TÜV RHEINLAND ENERGY GMBH

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid

> TÜV-Bericht: 936/21242986/D Köln, 4. Februar 2019

> > www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallmessungen an Windenergieanlagen

nach DIN EN ISO/IEC 17025 akkreditiert.

Die Akkreditierung ist gültig bis 10-12-2022 und gilt für den unter der Urkundenanlage D-PL-11120-02-00 festgelegten Umfang.

Die auszugsweise Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy GmbH D - 51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

Seite 2 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Leerseite

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid

Geprüftes Gerät:	48iQ			
Hersteller:	Thermo Fisher Scientific 27, Forge Parkway Franklin, MA 02038 USA			
Prüfzeitraum:	April 2018 bis	s Oktober 2	2018	
Berichtsdatum:	4. Februar 2019			
Berichtsnummer:	936/21242986/D			
Bearbeiter:	DiplIng. Martin Schneider Tel.: +49 221 806-1614 martin.schneider@de.tuv.com			
Berichtsumfang:	Bericht:		120	Seiten
	Handbuch	ab Seite	120	
	Handbuch	mit	261	Seiten
	Gesamt		369	Seiten

Seite 4 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Leerseite

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Inhaltsverzeichnis

1.	KURZFASSUNG UND BEKANNTGABEVORSCHLAG
1.1	Kurzfassung11
1.2	Bekanntgabevorschlag13
1.3	Zusammenfassende Darstellung der Prüfergebnisse15
2.	AUFGABENSTELLUNG21
2.1	Art der Prüfung21
2.2	Zielsetzung21
3.	BESCHREIBUNG DER GEPRÜFTEN MESSEINRICHTUNG
3.1	Messprinzip
3.2	Umfang und Aufbau der Messeinrichtung24
3.3	Einstellungen des Messgerätes26
4.	PRÜFPROGRAMM
4.1	Allgemeines27
4.2	Laborprüfung28
4.3	Feldprüfung
5.	REFERENZMESSVERFAHREN
5.1	Messverfahren
6.	PRÜFERGEBNISSE NACH VDI 4202 BLATT 1 (2018)
6.1	7.3 Allgemeine Anforderungen30
6.1	7.3.1 Messwertanzeige
6.1	7.3.2 Kalibriereingang
6.1	7.3.3 Wartungsfreundlichkeit32
6.1	7.3.4 Funktionskontrolle
6.1	7.3.5 Rüst- und Einlaufzeiten

740300_2019_936_21242986D.docx

Seite 6 von 369

6.1	7.3.6 Bauart	35
6.1	7.3.7 Unbefugtes Verstellen	36
6.1	7.3.8 Messsignalausgang	37
6.1	7.3.9 Digitale Schnittstelle	
6.1	7.3.10 Datenübertragungsprotokoll	
6.1	7.3.11 Messbereich	40
6.1	7.3.12 Negative Messsignale	41
6.1	7.3.13 Stromausfall	42
6.1	7.3.14 Gerätefunktionen	43
6.1	7.3.15 Umschaltung	44
6.1	7.3.16 Gerätesoftware	45
6.1	7.4 Anforderungen an Leistungskenngrössen für die Laborprüfung	46
6.1	7.4.1 Allgemeines	46
6.1	7.4.2 Prüfbedingungen	47
6.1	7.4.3 Einstellzeit und Memory-Effekt	49
6.1	7.4.4 Kurzzeitdrift	50
6.1	7.4.5 Wiederholstandardabweichung	51
6.1	7.4.6 Linearität	52
6.1	7.4.7 Empfindlichkeitskoeffizient des Probengasdrucks	53
6.1	7.4.8 Empfindlichkeitskoeffizient der Probengastemperatur	54
6.1	7.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur	55
6.1	7.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung	56
6.1	7.4.11 Querempfindlichkeit	57
6.1	7.4.12 Mittelungseinfluss	58
6.1	7.4.13 Differenz zwischen Proben- und Kalibriereingang	59
6.1	7.4.14 Konverterwirkungsgrad	60

6.1	7.4.15 Verweilzeit im Messgerät	61
6.1	7.5 Anforderungen an Leistungskenngrössen für die Feldprüfung	62
6.1	7.5.1 Allgemeines	62
6.1	7.5.2 Standort für die Feldprüfungen	63
6.1	7.5.3 Betriebsanforderungen	64
6.1	7.5.4 Langzeitdrift	65
6.1	7.5.5 Vergleichsstandardabweichung unter Feldbedingungen	66
6.1	7.5.6 Kontrollintervall	67
6.1	7.5.7 Verfügbarkeit	68
6.1	7.5.8 Konverterwirkungsgrad	69
6.1	7.6 Eignungsanerkennung und Berechnung der Messunsicherheit	70
7.	PRÜFERGEBNISSE NACH DIN EN 14626 (2012)	71
7.1	8.4.3 Einstellzeit	71
7.1	8.4.4 Kurzzeitdrift	75
7.1	8.4.5 Wiederholstandardabweichung	79
7.1	8.4.6 Abweichung von der Linearität bei der Kalibrierfunktion	82
7.1	8.4.7 Empfindlichkeitskoeffizient des Probengasdrucks	87
7.1	8.4.8 Empfindlichkeitskoeffizient der Probengastemperatur	89
7.1	8.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur	91
7.1	8.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung	94
7.1	8.4.11 Störkomponenten	96
7.1	8.4.12 Mittelungsprüfung	99
7.1	8.4.13 Differenz Proben-/Kalibriereingang	102
7.1	8.5.4 Langzeitdrift	104
7.1	8.5.5 Vergleichstandardabweichung für CO unter Feldbedingungen	107
7.1	8.5.6 Kontrollintervall	110

