

ZERTIFIKAT

über Produktkonformität (QAL1)

Zertifikatsnummer: 0000040207_01

Spirant BAM 1100 mit PM_{2.5}-Vorabscheider für Schwebstaub Messeinrichtung:

Hersteller: Ecotech Pty Ltd.

> 1492 Ferntree Gully Road Knoxfield, VIC, 3180

Australien

Prüfinstitut: TÜV Rheinland Energy GmbH

> Hiermit wird bescheinigt, dass das AMS geprüft wurde und die festgelegten Anforderungen der folgenden Normen erfüllt:

VDI 4202-1: 2002, VDI 4203-3: 2004, EN 14907: 2005, Leitfaden zum Nachweis der Gleichwertigkeit von Immissionsmessverfahren: 2010 DIN EN 15267-1: 2009 und DIN EN 15267-2: 2009

Die Zertifizierung gilt für die in diesem Zertifikat aufgeführten Bedingungen (siehe auch folgende Seiten). Das vorliegende Zertifikat ersetzt das Zertifikat 0000040207 vom 29. April 2014.

Eignungsgeprüft Entspricht 2008/50/EG **DIN EN 15267** Regelmäßige Überwachung

www.tuv.com ID 0000040207

Eignungsbekanntgabe im Bundesanzeiger vom 1. April 2014

Umweltbundesamt Dessau, 1. April 2019 Gültigkeit des Zertifikates bis: 30. Juni 2020

TÜV Rheinland Energy GmbH Köln, 31. März 2019

Dr. Pet W. 2

Seite 1 von 6

i. A. Dr. Marcel Langner

Moll L

ppa. Dr. Peter Wilbring

www.umwelt-tuv.de teu@umwelt-tuv.de Tel. +49 221 806-5200

gal1.de

TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

Akkreditiert nach DIN EN ISO/IEC 17025:2018 und zertifiziert nach ISO 9001:2015 info@gal1.de

Zertifikat:

0000040207_01 / 1. April 2019

Prüfbericht:

936/21222754/A vom 01. Oktober 2013

Erstmalige Zertifizierung:

01. April 2014

Gültigkeit des Zertifikats bis:

30. Juni 2020

Veröffentlichung:

BAnz AT 01. April 2014 B12, Kapitel IV, Nr. 6.1

Genehmigte Anwendung

Das geprüfte AMS ist geeignet zur kontinuierlichen Immissionsmessung der PM_{2,5}-Fraktion im Schwebstaub im stationären Einsatz.

Die Eignung des AMS für diese Anwendungen wurde auf Basis einer Laborprüfung und eines Feldtests mit vier unterschiedlichen Standorten bzw. Zeiträumen beurteilt.

Das AMS ist für den Temperaturbereich von +5 °C bis +40 °C zugelassen.

Jeder potenzielle Nutzer sollte in Abstimmung mit dem Hersteller sicherstellen, dass dieses AMS für den geplanten Einsatzort geeignet ist.

Basis der Zertifizierung

Dieses Zertifikat basiert auf:

- Prüfbericht 936/21222754/A vom 01. Oktober 2013 der TÜV Rheinland Energie und Umwelt GmbH
- Eignungsbekanntgabe durch das Umweltbundesamt als zuständige Stelle
- Überwachung des Produktes und des Herstellungsprozesses
- Veröffentlichung im Bundesanzeiger: BAnz AT 01. April 2014 B12, Kapitel IV, Nr. 6.1 UBA Bekanntmachung vom 27. Februar 2014

Zertifikat: 0000040207_01 / 1. April 2019

Messeinrichtung:

Spirant BAM 1100 mit PM_{2,5} -Vorabscheider

Hersteller:

Ecotech Pty Ltd., Knoxfield, Australien

Eignung:

Zur kontinuierlichen Immissionsmessung der PM_{2,5}-Fraktion im Schwebstaub im stationären Einsatz

Messbereich in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	Einheit
PM _{2,5}	0 - 1000	µg/m³

Softwareversion:

Version 81237-05 V1.0.0

Einschränkungen:

Keine

Hinweise:

