

ZERTIFIKAT

über Produktkonformität (QAL1)

Zertifikatsnummer: 0000062069

Messeinrichtung:

48iQ für Kohlenmonoxid

Hersteller:

Thermo Fisher Scientific

27, Forge Parkway Franklin, MA 02038

USA

Prüfinstitut:

TÜV Rheinland Energy GmbH

Es wird bescheinigt, dass das AMS unter Berücksichtigung der Normen

VDI 4202-1 (2018), DIN EN 14626 (2012), DIN EN 15267-1 (2009) und DIN EN 15267-2 (2009) geprüft wurde und zertifiziert ist.

Die Zertifizierung gilt für die in diesem Zertifikat aufgeführten Bedingungen (das Zertifikat umfasst 9 Seiten).

Eignungsgeprüft Entspricht 2008/50/EG DIN EN 15267 Regelmäßige Überwachung

www.tuv.com ID 0000062069

Eignungsbekanntgabe im Bundesanzeiger vom 22. Juli 2019

Umweltbundesamt Dessau, 05. November 2019 Gültigkeit des Zertifikates bis: 21. Juli 2024

TÜV Rheinland Energy GmbH Köln, 04. November 2019

i. A. Dr. Marcel Langner

Mold by

ppa. Dr. Peter Wilbring

www.umwelt-tuv.eu tre@umwelt-tuv.eu Tel. + 49 221 806-5200 TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

a P.A.w.9

Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflabor. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-11120-02-00 aufgeführten Akkreditierungsumfang.

qal1.de

info@gal.de

Seite 1 von 9

0000062069 / 05. November 2019

Prüfbericht: 936/21242986/D vom 04. Februar 2019

Erstmalige Zertifizierung: 22. Juli 2019 Gültigkeit des Zertifikats bis: 21. Juli 2024

Veröffentlichung: BAnz AT 22.07.2019 B8, Kapitel III Nummer 2.1

Genehmigte Anwendung

Das geprüfte AMS ist geeignet zur kontinuierlichen parallelen Immissionsmessung von Kohlenmonoxid im stationären Einsatz.

Die Eignung des AMS für diese Anwendungen wurde auf Basis einer Laborprüfung und eines dreimonatigem Feldtests beurteilt.

Das AMS ist für den Umgebungstemperaturbereich von 0 °C bis +30 °C zugelassen.

Die Bekanntgabe der Messeinrichtung, die Eignungsprüfung sowie die Durchführung der Unsicherheitsberechnungen erfolgte auf Basis der zum Zeitpunkt der Prüfung gültigen Bestimmungen. Aufgrund möglicher Änderungen rechtlicher Grundlagen sollte jeder Anwender vor dem Einsatz der Messeinrichtung in Abstimmung mit dem Hersteller sicherstellen, dass diese Messeinrichtung zur Überwachung der für ihn relevanten Messwerte geeignet ist.

Jeder potentielle Nutzer sollte in Abstimmung mit dem Hersteller sicherstellen, dass dieses AMS für den vorgesehenen Einsatzzweck geeignet ist.

Basis der Zertifizierung

Dieses Zertifikat basiert auf:

- Prüfbericht 936/21242986/D vom 04. Februar 2019 der TÜV Rheinland Energy GmbH
- Eignungsbekanntgabe durch das Umweltbundesamt als zuständige Stelle
- Überwachung des Produktes und des Herstellungsprozesses

0000062069 / 05. November 2019

Veröffentlichung im Bundesanzeiger: BAnz AT 22.07.2019 B8, Kapitel III Nummer 2.1, UBA Bekanntmachung vom 28. Juni 2019:

Messeinrichtung:

48iQ für Kohlenmonoxid

Hersteller:

Thermo Fisher Scientific, Franklin, USA

Eignung:

Zur kontinuierlichen Bestimmung der Immissionskonzentrationen von Kohlenmonoxid in der Außenluft im stationären Einsatz.

Messbereiche in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	Einheit
Kohlenmonoxid	0–100	mg/m³

Softwareversion:

Version: 1.6.0.32120

Einschränkung:

Keine

Hinweis:

Der Prüfbericht über die Eignungsprüfung ist im Internet unter www.qal1.de einsehbar.