Seite 8 von 369

7.1	8.5.7 Verfügbarkeit des Messgerätes1	11
7.1	8.6 Gesamtmessunsicherheit nach Anhang E der DIN EN 14626 (2012)1	13
8.	EMPFEHLUNGEN ZUM PRAXISEINSATZ1	18
9.	LITERATURVERZEICHNIS1	19
10.	ANLAGEN1	20

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabellenverzeichnis

Tabelle 1:	Geprüfter Messbereich	11
Tabelle 2:	Gerätetechnische Daten 48iQ (Herstellerangaben)	26
Tabelle 3:	Zertifizierungsbereiche VDI 4202-1 und DIN EN 14626	40
Tabelle 4:	Einstellzeiten der Messeinrichtung 48iQ für Kohlenmonoxid	73
Tabelle 5:	Einzelwerte der Einstellzeit für die Komponente Kohlenmonoxid	74
Tabelle 6:	Ergebnisse der Kurzzeitdrift	76
Tabelle 7:	Einzelwerte der Prüfung zur Kurzzeitdrift 1. Prüfgasaufgabe	77
Tabelle 8:	Einzelwerte der Prüfung zur Kurzzeitdrift 2. Prüfgasaufgabe	78
Tabelle 9:	Wiederholstandardabweichung am Null- und Referenzpunkt	80
Tabelle 10:	Einzelergebnisse der Untersuchung zur Wiederholstandardabweichung	81
Tabelle 11:	Abweichungen der Analysenfunktion für Kohlenmonoxid	83
Tabelle 12:	Einzelwerte "lack of fit" Prüfung	86
Tabelle 13:	Empfindlichkeitskoeffizient des Probengasdrucks	88
Tabelle 14:	Einzelwerte der Empfindlichkeit gegen Änderungen des Probengasdrucks	88
Tabelle 15:	Empfindlichkeitskoeffizient der Probengastemperatur	90
Tabelle 16:	Einzelwerte der Bestimmung des Einflusses des Probengastemperatur	90
Tabelle 17:	Empfindlichkeitskoeffizient der Umgebungstemperatur	92
Tabelle 18:	Einzelwerte zur Prüfung des Empfindlichkeitskoeffizienten der	
	Umgebungstemperatur	93
Tabelle 19:	Empfindlichkeitskoeffizient der elektrischen Spannung	95
Tabelle 20:	Einzelwerte des Empfindlichkeitskoeffizienten der elektrischen Spannung	95
Tabelle 21:	Störkomponenten nach DIN EN 14626	97
Tabelle 22:	Einfluss der geprüften Störkomponenten (c _t = 8,6 µmol/mol)	97
Tabelle 23:	Einzelwerte der Untersuchung gegenüber Störkomponenten	98
Tabelle 24:	Ergebnisse der Mittelungsprüfung1	00
Tabelle 25:	Einzelwerte der Untersuchung zum Mittelungseinfluss1	01
Tabelle 26:	Ergebnisse der Differenz zwischen Proben-/Kalibriereingang1	02
Tabelle 27:	Einzelwerte der Prüfung der Differenz zwischen Proben und	
	Kalibriergaseingang1	03
Tabelle 28:	Ergebnisse der Langzeitdrift am Nullpunkt1	05
Tabelle 29:	Ergebnisse der Langzeitdrift am Referenzpunkt1	05
Tabelle 30:	Einzelwerte der Driftuntersuchungen1	06
Tabelle 31:	Bestimmung der Vergleichsstandardabweichung auf Basis aller Daten	~ ~
	aus dem Feldtest	80
Tabelle 32:	Verfügbarkeit des Messgerätes 48iQ1	12
Tabelle 33:	Leistungsanforderungen nach DIN EN 14626	14
Tabelle 34:	Erweiterte Unsicherheit aus der Laborprüfung für Gerat 11	16
Tabelle 35:	Erweiterte Unsicherheit aus der Labor- und Feldprüfung für Gerat 11	16
	Erweiterte Unsicherheit aus der Laborprufung für Gerat 2	17
Tabelle 37:	Erweiterte Unsicherheit aus der Labor- und Feldprufung für Gerät 21	17

Seite 9 von 369

Seite 10 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Abbildungsverzeichnis

Abbildung 1:	Darstellung des 48iQ Analysators	22
Abbildung 2:	Allgemeines Funktionsschema	23
Abbildung 3:	Innenansicht - Draufsicht	25
Abbildung 4:	Innenansicht - Seitenansicht	25
Abbildung 5:	Softwareversion der 48iQ Testgeräte	27
Abbildung 6:	48iQ Testgeräte mit Messwertanzeige	30
Abbildung 7:	Veranschaulichung der Einstellzeit	72
Abbildung 8:	Analysenfunktion aus den Gruppenmittelwerten für Gerät 1	84
Abbildung 9:	Analysenfunktion aus den Gruppenmittelwerten für Gerät 2	84
Abbildung 10:	Prüfung des Mittelungseinflusses ($t_{SO^*} = t_{zero} = 45 \text{ s.}$)	100
Abbildung 11:	Grafische Darstellung der Vergleichsstandardabweichung im Feld	109
Abbildung 12:	Akkreditierungs-Urkunde nach DIN EN ISO/IEC 17025:2005	121