- Die Anforderungen gemäß des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" in der Version vom Januar 2010 werden für die Messkomponente PM_{2,5} eingehalten.
- Das Gerät ist zur Erfassung von PM_{2,5} mit folgenden Optionen auszustatten: Probenahmeheizung (BX-830), PM₁₀-Probenahmekopf (BX-802), PM_{2,5} Sharp Cut Cyclone SCC (BX-807), kombinierter Druck- und Temperatursensor (BX-596) bzw. alternativ Umgebungstemperatursensor (BX-592).
- 3. Die Zykluszeit während der Eignungsprüfung betrug 1 h, d.h. jede Stunde wurde ein automatischer Filterwechsel durchgeführt. Jeder Filterfleck wurde nur einmal beprobt.
- 4. Die Probenahmezeit innerhalb der Zykluszeit beträgt 42 min.
- 5. Die Messeinrichtung ist in einem verschließbaren Messcontainer zu betreiben.
- 6. Die Messeinrichtung ist mit dem gravimetrischen PM_{2,5}-Referenzverfahren nach DIN EN 14907 regelmäßig am Standort zu kalibrieren.
- 7. Die Messeinrichtung kann optional mit der Pumpe BX-125 betrieben werden.
- 8. Der Prüfbericht über die Eignungsprüfung ist im Internet unter www.qal1.de einsehbar.

Prüfinstitut:

TÜV Rheinland Energie und Umwelt GmbH, Köln Bericht-Nr.: 936/21222754/A vom 1. Oktober 2013

Zertifikat: 0000040207_01 / 1. April 2019

Zertifiziertes Produkt

Das Zertifikat gilt für automatische Messeinrichtungen, die mit der folgenden Beschreibung übereinstimmen:

Die Messeinrichtung Spirant BAM 1100 mit PM_{2,5}-Vorabscheider ist bis auf ein abgeändertes Frontdesign und leichte Anpassungen der Gerätesoftware absolut baugleich mit der Messeinrichtung BAM-1020 und wurde von der Fa. Met One Instruments, Inc. entwickelt und bei Met One Instruments, Inc. komplett gefertigt.

Das Schwebstaubimmissionsmessgerät Spirant BAM 1100 mit $PM_{2.5}$ -Vorabscheider besteht aus dem PM_{10} -Probenahmekopf BX-802, dem $PM_{2.5}$ Sharp Cut Cyclone SCC (BX-807), dem Probenahmerohr, der Probenahmeheizung BX-830, dem kombinierten Druck- und Temperatursensor (BX-596) bzw. alternativ Umgebungstemperatursensor (BX-592), der Vakuumpumpe BX-127 bzw. optional BX-125, dem Messgerät Spirant BAM 1100 (inkl. Glasfaserfilterband), den jeweils zugehörigen Anschlussleitungen und –kabeln sowie Adaptern, der Dachdurchführung inkl. Flansch sowie dem Handbuch in deutscher Sprache.

Die Messeinrichtung basiert auf dem Messprinzip der Beta-Abschwächung.

Die Partikelprobe passiert mit einer Durchflussrate von 1 m³/h den PM₁₀-Probenahmekopf und den PM_{2,5} Sharp Cut Cyclone SCC und gelangt über das Probenahmerohr zum eigentlichen Messgerät Spirant BAM 1100.

Im Rahmen der Eignungsprüfung wurde die Messeinrichtung mit der Probenahmeheizung BX-830 betrieben.

Die Partikel erreichen das Messgerät und werden auf dem Glasfilterband der radiometrischen Messung abgeschieden.

Ein Messzyklus (inkl. automatischer Überprüfung der radiometrischen Messung) läuft dabei folgendermaßen ab (Einstellung für PM_{2.5}: Messzeit für Radiometrie 8 min):