Prüfbericht:

TÜV Rheinland Energy GmbH, Köln

Bericht-Nr.: 936/21242986/D vom 4. Februar 2019

0000062069 / 05. November 2019

Zertifiziertes Produkt

Das Zertifikat gilt für automatische Messeinrichtungen, die mit der folgenden Beschreibung übereinstimmen:

Die Immissionsmesseinrichtung 48iQ ist ein kontinuierlicher Kohlenmonoxid-Analysator. Das Gerät wurde zur kontinuierlichen Messung von Kohlenmonoxid in der Umgebungsluft entwickelt.

Das Messprinzip des 48iQ basiert darauf, dass Kohlenmonoxid (CO) Infrarotstrahlung bei einer Wellenlänge von 4,6 µm absorbiert. Die Gasfilterkorrelationstechnik ermöglicht es, selektiv ausschließlich die durch CO bewirkte Lichtabsorption zu bestimmen. Dazu wird das Verhältnis von durch die Probe absorbiertem Licht zu einer gefilterten Referenzmessung bestimmt.

Licht aus einer Breitband-Infrarotquelle durchläuft ein Gasfilterrad, welches jeweils mit einer N_2 - und einer CO-gefüllten Zelle bestückt ist, und gelangt danach durch einen schmalen Bandpass-Inteferenzfilter zu dem Volumen mit dem Probengas. Das durch die N_2 -Zelle gestrahlte Licht wird vom CO im Probengas normal absorbiert und ergibt das Probensignal. Das durch die CO-Zelle gestrahlte Licht ist in dem Bereich, in dem die CO-Absorbtion erfolgt, bereits blockiert und wird somit vom Proben-CO nicht verändert. Dieser Wert dient als Referenzwert. Das Verhältnis von Probe zu Referenz wird mit hoher Geschwindigkeit erfasst und um die Lichtstärke und andere Veränderungen korrigiert, um eine präzise Messung zu erhalten.

Die Probe wird durch den Schottanschluss "sample" in den 48iQ-Analysator eingesaugt. Das Probengas wird von einer einstufigen Pumpe durch die 48iQ DMC-Messbank gepumpt, in der CO detektiert wird. Danach strömt das Probengas durch eine Kapillare, die den Einlassdurchfluss auf ca. 1 I/min reduziert, während der Umgebungsdruck auf der Seite der optischen Bank überwacht und aufrechterhalten wird. Der 48iQ-Analysator gibt die CO-Konzentration auf dem Display und über die Analogausgänge aus. Die Daten werden außerdem über den seriellen Anschluss oder die Ethernet-Schnittstelle bereitgestellt.

Der Analysator besteht aus folgenden Hauptbaugruppen:

- Optische Messbank: Die optische Messbank ist eine luftdichte Messbank, die das Probengas enthält. Sie beinhaltet auch die Spiegel, die das Infrarotlicht vor der Detektion über den Probenweg mehrmals reflektieren, um die Absorption zu maximieren. Heizelemente werden verwendet, um eine konstante Temperatur der optischen Messbank aufrechtzuerhalten.
- Ein Bandpassfilter begrenzt das Licht, das in die optische Messbank eintritt, auf ein schmales Band im Infrarotspektrum, innerhalb dessen CO absorbiert wird.
- Filterradmotor: Ein Gasfilterrad enthält CO- und N₂-Proben mit einer Chopper-Scheibe. Das Rad wird gedreht, sodass der Infrarotlichtstrahl periodisch unterbrochen wird, um bei der Detektion ein moduliertes Signal zu erzeugen. Die Differenzierung des Lichts des durch die CO- und N₂-Komponenten des Rades gestrahlten Lichts bei Vorhandensein von CO in der optischen Messbank ermöglicht die Bestimmung der CO-Absorption und -Konzentration der Probe. Der Chopper-Motor dreht das Gasfilterrad und die Chopper-Scheibe mit gleichmäßiger Geschwindigkeit. Eine separate optische Schalterbaugruppe erkennt die Position des Filterrads, um das modulierte Signal zu synchronisieren und die Drehzahl des Chopper-Motors zu überprüfen.
- Detektor/Vorverstärker: Die Detektor/Vorverstärker-Baugruppe wandelt Infrarotlicht nach der Modulierung und CO-Probenabsorption in ein verstärktes elektrisches Signal um, das anschließend verarbeitet wird.
- Infrarotquelle: Die Infrarotlichtquelle ist ein spezieller Drahtwicklungswiderstand, der bei hohen Temperaturen betrieben wird, um eine Breitband-Infrarotstrahlung zu erzeugen.
- Elektronik: Die allgemeine Elektronik enthält die Rechen- und Leistungsverkabelungs-Hardware. Die Elektronikgruppe ist in allen Geräten der Thermo Fisher