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

1. Kurzfassung und Bekanntgabevorschlag

1.1 Kurzfassung

Im Auftrag der Firma Thermo Fisher Scientific führte die TÜV Rheinland Energy GmbH die Eignungsprüfung der Messeinrichtung 48iQ für die Komponente Kohlenmonoxid durch. Die Prüfung erfolgte unter Beachtung der folgenden Richtlinien und Anforderungen:

- VDI 4202 Blatt 1: Eignungsprüfung, Eignungsbekanntgabe und Zertifizierung von Messeinrichtungen zur punktförmigen Messung von gasförmigen Immissionen vom April 2018
- DIN EN 14626: Außenluft Messverfahren zur Bestimmung von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie, vom Dezember 2012

Die Messeinrichtung 48iQ misst die Komponente CO mittels nicht-dispersiver Infrarot-Photometrie. Das Messprinzip entspricht somit dem EU-Referenzverfahren. Die Untersuchungen erfolgten im Labor und während eines dreimonatigen Feldtests in Köln. Der geprüfte Messbereich war wie folgt:

Tabelle 1: Geprüfter Messbereich

Messkomponente	Messbereich in [mg/m ³] ¹⁾	Messbereich in [ppm] bzw. [µmol/mol]
Kohlenmonoxid	0–100	0–86

¹⁾ Die Angaben beziehen sich auf 20 °C und 101,3 kPa

Bei der Eignungsprüfung wurden die Bedingungen der Mindestanforderungen erfüllt.

Seitens der TÜV Rheinland Enetgy GmbH wird daher eine Veröffentlichung als eignungsgeprüfte Messeinrichtung zur laufenden Aufzeichnung der Immissionskonzentrationen von Kohlenmonoxid vorgeschlagen. **TÜVRheinland®** Genau. Richtig.

Seite 12 von 369

TÜV Rheinland Energy GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Leerseite

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Aufgrund der erzielten positiven Ergebnisse wird folgende Empfehlung für die Bekanntgabe als eignungsgeprüfte Messeinrichtung ausgesprochen:

Messeinrichtung:

48iQ für Kohlenmonoxid

Hersteller:

Thermo Fisher Scientific, Franklin, USA

Eignung:

Zur kontinuierlichen Bestimmung der Immissionskonzentrationen von Kohlenmonoxid in der Aussenluft im stationären Einsatz.

Messbereiche in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	Einheit	
Kohlenmonoxid	0–100	mg/m³	

Softwareversion:

Version: 1.6.0.32120

Einschränkung:

keine

Hinweis:

Der Prüfbericht über die Eignungsprüfung ist im Internet unter <u>www.qal1.de</u> einsehbar.

Prüfbericht:

TÜV Rheinland Energy GmbH, Köln Bericht-Nr.: 936/21242986/D vom 4. Februar 2019

Seite 13 von 369

TÜVRheinland® Genau. Richtig.

Seite 14 von 369

TÜV Rheinland Energy GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Leerseite

Seite 15 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

1.3 Zusammenfassende Darstellung der Prüfergebnisse

Minde	estanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
7	Leistungskriterien	I			
7.3	Allgemeine Anforderungen				
7.3.1	Messwertanzeige	Die Messeinrichtung muss eine funktionsfähige Messwertan- zeige am Gerät besitzen.	Die Messeinrichtung verfügt über eine funktionsfähige Messwertanzeige an der Frontseite des Gerätes.	ja	30
7.3.2	Kalibriereingang	Das Messgerät darf über einen vom Probengaseingang ge- trennten Prüfgaseingang ver- fügen.	Die Messeinrichtung verfügt über ei- nen vom Probengaseingang getrenn- ten Prüfgaseingang an der Rückseite des Gerätes.	ja	31
7.3.3	Wartungsfreund- lichkeit	Wartungsarbeiten sollten ohne größeren Aufwand möglichst von außen durchführbar sein.	Wartungsarbeiten sind mit üblichen Werkzeugen und vertretbarem Aufwand von außen durchführbar.	ja	32
7.3.4	Funktionskontrolle	Spezielle Einrichtungen hierzu sind als zum Gerät gehörig zu betrachten, bei den entspre- chenden Teilprüfungen einzu- setzen und zu bewerten.	Das geprüfte Gerät besitzt keine in- terne Einrichtung zur Funktionskon- trolle.	nicht zutref- fend	33
7.3.5	Rüst- und Einlauf- zeiten	Die Betriebsanleitung muss hierzu Angaben enthalten.	Die Rüst- und Einlaufzeiten wurden ermittelt.	ja	34
7.3.6	Bauart	Die Betriebsanleitung muss Angaben hierzu enthalten	Die in der Betriebsanleitung aufge- führten Angaben zur Bauart sind voll- ständig und korrekt.	ja	35
7.3.7	Unbefugtes Ver- stellen	Muss Sicherung dagegen ent- halten.	Die Messeinrichtung ist gegen unbe- absichtigtes und unbefugtes Verstel- len von Geräteparametern durch ei- nen Passwortschutz gesichert.	ja	36
7.3.8	Messsignalaus- gang	Muss digital und/oder analog angeboten werden.	Die Messsignale werden analog (0-20 mA, 4-20 mA bzw. 0-1 V, 0-10 V) und digital (über TCP/IP, RS 232, USB) angeboten.	ja	37
7.3.9	Digitale Schnittstel- le	Die digitale Schnittstelle muss die Übertragung der Messsig- nale, Statussignale usw. erlau- ben. Der Zugriff auf das Messgerät muss gegen unbefugten Zugriff gesichert sein.	Die digitale Messwertübertragung funktioniert korrekt.	ja	38