- 1. Die Anfangs- oder Leermessung auf dem sauberen Filterband I_0 (Betazählrate am Anfang) findet am Anfang des Zyklus statt. Sie dauert 8 min.
- Das Filterband wird über eine Strecke von 4 Bestaubungsflecken vorwärts transportiert und unter die Probenahmestelle geschoben. Die Probenahme erfolgt auf dem Filterfleck, auf dem I₀ vorher bestimmt wurde. Durch diesen Filterfleck wird nun für eine Probenahmedauer von 42 min die Partikel beladene Luft gesaugt.
- 3. Gleichzeitig wird 4 Bestaubungsflächen zurück auf dem Filterband eine radiometrischen Messung I₁ für die Dauer von 8 Minuten vorgenommen. Die Messung erfolgt zur Verifizierung etwaiger Drifteffekte durch sich ändernde äußere Einflüsse wie Temperatur und relative Feuchte. Eine dritte radiometrische Messung I₂ erfolgt an gleicher Stelle mit eingeschobener Referenzfolie. Acht Minuten vor Ende der Sammelzeit erfolgt an derselben Stelle des Filterbandes noch mal eine Messung auf dem Filterband I_{1x}, mit deren Hilfe aus I₁ und I_{1x} die Stabilität am Nullpunkt überwacht werden kann.
- 4. Das Filterband wird nach beendeter Probenahme um 4 Bestaubungsflächen zurück gefahren und der belegte Filterfleck wird radiometrisch vermessen I₃. Die Berechnung der Konzentration bildet den Abschluss des Messzyklus.
- 5. Der nächste Zyklus beginnt mit Schritt 1.

Die radiometrische Massenbestimmung wird im Werk kalibriert und im laufenden Betrieb im Rahmen der geräteinternen Qualitätssicherung stündlich an Nullpunkt (unbelegter Filterfleck) und Referenzpunkt (eingebaute Referenzfolie) überprüft. Aus den erzeugten Daten lassen sich auf einfachem Wege Messwerte an Null- und Referenzpunkt herleiten. Diese können mit den Stabilitätsanforderungen (Drift) bzw. mit dem Sollwert für die Referenz (Werkseinstellung) verglichen werden.

Zertifikat:

0000040207_01 / 1. April 2019

Allgemeine Anmerkungen

Dieses Zertifikat basiert auf dem geprüften Gerät. Der Hersteller ist dafür verantwortlich, dass die Produktion dauerhaft den Anforderungen der DIN EN 15267 entspricht. Der Hersteller ist verpflichtet, ein geprüftes Qualitätsmanagementsystem zur Steuerung der Herstellung des zertifizierten Produktes zu unterhalten. Sowohl das Produkt als auch die Qualitätsmanagementsysteme müssen einer regelmäßigen Überwachung unterzogen werden.

Falls festgestellt wird, dass das Produkt aus der aktuellen Produktion mit dem zertifizierten Produkt nicht mehr übereinstimmt, ist die TÜV Rheinland Energy GmbH unter der auf Seite 1 angegebenen Adresse zu informieren.

Das Zertifikatszeichen mit der produktspezifischen ID-Nummer, das an dem zertifizierten Produkt angebracht oder in Werbematerialien für das zertifizierte Produkt verwendet werden kann, ist auf Seite 1 dieses Zertifikates dargestellt.

Dieses Dokument sowie das Zertifikatszeichen bleiben Eigentum der TÜV Rheinland Energy GmbH. Mit dem Widerruf der Bekanntgabe verliert dieses Zertifikat seine Gültigkeit. Nach Ablauf der Gültigkeit des Zertifikats und auf Verlangen der TÜV Rheinland Energy GmbH muss dieses Dokument zurückgegeben und das Zertifikatszeichen darf nicht mehr verwendet werden.

Die aktuelle Version dieses Zertifikates und seine Gültigkeit kann auch unter der Internetadresse: **qal1.de** eingesehen werden.

Die Zertifizierung der Messeinrichtung Spirant BAM 1100 mit PM_{2,5}-Vorabscheider basiert auf den im Folgenden dargestellten Dokumenten und der regelmäßigen fortlaufenden Überwachung des Qualitätsmanagementsystems des Herstellers:

Erstzertifizierung gemäß DIN EN 15267

Zertifikat Nr. 0000040207:

29. April 2014

Gültigkeit des Zertifikats:

31. März 2019

Prüfbericht: 936/21222754/A vom 1. Oktober 2013 TÜV Rheinland Energie und Umwelt GmbH, Köln

Veröffentlichung: BAnz AT 01. April 2014 B12, Kapitel IV, Nr. 6.1

UBA Bekanntmachung vom 27. Februar 2014

Erneute Ausstellung des Zertifikats gemäß DIN EN 15267

Zertifikat Nr. 0000040207_01:

1. April 2019

Gültigkeit des Zertifikats:

30. June 2020

Zertifikat: 0000040207_01 / 1. April 2019

Berechnung d	ler Gesamtunsic	herh	eit								
Spirant BAM 1100*, PM2,5	33,1% > 17 μg m-3	Orthogonale Regression								Unsicherheit zw ischen den Gerät	
	W _{CM} / %	n _{c-s}	r ²	Steigung (b) +/- ub			Achsabschnitt (a) +/- ua			Referenz	Prüflinge
Alle Standorte	12,6	248	0,967	1,000	+/-	0,012	0,764	+/-	0,204	0,33	1,38
< 18 µg m-3	9,8	174	0,889	0,971	+/-	0,025	1,066	+/-	0,267	0,34	1,05
> 18 µg m-3	15,9	74	0,926	1,031	+/-	0,033	-0,068	+/-	0,919	0,30	1,57
SN 17010	Detendate	Orthogonale Regression								Grenzwert 30 µg m ⁻³	
	Datensatz	n _{c-s}	r ²	Steigung (b) +/- ub			Achsabschnitt (a) +/- ua			W _{CM} / %	% > 17 μg m ⁻³
Einzeldatensätze	Teddington (Sommer)	78	0,931	0,994	+/-	0,030	1,822	+/-	0,372	17,11	19,2
	Köln (Winter)	75	0,957	0,980	+/-	0,024	0,960	+/-	0,512	12,79	56,0
	Bornheim (Sommer)	53	0,941	1,052	+/-	0,036	-0,962	+/-	0,527	11,61	20,8
	Teddington (Winter)	45	0,991	0,970	+/-	0,014	-0,182	+/-	0,300	10,28	35,6
Gesamtdatensätze	< 18 µg m ⁻³	175	0,849	0,955	+/-	0,028	1,137	+/-	0,306	11,46	4,6
	> 18 μg m ⁻³	76	0,907	0,984	+/-	0,035	0,584	+/-	0,975	16,02	100,0
	Alle Standorte	251	0,957	0,969	+/-	0,013	0,989	+/-	0,226	12,90	33,5
SN 17011		Orthogonale Regression							Grenzw ert 30 µg m ³		
	Datensatz	n _{c-s}	r ²	Steigu	ıng (b)	+/- ub	Achsabs	chnitt ((a) +/- ua	W _{CM} / %	% > 17 μg m ⁻³
Einzeldatensätze	Teddington (Sommer)	78	0,955	1,016	+/-	0,025	1,018	+/-	0,308	14,66	19,2
	Köln (Winter)	75	0,977	1,061	+/-	0,019	0,430	+/-	0,405	17,91	56,0
	Bornheim (Sommer)	57	0,901	1,134	+/-	0,048	-1,498	+/-	0,727	23,91	21,1
	Teddington (Winter)	43	0,992	0,991	+/-	0,014	0,630	+/-	0,293	7,41	32,6
Gesamtdatensätze	< 18 µg m ⁻³	178	0,881	1,021	+/-	0,026	0,634	+/-	0,286	13,44	4,5
	> 18 µg m ⁻³	75	0,929	1,092	+/-	0,034	-1,108	+/-	0,952	19,03	100,0
	Alle Standorte	253	0,966	1,041	+/-	0,012	0,377	+/-	0,214	16,28	32,8

^{*} Die Äquivalenzprüfung erfolgte in der ursprünglichen Prüfung mit den baugleichen Messeinrichtungen BAM-1020 der Firma Met One Instruments, Inc.

^{**} Die Untersuchungen für die Messeinrichtungen erfolgten auf Grundlage der Version des EU-Leitfadens vom Juli 2009. In der Zwischenzeit wurden erneut Änderungen am Leitfaden vorgenommen und eine neue Version vom Januar 2010 veröffentlicht. Die vorgenommen Änderungen sind rein kosmetischer Natur und haben zu keinerlei Veränderungen in der eigentlichen Äquivalenzprüfung geführt. Eine Äquivalenzprüfung nach dem Leitfaden in der Version Januar 2010 führt somit zu exakt identischen Ergebnissen wie eine Äquivalenzprüfung nach dem Leitfaden in der Version Juli 2009.