0000062069 / 05. November 2019

iQ-Serie nahezu identisch. Sie umfasst auch das Display, die USB-Anschlüsse, den Ethernet-Anschluss und die E/A-Schnittstellen. Die gesamte Elektronik wird über ein universelles Schalternetzteil betrieben. Das System Controller Board umfasst den Hauptprozessor, Netzteile, einen Subprozessor und dient als Kommunikations-Hub für das Messgerät.

Pheripherie-Unterstützung: Die Pheripherie-Unterstützung betreibt zusätzliche Geräte, die benötigt werden, jedoch keine spezielle Steuerung erfordern. Der Gehäuselüfter sorgt hier für die Luftkühlung der aktiven elektronischen Komponenten. Die interne Vakuumpumpe dient der Erzeugung des Luftstroms/Probenflusses durch das Messgerät.

- Durchfluss/Druck-DMC: Die Durchfluss/Druck-DMC wird verwendet, um eine ordnungsgemäße Durchflussregelung zu gewährleisten sowie um den Probendruck in der Messbank aufrechtzuerhalten und ggf. zu korrigieren. Die DMS verfügt über zwei Drucksensoren.

Allgemeine Anmerkungen

Dieses Zertifikat basiert auf dem geprüften Gerät. Der Hersteller ist dafür verantwortlich, dass die Produktion dauerhaft den Anforderungen der DIN EN 15267 entspricht. Der Hersteller ist verpflichtet, ein geprüftes Qualitätsmanagementsystem zur Steuerung der Herstellung des zertifizierten Produktes zu unterhalten. Sowohl das Produkt als auch die Qualitätsmanagementsysteme müssen einer regelmäßigen Überwachung unterzogen werden.

Falls festgestellt wird, dass das Produkt aus der aktuellen Produktion mit dem zertifizierten Produkt nicht mehr übereinstimmt, ist die TÜV Rheinland Energy GmbH unter der auf Seite 1 angegebenen Adresse zu informieren.

Das Zertifikatszeichen mit der produktspezifischen ID-Nummer, das an dem zertifizierten Produkt angebracht oder in Werbematerialien für das zertifizierte Produkt verwendet werden kann, ist auf Seite 1 dieses Zertifikates dargestellt.

Dieses Dokument sowie das Zertifikatszeichen bleiben Eigentum der TÜV Rheinland Energy GmbH. Mit dem Widerruf der Bekanntgabe verliert dieses Zertifikat seine Gültigkeit. Nach Ablauf der Gültigkeit des Zertifikats und auf Verlangen der TÜV Rheinland Energy GmbH muss dieses Dokument zurückgegeben und das Zertifikatszeichen darf nicht mehr verwendet werden.

Die aktuelle Version dieses Zertifikates und seine Gültigkeit kann auch unter der Internetadresse: **gal1.de** eingesehen werden.