Seite 16 von 369

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
7.3.10 Datenübertra- gungsprotokoll	Müssen den Anforderungen aus Tabelle 1 der Richtlinie VDI 4202 Blatt 1 entsprechen.	Die Messeinrichtung verfügt stan- dardmäßig über ein installiertes Modbus Übertragungsprotokoll. Die Übertragung von Mess- und Status- signalen erfolgt korrekt. Die verwen- deten Kommandos sind für Thermo Fisher Scientific Kunden im Internet abrufbar.	ja	39
7.3.11 Messbereich	Messbereichsendwert größer oder gleich der oberen Grenze des Zertifizierungsbereichs.	Es ist standardmäßig ein Messbe- reich von 0 – 86 ppm (100 mg/m ³) für Kohlenmonoxid eingestellt. Andere Messbereiche bis zu maximal 0 – 10.000 ppm sind möglich. Der Messbereichsendwert der Mess- einrichtung ist größer als die jeweilige obere Grenze des Zertifizierungsbe- reichs.	ja	40
7.3.12 Negative Mess- signale	Dürfen nicht unterdrückt wer- den (lebender Nullpunkt).	Die Messeinrichtung kann negative Messsignale ausgeben.	ja	41
7.3.13 Stromausfall	Unkontrolliertes Ausströmen von Betriebs- und Kalibriergas muss unterbunden sein; Gerä- teparameter müssen gegen Verlust durch Pufferung ge- schützt sein; messbereiter Zu- stand bei Spannungswieder- kehr muss gesichert sein und Messung muss fortgesetzt werden.	Die Messeinrichtung befindet sich bei Spannungswiederkehr in störungs- freier Betriebsbereitschaft und führt selbstständig den Messbetrieb wieder fort.	ja	42
7.3.14 Gerätefunktionen	Müssen durch telemetrisch übermittelbare Statussignale überwachbar sein.	Die Messeinrichtung kann mittels ver- schiedener Anschlussmöglichkeiten von einem externen Rechner aus um- fassend überwacht und gesteuert werden.	ja	43
7.3.15 Umschaltung	Messen/Funktionskontrolle und/oder Kalibrierung muss te- lemetrisch und manuell aus- lösbar sein.	Grundsätzlich können alle notwendi- gen Arbeiten zur Funktionskontrolle direkt am Gerät oder aber per tele- metrischer Fernbedienung überwacht werden.	ja	44
7.3.16 Gerätesoftware	Muss beim Einschalten ange- zeigt werden. Funktionsbeein- flussende Änderungen sind dem Prüfinstitut mitzuteilen.	Die Version der Gerätesoftware wird im Display angezeigt. Änderungen der Gerätesoftware werden dem Prüfinstitut mitgeteilt.	ja	45

Seite 17 von 369

Mindestanforderung		Anforderung	Prüfergebnis	einge- halten	Seite
7.4	Anforderungen an die Leistungskenngrössen für die Laborprüfung				
7.4.1	Allgemeines	Herstellerangaben der Be- triebsanleitung dürfen den Er- gebnissen der Eignungsprü- fung nicht widersprechen.	Die Prüfung wurde anhand der Leis- tungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.	ja	46
7.4.2	Prüfbedingungen	Muss den Kriterien der VDI 4202-1:2018 entsprechen.	Die Prüfung wurde anhand der Leis- tungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.	ja	47
Die Zu	isammenfassung der /	Auswertung der Leistungskenngrö	ssen im Labor erfolgt unter 8.4		
7.5	Anforderungen an d	lie Leistungskenngrössen für d	ie Feldprüfung		
7.5.1	Allgemeines	Muss den Kriterien der VDI 4202-1:2018 entsprechen.	Die Prüfung wurde anhand der Leis- tungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.	ja	62
7.5.2	Standort für die Feldprüfungen	Die Messstation für die Feld- prüfung ist unter Berücksichti- gung der Anforderungen der 39. BIMSchV so auszuwählen, dass die zu erwartenden Kon- zentrationen der Messkompo- nente der vorgesehenen Auf- gabenstellung entsprechen. Die Einrichtung der Messstati- on muss die Durchführung der Feldprüfung erlauben und im Rahmen der Messplanung als notwendig erachtete Kriterien erfüllen.	Bei der Wahl des Standortes für die Messstation zur Durchführung der Feldprüfung wurde die Anforderungen der 39. BImSchV berücksichtigt.	ja	63
7.5.3	Betriebsanforde- rungen	Die Messgeräte sind in der Messstation einzubauen und nach Anschluss an die dort vorhandene oder eine separate Probenahmeeinrichtung ord- nungsgemäß in Betrieb zu nehmen. Die Einstellungen des Messge- rätes müssen den Hersteller- angaben entsprechen. Al-le Einstellungen sind im Prüfbe- richt festzuhalten.	Während des Feldtest wurde die Messeinrichtung nach den Angaben des Herstellers betrieben und gewar- tet.	ja	64
Die Zusammenfassung der Auswertung der Leistungskenngrössen im Feld erfolgt unter 8.5					

