

# CONFIRMATION

## of Product Conformity (QAL1)

---

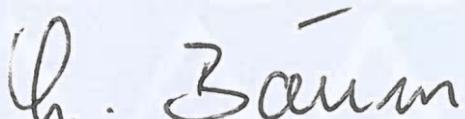
**Approved AMS:** APNA-380 for NO, NO<sub>2</sub> and NO<sub>x</sub>

**Manufacturer:** Horiba Europe GmbH  
Hans-Mess-Strasse 6  
61440 Oberursel  
Germany

---

**Test Institute::** TÜV Rheinland Energy & Environment GmbH

**This is to certify that the AMS has been tested  
according to the standards**


**VDI 4202-1 (2018), EN 14211 (2012), EN 14211 (2024)  
as well as EN 15267-1 (2009) and EN 15267-2 (2023).**

The AMS underwent independent expert testing and was accepted.

This confirmation is valid up to the publication of the certificate,  
but no longer than 6 months from the date of issue  
(this document contains 4 pages).

**This confirmation is valid until: 30 April 2026**

TÜV Rheinland Energy & Environment GmbH  
Cologne, 4 July 2025

  
i. V. Dipl.-Ing. G. Baum

  
i. A. Dipl.-Ing. C. Röllig

[www.umwelt-tuv.eu](http://www.umwelt-tuv.eu)

qal1-info@tuv.com  
Tel. +49 221 806-5200

TÜV Rheinland Energy & Environment GmbH

Am Grauen Stein  
51105 Köln

Test institute accredited to EN ISO/IEC 17025 by DAkkS (German Accreditation Body).  
This accreditation is limited to the accreditation scope defined in the enclosure to certificate D-PL-11120-02-00.

**Confirmation:**  
4 July 2025



**Test Report:** EuL/31262682/B dated 7 February 2025

**Expiry date:** 30 April 2026

### **Approved application**

The tested AMS is suitable for continuous immission measurement of NO, NO<sub>2</sub> and NO<sub>x</sub> in stationary use.

The suitability of the AMS for this application was assessed on the basis of a laboratory test and a three month field test.

The AMS is approved for an ambient temperature range of +0° to 40°C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the measured values relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the intended purpose.

### **Note**

The legal regulations mentioned do not correspond to the current state of legislation in every case. Each user should, if necessary, in consultation with the competent authority, ensure that this AMS meets the legal requirements for the intended use. In addition, it cannot be ruled out that legal regulations governing the use of a measuring device for emission monitoring may change during the lifetime of the certificate.

### **Basis of the confirmation**

This confirmation is based on:

- Test report EuL/31262682/B dated 7 February 2025 issued by TÜV Rheinland Energy & Environment GmbH
- The ongoing surveillance of the product and the manufacturing process
- Expert testing and approval by an independent body

**AMS designation:**  
APNA-380 for NO, NO<sub>2</sub> and NO<sub>x</sub>

**Manufacturer:**  
Horiba Europe GmbH, Oberursel, Deutschland

**Field of application:**  
For the continuous determination of ambient air concentrations of nitrogen oxides in outdoor air in stationary use

**Measuring ranges during performance testing:**

| Component       | Certification range | Unit              |
|-----------------|---------------------|-------------------|
| NO              | 0 - 1.200           | µg/m <sup>3</sup> |
| NO <sub>2</sub> | 0 - 500             | µg/m <sup>3</sup> |

**Software version:**  
A7: P2002638B 1.01  
M4: P2002642A 1.00  
Analyzer: P2002584B 1.02  
FPGA: P2002759A 1.01

**Restrictions:**  
none

**Notes:**  
1. The measuring system also fulfils the requirements of DIN EN 14211:2024  
2. the test report on the suitability test can be viewed on the Internet at [www.qal1.de](http://www.qal1.de)

**Test Institute:** TÜV Rheinland Energy & Environment GmbH, Cologne  
Report No.: EuL/31262682/B dated 7 February 2025

## Tested product

This confirmation applies to automated measurement systems conforming to the following description:

The APNA-380 nitrogen oxide analyser determines the concentration of nitrogen oxide (NO), total nitrogen oxide (NO<sub>x</sub>, the sum of NO and NO<sub>2</sub>) and nitrogen dioxide (NO<sub>2</sub>) in a sample drawn into the instrument.

The measuring principle is based on the detection of chemiluminescence occurring during the reaction of nitrogen oxide (NO) with ozone (O<sub>3</sub>).

NO<sub>x</sub> chemiluminescence refers to the specific chemiluminescence reaction that occurs when nitrogen oxides (NO<sub>x</sub>) are present in a sample gas and react with ozone (O<sub>3</sub>). This reaction leads to the emission of light, which can be measured and used for quantitative analyses in various applications.

The chemiluminescence reaction with NO<sub>x</sub> and ozone can be summarised as follows:

Oxidation of NO to NO<sub>2</sub>: NO reacts with ozone (O<sub>3</sub>) in the presence of excess oxygen to form nitrogen dioxide (NO<sub>2</sub>) and oxygen gas.



### Energy transfer:

The electronically excited NO<sub>2</sub> molecules then undergo an energy transfer with other gas molecules or collision partners such as helium, which leads to the transfer of excess energy to these partners.

### Light emission:

When the excited NO<sub>2</sub> molecule is de-excited, it emits excess energy in the form of light. The emitted light typically falls into the visible or near-infrared part of the electromagnetic spectrum.

By detecting and measuring the intensity of this chemiluminescent light, it is possible to quantify the concentration of NO<sub>x</sub> in the sample gas.

### Gerätetechnische Daten APNA-380:

|                        |                                                                                                                         |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Measuring range:       | Maximum 0-20 ppm (selectable)                                                                                           |
| Units:                 | ppb / ppm / µg/m <sup>3</sup> / mg/m <sup>3</sup>                                                                       |
| Measured compounds:    | Nitrogen oxides                                                                                                         |
| Sample flow:           | approx. 0.7 litres/min (during the test)                                                                                |
| Outputs:               | Ethernet TCP/IP<br>Modbus<br>Serial interface, RS232<br>0 - 1/5/10 Volt analogue<br>4 - 20 mA analogue<br>USB INTERFACE |
| Input voltage:         | 100 V to 240 V, 50 Hz or 60 Hz                                                                                          |
| Power:                 | 140 W; maximum 190 W                                                                                                    |
| Dimensions (L x W x H) | 568 x 430 x 221 mm                                                                                                      |
| Weight:                | approx. 18 kg                                                                                                           |