Dokumentenhistorie

Die Zertifizierung der Messeinrichtung 48iQ basiert auf den im folgenden dargestellten Dokumenten und der regelmäßigen fortlaufenden Überwachung des Qualitätsmanagementsystems des Herstellers:

Erstzertifizierung gemäß DIN EN 15267

Zertifikat Nr. 0000062069: 05. November 2019 Gültigkeit des Zertifikats: 21. Juli 2024 Prüfbericht 936/21242986/D vom 04. Februar 2019

TÜV Rheinland Energy GmbH. Köln

Veröffentlichung: BAnz AT 22.07.2019 B8, Kapitel III Nummer 2.1

UBA Bekanntmachung vom 28. Juni 2019

Zertifikat: 0000062069 / 05. November 2019

Erweiterte Messunsicherheit Labor, System 1

	lom/lomu											100				ole.					lom/lomu	lom/lomd	%	%
1180540007	8,62	Quadrat der Teilunsicherheit	0,0000	0,0000	0,0044	0,0021	0,0175	0,0023	0,0000	0 000	0,0002			0 0363	0,0202			0,0036	0,0000	0,0074	0,2526	0,5052	5,86	15
Seriennummer:	8h-Grenzwert:	Teilunsicherheit	00'0	00'0	0,07	0,05	0,13	0,05	0,00	0.04	0,0			97 0	2			-0,06	-0,01	60'0	nc	n	W	Wreq
		Teilu	U _{r,z}	'n	ī	ngp	Ugt	Ust	'n	00.41	CH ZO	Uint, pos			oder		Uint, neg	Uav	U _{Asc}	u _{cg}	icherheit	sicherheit	sicherheit	icherheit
		Ergebnis	0,020	0,010	1,330	0,020	090'0	0,021	0,000	0,050	0,020	-0,030	-0,110	-0,110	-0,100	-0,040	-0,070	-1,200	-0,060	2,000	tandarduns	Erweiterte Unsicherheit	Relative erweiterte Unsicherheit	veiterte Uns
		Anforderung	0,3 µmol/mol	0,4 µmol/mol	4,0% des Messwertes	0,7 µmol/mol/kPa	0,3 µmol/mol/K	0,3 µmol/mol/K	0,3 µmol/mol/V	1,0 µmol/mol (Null)	1,0 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	7,0% des Messwertes	1,0%	3,0%	Kombinierte Standardunsicherteit	NE	Relative erv	Maximal erlaubte erweiterte Unsicherheit
			VI	VI	VI	VI	VI	t s	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI				
48iQ	8	Leistungskenngröße	Wiederholstandardabweichung bei Null	Wiederholstandardabweichung beim 8h-Grenzwert	"lack of fit" beim 8h-Grenzwert	Änderung des Probengasdrucks beim 8h-Grenzwert	Änderung der Probengastemperatur beim 8h-Grenzwert	Änderung der Umgebungstemperatur beim 8h-Grenzwert	Änderung der el. Spannung beim 8h-Grenzwert	Störkomorphe H.O. H etherocomo sicis		Stärkommente CO, mit 500 um/l/mol		Starkomponente NO mit 1mol/mol		ow) Jomes Of time O IN oppositions of the O	Storkoniponente N ₂ O IIII 30 IIIII 00	Mittelungsfehler	Differenz Proben-/Kalibriergaseingang	Unsicherheit Prüfgas				
Messgerät:	Messkomponente:	Nr.	1	2	3	4	2	9	7	83	80	48	3	80	3	70	oo	6	18	21				