Seite 18 von 369

Mindestanforderung		Anforderung	Prüfergebnis	einge- halten	Seite
8.4	Bestimmung der Leistungskenngrößen im Labor nach DIN EN 14626				
8.4.3	Einstellzeit	Einstellzeit (Anstieg) und Ein- stellzeit (Abfall) jeweils ≤ 180 s. Differenz zwischen Anstiegs- und Abfallzeit 10 s.	Die maximal zulässige Einstellzeit von 180 s wird in allen Fällen deutlich un- terschritten. Die maximal ermittelte Einstellzeit beträgt für Gerät 1 48,5 s und für Gerät 2 48,5 s.	ja	71
8.4.4	Kurzzeitdrift	Die Kurzzeitdrift bei Null darf ≤ 0,1 µmol/mol/12 h) betragen Die Kurzzeitdrift beim Span- Niveau darf ≤ 0,6 µmol/mol/12 h betragen.	Es ergibt sich ein Wert für die Kurz- zeitdrift am Nullpunkt von 0,04 µmol/mol für Gerät 1 sowie 0,01 µmol/mol für Gerät 2. Es ergibt sich ein Wert für die Kurz- zeitdrift am Referenzpunkt von 0,20 µmol/mol für Gerät 1 sowie 0,12 µmol/mol für Gerät 2.	ja	75
8.4.5	Wiederholstan- dardabweichung	Die Wiederholstandardabwei- chung muss sowohl das Leis- tungskriterium bei Null ≤ 0.3 µmol/mol als auch bei der Prüfgaskonzentration am Refe- renzpunkt ≤ 0.4 µmol/mol erfül- len.	Es ergibt sich ein Wert für die Wie- derholstandardabweichung am Null- punkt von 0,02 µmol/mol für Gerät 1 sowie 0,02 µmol/mol für Gerät 2. Für die Wiederholstandardabweichung am Referenzpunkt ergibt sich ein Wert von 0,01 µmol/mol für Gerät 1 sowie 0,03 µmol/mol für Gerät 2.	ja	79
8.4.6	Abweichung von der Linearität bei der Kalibrierfunktion	Die Abweichung von der Linea- rität bei der Kalibrierfunktion darf maximal 0,5 µmol/mol am Nullpunkt sowie maximal 4 % des Messwertes bei Konzent- rationen größer Null betragen.	Für Gerät 1 ergibt sich eine Abwei- chung von der linearen Regressions- gerade von 0,13 µmol/mol am Null- punkt und maximal 1,33 % vom Soll- wert bei Konzentrationen größer Null. Für Gerät 2 ergibt sich eine Abwei- chung von der linearen Regressions- gerade von -0,01 µmol/mol am Nullpunkt und maximal 1,24 % vom Sollwert bei Konzentrationen größer Null.	ja	82
8.4.7	Empfindlichkeitsko- effizient des Pro- bengasdrucks	Der Empfindlichkeitskoeffizient des Probengasdruckes muss ≤ 0,7 µmol/mol/kPa betragen.	Für Gerät 1 ergibt sich ein Empfind- lichkeitskoeffizient des Probengas- drucks von 0,02 µmol/mol/kPa. Für Gerät 2 ergibt sich ein Empfind- lichkeitskoeffizient des Probengas- drucks von 0,02 µmol/mol/kPa.	ja	87

Seite	19	von	369

Mindestanforderung		Anforderung	Prüfergebnis	einge- halten	Seite
8.4.8	Empfindlich- keitskoeffizient der Probengas- temperatur	Der Empfindlichkeitskoeffizient der Probengastemperatur muss ≤ 0,3 µmol/mol/K betragen.	Für Gerät 1 ergibt sich ein Empfind- lichkeitskoeffizient der Probengastem- peratur von 0,06 µmol/mol/K. Für Gerät 2 ergibt sich ein Empfind- lichkeitskoeffizient der Probengastem-	ja	89
			peratur von 0,10 µmol/mol/K.		
8.4.9	Empfindlich- keitskoeffizient der Umgebungs- temperatur	Der Empfindlichkeitskoeffizient der Umgebungstemperatur muss ≤ 0,3 µmol/mol/K betragen.	Der Empfindlichkeitskoeffizient bst der Umgebungstemperatur überschreitet nicht die Anforderungen von maximal 0,3 µmol/mol/K. In der Unsicherheits- berechnung wird für beide Geräte der größte Empfindlichkeitskoeffizient bst gewählt. Dies sind für Gerät 1 0,021 µmol/mol/K und für Gerät 2 0,081 µmol/mol/K.	ја	91
8.4.10	Empfindlich- keitskoeffizient der elektrischen Spannung	Der Empfindlichkeitskoeffizient der elektrischen Spannung muss ≤ 0,3 µmol/mol/V betragen.	Der Empfindlichkeitskoeffizient der Spannung bv überschreitet bei keinem Prüfpunkt die Anforderungen der DIN EN 14626 von maximal 0,3 µmol/mol/V. In der Unsicherheitsbe- rechnung wird für beide Geräte der größte bv gewählt. Dies sind für Gerät 1 0,00 µmol/mol/V und für Gerät 2 0,00 µmol/mol/V.	ja	94
8.4.11	Störkomponen- ten	Störkomponenten bei Null und bei der Konzentration c _t (beim Niveau des 1-Stunden Grenz- werts = 8,6 µmol/mol für CO). Die maximal erlaubten Abwei- chungen für die Störkomponen- ten CO ₂ , NO und NO ₂ betragen je \leq 0,5 µmol/mol, für H ₂ O \leq 1,0 µmol/mol.	Es ergibt sich ein Wert für die Quer- empfindlichkeit am Nullpunkt von 0,05 µmol/mol für Gerät 1 sowie 0,14 µmol/mol für Gerät 2 bei H2O, -0,03 µmol/mol für Gerät 2 bei CO2, -0,11 µmol/mol für Gerät 1 so- wie -0,05 µmol/mol für Gerät 1 so- wie -0,05 µmol/mol für Gerät 1 so- wie -0,04 µmol/mol für Gerät 2 bei N2O. Für die Querempfindlichkeit am Grenzwert ct ergibt sich ein Wert von 0,02 µmol/mol für Gerät 1 so- wie -0,08 µmol/mol für Gerät 2 bei H2O, -0,11 µmol/mol für Gerät 1 so- wie -0,08 µmol/mol für Gerät 1 so- wie -0,07 µmol/mol für Gerät 1 so- wie -0,07 µmol/mol für Gerät 1 so- wie 0,07 µmol/mol für Gerät 1 so-	ja	96
8.4.12	Mittelungsprü- fung	Der Mittelungseinfluss muss bei ≤ 7 % des Messwertes liegen.	Das Leistungskriterium der DIN EN 14626 wird mit -1,2 % für Gerät 1 und 2,0 % für Gerät 2 in vollem Umfang eingehalten.	ja	99

