of report leasured component		21242490 Rheinlan			
Pate of report		Rheinlan			
	2019		d		
leasured component		-02-27			
	SO ₂				
Certification range	0 -	70	mg/m³		
3.1.1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			9		
valuation of the cross-sensitivity (CS)					
system with largest CS)					
um of positive CS at zero point		2.29	mg/m³		
um of negative CS at zero point		0.00	mg/m³		
ium of postive CS at span point		0.60	mg/m³		
um of negative CS at span point		-1.90	mg/m³		
			•		
Incertainty of cross-sensitivity	ui	1.322	mg/m³		
				2	
		0.206	ma/m³		(mg/m³)²
	_		•		(mg/m³)²
			_		
	- 1		•		(mg/m³)²
			•		(mg/m³)²
	•		•		(mg/m³)²
	•		_		(mg/m³)²
			_		(mg/m³)²
	•		· ·	0.320	(mg/m³)²
					`
"Repeatability standard deviation at set point" or					
"Standard deviation from paired measurements under field conditions"					
Sambinad atandard unapataintu (u.)	× -	$\sum (u)$)2	4.00	
	u _c –	$\sqrt{\sum_{n} (u_m)}$	ax, j / . * 1 06		3
otal expanded uncertainty	0 – 1	I _C K – (J _C 1.90	3.90	mg/m³
elative total expanded uncertainty	U in	% of the	ELV 50 mg/m ³		7.8
equirement of 2010/75/EU					20.0
lequirement of EN 15267-3					15.0
	valuation of the cross-sensitivity (CS) system with largest CS) um of positive CS at zero point um of negative CS at span point um of postive CS at span point um of negative CS at span point laximum sum of cross-sensitivities ncertainty of cross-sensitivity valuation of the combined standard uncertainty vested parameter tandard deviation from paired measurements under field conditions * ack of fit vero drift from field test pan drift from field test iffluence of ambient temperature at span iffluence of supply voltage voss-sensitivity (interference) iffluence of sample gas flow ncertainty of reference material at 70% of certification range The larger value is used: "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" combined standard uncertainty (uc) ortal expanded uncertainty velative total expanded uncertainty velative total expanded uncertainty velative total expanded uncertainty velative total expanded uncertainty	valuation of the cross-sensitivity (CS) system with largest CS) um of positive CS at zero point um of negative CS at span point um of negative CS at span point um of negative CS at span point laximum sum of cross-sensitivities ncertainty of cross-sensitivity alculation of the combined standard uncertainty ested parameter tandard deviation from paired measurements under field conditions * ulof ack of fit ero drift from field test pan drift from field test pan drift from field test influence of ambient temperature at span iffluence of supply voltage ross-sensitivity (interference) influence of sample gas flow ncertainty of reference material at 70% of certification range The larger value is used: "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" ombined standard uncertainty (uc) uc = ulof uc =	valuation of the cross-sensitivity (CS) system with largest CS) um of positive CS at zero point 2.29 um of negative CS at zero point 0.00 um of positive CS at span point 0.60 um of positive CS at span point 1.1.90 laximum sum of cross-sensitivities 2.29 ncertainty of cross-sensitivity ui 1.322 alculation of the combined standard uncertainty ested parameter tandard deviation from paired measurements under field conditions * u _D 0.286 ack of fit ulof 0.230 pan drift from field test ulog 0.230 pan drift from field test ulog 0.656 iffluence of ambient temperature at span ut 0.656 iffluence of supply voltage uv 0.162 ross-sensitivity (interference) ui 1.322 up 0.051 ncertainty of reference material at 70% of certification range urm 0.566 The larger value is used: "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" ur 0.566 ur 2 uc 2 vc	valuation of the cross-sensitivity (CS) system with largest CS) um of positive CS at zero point 2.29 mg/m^3 um of negative CS at span point 0.60 mg/m^3 um of negative CS at span point 0.60 mg/m^3 um of negative CS at span point 0.60 mg/m^3 um of negative CS at span point 0.60 mg/m^3 laximum sum of cross-sensitivities 0.229 mg/m^3 necertainty of cross-sensitivity 0.220 mg/m^3 alculation of the combined standard uncertainty ested parameter tandard deviation from paired measurements under field conditions 0.230 mg/m^3 ack of fit 0.230 mg/m^3 ack of fit 0.230 mg/m^3 and the first $0.230 \text{ mg/m}^$	valuation of the cross-sensitivity (CS) system with largest CS)