Zertifikat: 0000062069 / 05. November 2019

Erweiterte Messunsicherheit Labor, System 2

Erw	eite	rte	M	es	su	nsi	ich	er	he	it L	_al	00	r, :	Sy	st	en	n 2	<u> </u>						
	lom/lomu																		Š		lom/lomu	lom/lomd	%	%
1171780048	8,62	Quadrat der Teilunsicherheit	0,0000	0,0000	0,0038	0,0021	0,0495	0,0352	0,0000	0000	0,000			90000	0,000			0,0099	0,0000	0,0074	0,3399	0,6798	7,89	15
Seriennummer:	8h-Grenzwert:	Teilunsicherheit	00'0	0,01	90'0	0,05	0,22	0,19	0,00	00	0,00			00	, , ,			0,10	-0,01	0,09	°n	n	W	Wred
Š	w	Teilun	U _{r,z}	ur	'n	ugp	ugt	Ust	^n	1	nH20	Uint, pos	i,		oder		Uint, neg	Uav	U _{Asc}	Ucg	sicherheit	sicherheit	sicherheit	sicherheit
X		Ergebnis	0,020	0,030	1,240	0,020	0,100	0,081	0,000	0,140	0,000	-0,220	-0,080	-0,050	-0,070	-0,040	0,000	2,000	-0,080	2,000	tandarduns	Erweiterte Unsicherheit	eiterte Uns	eiterte Uns
		Anforderung	0,3 µmol/mol	0,4 µmol/mol	4,0% des Messwertes	0,7 µmol/mol/kPa	0,3 µmol/mol/K	0,3 µmol/mol/K	0,3 µmol/mol/V	1,0 µmol/mol (Null)	1,0 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	7,0% des Messwertes	1,0%	3,0%	Kombinierte Standardunsicherheit	Erw	Relative erweiterte Unsicherheit	Maximal erlaubte erweiterte Unsicherheit
			VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI				d
48iQ	8	Leistungskenngröße	Wiederholstandardabweichung bei Null	Wiederholstandardabweichung beim 8h-Grenzwert	"lack of fit" beim 8h-Grenzwert	Änderung des Probengasdrucks beim 8h-Grenzwert	Änderung der Probengastemperatur beim 8h-Grenzwert	Änderung der Umgebungstemperatur beim 8h-Grenzwert	Änderung der el. Spannung beim 8h-Grenzwert	Stärkommonta H.O. H. etnenommontaist S		Stärkomposote CO. mit 500 ling/ma		Over the ON opposition On oppo	Storkoring of the Light of the	[ow] [own 03 sim O IV opening and high O	Storkoniponente iv20 min 30 minomion	Mittelungsfehler	Differenz Proben-/Kalibriergaseingang	Unsicherheit Prüfgas				
Messgerät:	Messkomponente:	Ŗ.	1	2	3	4	5	9	7	8	og	8	6	ő	36	70	oo	6	18	21				

Zertifikat: 0000062069 / 05. November 2019

Kombinierte Messunsicherheit Labor und Feld, System 1

	lom/lomu									abc			IU			,	9		lei					lom/lomu	hmol/mol	%	%
1171780048	8,62	Quadrat der Teilunsicherheit	0,0000		0,0038	0,0021	0,0495	0,0352	0,0000	0.0000				0.0075	2,00,0			0,0099	0,0172	0,0363	0,0014	0,0000	0,0074	0,4127	0,8254	9,58	15
Seriennummer:	8h-Grenzwert:	Teilunsicherheit	00,00	nicht berücksichtigt, da ur = 0 < ur,f	90'0	0,05	0,22	0,19	00'0	0.00				000	60,0			0,10	0,13	0,19	0,04	-0,01	0,09	nc	n	M	Wreq
		Teil	U _{r,z}	ň	ā	ngp	Ugt	Ust	^n	UHSO	200	Uint, pos			oder		Uint, neg	Uav	Ur,f	U _{d,1,z}	U _{d, I, 8h}	U∆sc	u _{cg}	sicherheit	sicherheit	sicherheit	sicherheit
		Ergebnis	0,020	0,030	1,240	0,020	0,100	0,081	000'0	0,140	0,000	-0,220	-0,080	-0,050	-0,070	-0,040	0,000	2,000	1,520	0,330	0,750	-0,080	2,000	tandarduns	Erweiterte Unsicherheit	eiterte Uns	eiterte Uns
		Anforderung	0,3 µmol/mol	0,4 µmol/mol	4,0% des Messwertes	0,7 µmol/mol/kPa	0,3 µmol/mol/K	0,3 µmol/mol/K	0,3 µmol/mol/V	1,0 µmol/mol (Null)	1,0 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	0,5 µmol/mol (Null)	0,5 µmol/mol (Span)	7,0% des Messwertes	5,0% des Mittels über 3 Mon.	0,5 µmol/mol	5,0% des Max. des Zert.bereichs	1,0%	3,0%	Kombinierte Standardunsicherheit	Erw	Relative erweiterte Unsicherheit	Maximal erlaubte erweiterte Unsicherheit
			VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI				
48IQ	00	Leistungskenngröße	Wiederholstandardabweichung bei Null	Wiederholstandardabweichung beim 8h-Grenzwert	"lack of fit" beim 8h-Grenzwert	Änderung des Probengasdrucks beim 8h-Grenzwert	Änderung der Probengastemperatur beim 8h-Grenzwert	Änderung der Umgebungstemperatur beim 8h-Grenzwert	Änderung der el. Spannung beim 8h-Grenzwert	Störkomponente H ₂ O mit 19 mmol/mol	2	Starkommon CO. etnegography Sol		Stärzmannen oli mit 1 im Oli etmanamarka	Storkoniporiente no min i pinorino	Om/Jomes Of time O. M. changes and chick So.		Mittelungsfehler	Vergleichspräzision unter Feldbedingungen	Langzeitdrift bei Null	Langzeitdrift bei Span	Differenz Proben-/Kalibriergaseingang	Unsicherheit Prüfgas				
Messgerät:	Messkomponente:	Nr.	1	7	8	4	9	9	2	88		48	3	Č	3	70	no	6	10	11	12	18	21				