Seite 20 von 369

Mindestanforderung		Anforderung	Prüfergebnis	einge- halten	Seite
8.4.13	Differenz Pro- ben- /Kalibriereingang	Die Differenz zwischen Pro- ben-/ und Kalibriergaseingang muss ≤ 1 % sein.	Das Leistungskriterium der DIN EN 14626 wird mit -0,06 % für Gerät 1 und -0,08 % für Gerät 2 in vollem Um- fang eingehalten.	ja	102
8.5	Bestimmung der	Leistungskenngrößen im Feld	nach DIN EN 14626		
8.5.4	Langzeitdrift	Die Langzeitdrift bei Null darf maximal ≤ 0,5 µmol/mol betra- gen. Die Langzeitdrift beim Spanni- veau darf maximal ≤ 5 % des Zertifizierungsbereiches betra- gen.	Die maximale Langzeitdrift am Null- punkt DL,z liegt bei 0,43 µmol/mol für Gerät 1 und 0,33 µmol/mol für Gerät 2. Die maximale Langzeitdrift am Re- ferenzpunkt DL,s liegt bei 2,75 % für Gerät 1 und 0,75 % für Gerät 2.	ja	104
8.5.6	Kontrollintervall	Das Wartungsintervall muss mindestens 2 Wochen betra- gen.	Das Kontrollintervall wird durch die notwendigen Wartungsarbeiten be- stimmt. Diese beschränken sich im Wesentlichen auf die Kontrolle von Verschmutzungen, Plausibilitäts- checks und etwaigen Status- /Fehlermeldungen. Der externe Parti- kelfilter muss ja nach Staubbelastung am Messort gewechselt werden. Eine Überprüfung des Null- und Referenz- punktes muss nach DIN EN 14626 mindestens alle 14 Tage erfolgen.	ja	110
8.5.5	Vergleichstan- dardabweichung für CO unter Feldbedingun- gen	Die Vergleichsstandardabwei- chung unter Feldbedingungen darf maximal ≤ 5 % des Mittels über eine Zeitspanne von 3 Monaten betragen.	Die Vergleichstandardabweichung für Kohlenmonoxid unter Feldbedingun- gen betrug 1,52 % bezogen auf den Mittelwert über die Dauer des Feld- tests von 3 Monaten. Damit sind die Anforderungen der DIN EN 14626 eingehalten.	ja	107
8.5.7	Verfügbarkeit des Messgerätes	Die Verfügbarkeit des Messge- rätes muss ≥ 90 % betragen	Die Verfügbarkeit beträgt 100 %. So- mit ist die Anforderung der EN 14626 erfüllt.	ja	111

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

2. Aufgabenstellung

2.1 Art der Prüfung

Im Auftrag der Firma Thermo Fisher Scientific wurde von der TÜV Rheinland Energy GmbH eine Eignungsprüfung für die Messeinrichtung 48iQ vorgenommen. Die Prüfung erfolgte als vollständige Eignungsprüfung.

2.2 Zielsetzung

Die Messeinrichtung soll den Gehalt an Kohlenmonoxid in der Umgebungsluft in folgenden Konzentrationsbereichen bestimmen:

Komponente	Zertifizierungsbereich	Einheit
Kohlenmonoxid	0–100	mg/m³

Die Messeinrichtung 48iQ misst die Komponente Kohlenmonoxid mittels der nichtdispersiven Infrarot-Photometrie.

Die Eignungsprüfung war anhand der aktuellen Richtlinien zur Eignungsprüfung unter Berücksichtigung der neuesten Entwicklungen durchzuführen.

Die Prüfung erfolgte unter Beachtung der folgenden Richtlinien:

- VDI 4202 Blatt 1: Automatische Messeinrichtungen zur Überwachung der Luftqualität; Eignungsprüfung, Eignungsbekanntgabe und Zertifizierung von Messeinrichtungen zur punktförmigen Messung von gasförmigen Immissionen vom April 2018
- DIN EN 14626: Außenluft Messverfahren zur Bestimmung von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie, vom Dezember 2012

Seite 22 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

3. Beschreibung der geprüften Messeinrichtung

3.1 Messprinzip

Die Immissionsmesseinrichtung 48iQ ist ein kontinuierlicher Kohlenmonoxid-Analysator. Das Messprinzip basiert auf der nicht-dispersiven Infrarot-Photometrie. Das Gerät wurde zur kontinuierlichen Messung von Kohlenmonoxid in der Umgebungsluft entwickelt.

Abbildung 1: Darstellung des 48iQ Analysators

Das Messprinzip des 48iQ basiert darauf, dass Kohlenmonoxid (CO) Infrarotstrahlung bei einer Wellenlänge von 4,6 µm absorbiert. Die Gasfilterkorrelationstechnik ermöglicht es, selektiv ausschließlich die durch CO bewirkte Lichtabsorption zu bestimmen. Dazu wird das Verhältnis von durch die Probe absorbiertem Licht zu einer gefilterten Referenzmessung bestimmt.