Zertifikat: 0000062069 / 05. November 2019

Kombinierte Messunsicherheit Labor und Feld, System 2

Messgerät:	48iQ				Seriennummer:	1180540007	i
Messkomponente:	8				8h-Grenzwert:	8,62	lom/lomu
Ÿ.	Leistungskenngröße	Anforderung	Ergebnis	Teilt	Teilunsicherheit	Quadrat der Teilunsicherheit	
1	Wiederholstandardabweichung bei Null	≥ 0,3 µmol/mol	0,020	Ur,z	0,00	0,0000	H
α	Wiederholstandardabweichung beim 8h-Grenzwert	s 0,4 µmol/mol	0,010	วั	nicht berücksichtigt, da ur = 0 < ur,f		
က	"lack of fit" beim 8h-Grenzwert	4,0% des Messwertes	1,330	ā	0,07	0,0044	N
4	Änderung des Probengasdrucks beim 8h-Grenzwert	S 0,7 µmol/kPa	0,020	dg	0,05	0,0021	7
ß	Änderung der Probengastemperatur beim 8h-Grenzwert	S 0,3 µmol/mol/K	090'0	ugt	0,13	0,0175	
9	Änderung der Umgebungstemperatur beim 8h-Grenzwert	y/lom/lomu €,0	0,021	Ust	0,05	0,0023	
7	Änderung der el. Spannung beim 8h-Grenzwert	√/lom/lomul €,0 ≥	0,000	^n	00'0	0,000	
88	Störkomponente H ₂ O mit 19 mmol/mol	1,0 µmol/mol (Null)	0,050	UH20	0,01	0,0002	
8	Stärkompopente CO. mit 500 umol/mol		-0,030	Uint, pos	ì		
8		S 0,5 µmol/mol (Span)	-0,110				
8c	Störkomponente NO mit 1 µmol/mol	 No is pmol/mol (Null) 0.5 pmol/mol (Span) 	-0,110	oder	0,16	0,0262	
P8	Störkomponente N ₂ O mit 50 nmol/mol	S 0,5 µmol/mol (Null) 0.5 µmol/mol (Span)		Lin			
o	Mittelungsfehler	7		Uav	-0,06	0,0036	
10	Vergleichspräzision unter Feldbedingungen	≤ 5,0% des Mittels über 3 Mon.	1,520	Ľ,ŗ	0,13	0,0172	
11	Langzeitdrift bei Null	lom/lomu ≥ 0,5	0,430	U _{d,1,z}	0,25	0,0616	
12	Langzeitdriff bei Span	5,0% des Max. des Zert.bereichs	2,750	U _{d,I,8h}	0,14	0,0187	
18	Differenz Proben-/Kalibriergaseingang	%0'1 >	-0,060	UASC	-0,01	0,000	
21	Unsicherheit Prüfgas	3,0%	2,000	Ucg	0,09	0,0074	
		Kombinierte Standardunsicherheit	Standardunsi	cherheit	nc	0,4017	lom/lomu
		En	Erweiterte Unsicherheit	cherheit	D	0,8033	lom/lomu
		Relative en	Relative erweiterte Unsicherheit	cherheit	W	9,32	%
		Maximal arlamate anneitarte I Insigherheit	weiterte I Inci	cherheit	M	15	%