Licht aus einer Breitband-Inrarotquelle durchläuft ein Gasfilterrad, welches jeweils mit einer N₂- und einer CO-gefüllten Zelle bestückt ist, und gelangt danach durch einen schmalen Bandpass-Inteferenzfilter zu dem Volumen mit dem Probengas. Das durch die N₂-Zelle gestrahlte Licht wird vom CO im Probengas normal absorbiert und ergibt das Probensignal. Das durch die CO-Zelle gestrahlte Licht ist in dem Bereich, in dem die CO-Absorbtion erfolgt, bereits blockiert und wird somit vom Proben-CO nicht verändert. Dieser Wert dient als Referenzwert. Das Verhältnis von Probe zu Referenz wird mit hoher Geschwindigkeit erfasst und um die Lichtstärke und andere Veränderungen korrigiert, um eine präzise Messung zu erhalten.

Die Probe wird durch den Schottanschluss "sample" in den 48iQ Analysator eingesaugt. Das Probengas wird von einer einstufigen Pumpe durch die 48iQ DMC-Messbank gepumpt, in der CO detektiert wird. Danach strömt das Probengas durch eine Kapillare, die den Einlass-

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

durchfluss auf ca. 1 l/min reduziert, während der Umgebungsdruck auf der Seite der optischen Bank überwacht und aufrechterhalten wird.

Der 48iQ Analysator gibt die CO-Konzentration auf dem Display und über die Analogausgänge aus. Die Daten werden außerdem über den seriellen Anschluss oder die Ethernet-Schnittstelle bereitgestellt.

Abbildung 2: Allgemeines Funktionsschema

Seite 24 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

3.2 Umfang und Aufbau der Messeinrichtung

Der 48iQ Kohlenmonoxid-Analysator verwendet die NDIR-Technologie für die Messung von Kohlenmonoxid. Die zu analysierende Probe wird über den externen Staubfilter zum Messmodul geleitet. Der Analysator besteht aus folgenden Hauptbaugruppen:

 Optische Messbank: Die optische Messbank ist eine luftdichte Messbank, die das Probengas enthält. Sie beinhaltet auch die Spiegel, die das Infrarotlicht vor der Detektion über den Probenweg mehrmals reflektieren, um die Absorption zu maximieren. Heizelemente werden verwendet, um eine konstante Temperatur der optischen Messbank aufrechtzuerhalten.

Ein Bandpassfilter begrenzt das Licht, das in die optische Messbank eintritt, auf ein schmales Band im Infrarotspektrum, innerhalb dessen CO absorbiert wird.

- Filterradmotor: Ein Gasfilterrad enthält CO- und N₂-Proben mit einer Chopper-Scheibe. Das Rad wird gedreht, sodass der Infrarotlichtstrahl periodisch unterbrochen wird, um bei der Detektion ein moduliertes Signal zu erzeugen. Die Differenzierung des Lichts des durch die CO- und N₂-Komponenten des Rades gestrahlten Lichts bei Vorhandensein von CO in der optischen Messbank ermöglicht die Bestimmung der CO-Absorption und -Konzentration der Probe. Der Chopper-Motor dreht das Gasfilterrad und die Chopper-Scheibe mit gleichmäßiger Geschwindigkeit. Eine separate optische Schalterbaugruppe erkennt die Position des Filterrads, um das modulierte Signal zu synchronisieren und die Drehzahl des Chopper-Motors zu überprüfen.
- Detektor/Vorverstärker: Die Detektor/Vorverstärker-Baugruppe wandelt Infrarotlicht nach der Modulierung und CO-Probenabsorption in ein verstärktes elektrisches Signal um, das anschließend verarbeitet wird.
- Infrarotquelle: Die Infrarotlichtquelle ist ein spezieller Drahtwicklungswiderstand, der bei hohen Temperaturen betrieben wird, um eine Breitband-Infrarotstrahlung zu erzeugen.
- Elektronik: Die allgemeine Elektronik enthält die Rechen- und Leistungsverkabelungs-Hardware. Die Elektronikgruppe ist in allen Geräten der Thermo Fisher iQ Serie nahezu identisch. Sie umfasst auch das Display, die USB-Anschlüsse, den Ethernet-Anschluss und die E/A-Schnittstellen. Die gesamte Elektronik wird über ein universelles Schalternetzteil betrieben. Das System Controller Board umfasst den Hauptprozesor, Netzteile, einen Subprozessor und dient als Kommunikations-Hub für das Messgerät.
- Pheripherie-Unterstützung: Die Pheripherie-Unterstützung betreibt zusätzliche Geräte, die benötigt werden, jedoch keine spezielle Steuerung erfordern. Der Gehäuselüfter sorgt hier für die Luftkühlung der aktiven elektronischen Komponenten. Die interne Vakuumpumpe dient der Erzeugung des Luftstrom/Probenflusses durch das Messgerät.
- Durchfluss/Druck-DMC: Die Durchfluss/Druck-DMC wird verwendet, um eine ordnungsgemäße Durchflussregelung zu gewährleisten sowie um den Probendruck in der Messbank aufrechtzuerhalten und ggf. zu korrigieren. Die DMS verfügt über zwei Drucksensoren.

Seite 25 von 369

Abbildung 3: Innenansicht - Draufsicht

Abbildung 4: Innenansicht - Seitenansicht

Seite 26 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Die Tabelle 2 enthält eine Auflistung wichtiger gerätetechnischer Kenndaten des 48iQ.

Tabelle 2: Gerätetechnische Daten 48iQ (Herstellerangaben)

Messbereich:	Maximal 0–10.000 ppm (frei programmierbar)	
Einheiten:	ppm oder mg/m ³	
Gemessene Verbindungen:	Kohlenmonoxid	
Probenfluss:	ca. 1,0 Liter/min (während der Prüfung)	
Ausgänge:	USB-Anschluss	
	TCP/IP Ethernet-Netzwerkverbindung	
	• RS232/RS485	
	Analoge Ausgänge	
Eingangsspannung:	230 V oder 115 V,	
	50 Hz oder 60 Hz	
Leistung:	140 W; maximal 275 W	
Abmessungen (L x B x H) / Gewicht:	609 x 425 x 221 mm / ca. 15 kg	

3.3 Einstellungen des Messgerätes

Die Inbetriebnahme der Messeinrichtung erfolgte nach den Anweisungen des Herstellers. Während der Eignungsprüfung waren keine internen Abgleichzyklen aktiviert. Die geräteinterne Mittelungszeit betrug 60 Sekunden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

4. Prüfprogramm

4.1 Allgemeines

Die Eignungsprüfung erfolgte an zwei identischen Geräten 48iQ mit den Seriennummern

Gerät 1: SN 1180540007 und Gerät 2: SN 1171780048.

Die Prüfung wurde mit der Softwareversion "1.6.0.32120" durchgeführt.

Die Prüfung umfasste einen Labortest zur Feststellung der Verfahrenskenngrößen sowie einen mehrmonatigen Feldtest.

Im folgenden Bericht wird in der Überschrift zu jedem Prüfpunkt die Mindestanforderung gemäß den berücksichtigten Richtlinien [1, 2, 3] mit Nummer und Wortlaut angeführt.

Abbildung 5: Softwareversion der 48iQ Testgeräte

Seite 28 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

4.2 Laborprüfung

Die Laborprüfung wurde mit zwei identischen Geräten des Typs 48iQ mit den Seriennummern SN: 1180540007 und SN: 1171780048 durchgeführt. Nach den Richtlinien [1, 2] ergab sich folgendes Versuchsprogramm im Labor:

- Beschreibung der Gerätefunktionen
- Allgemeine Anforderungen
- Anpassung der Kalibriergeraden
- Kurzzeitdrift
- Wiederholstandardabweichung
- Abhängigkeit vom Probengasdruck
- Abhängigkeit von der Probengastemperatur
- Abhängigkeit von der Temperatur der Umgebungsluft
- Abhängigkeit von der Spannung
- Querempfindlichkeiten
- Mittelungseinfluss
- Einstellzeit
- Differenz Proben-/Kalibriergaseingang

Die Aufzeichnung der Messwerte erfolgte mit einem externen Datenlogger.

Die Ergebnisse der Laborprüfungen sind unter Punkt 6 und Punkt 7 zusammengestellt.

4.3 Feldprüfung

Der Feldtest wurde mit 2 baugleichen Messeinrichtungen des Typs 48iQ vom 23.07.2018 bis zum 29.10.2018 durchgeführt. Die eingesetzten Messgeräte waren identisch mit den während des Labortests geprüften Geräten. Die Seriennummern waren wie folgt:

Gerät 1:	SN 1180540007
Gerät 2:	SN 1171780048

Es ergab sich folgendes Prüfprogramm im Feldtest:

- Langzeitdrift
- Wartungsintervall
- Verfügbarkeit
- Vergleichstandardabweichung unter Feldbedingungen

Die Aufzeichnung der Messwerte erfolgte mit einem externen Datenlogger. Die Ergebnisse der Feldprüfungen sind unter Punkt 6 und Punkt 7 zusammengestellt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

5. Referenzmessverfahren

5.1 Messverfahren

Während der Prüfung zur Justierung der Geräte benutzte Prüfgase

Zur Prüfung der Leistungsparameter wurden zertifizierte Kohlenmonoxid Prüfgase eingesetzt. Die bezeichneten Prüfgase wurden während der gesamten Prüfung eingesetzt und gegebenenfalls mittels einer Massenstromregler-Station (Typ- HovaGas) verdünnt.

Nullgas:		

Synthetische Luft

Prüfgas CO:	203 mg/m ³ in synth. Luft
Flaschennummer:	15892
Hersteller / Herstelldatum:	Praxair / 16.04.2014
Stabilitätsgarantie / zertifiziert:	60 Monate
Überprüfung des Zertifikates am / durch:	24.09.2014 / Eigenlabor
Messunsicherheit gemäß Kalibrierschein:	2 %

Prüfgas CO:	101,8 ppm in synth. Luft
Flaschennummer:	16135
Hersteller / Herstelldatum:	Praxair / 13.05.2016
Stabilitätsgarantie / zertifiziert:	60 Monate
Überprüfung des Zertifikates am / durch:	09.08.2016 / Eigenlabor
Rel. Unsicherheit gemäß Zertifikat:	2 %

Seite 30 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6. Prüfergebnisse nach VDI 4202 Blatt 1 (2018)

6.1 7.3 Allgemeine Anforderungen

6.1 7.3.1 Messwertanzeige

Die Messeinrichtung muss eine funktionsfähige Messwertanzeige am Gerät besitzen.

6.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3 Durchführung der Prüfung

Es wurde überprüft, ob die Messeinrichtung eine Messwertanzeige besitzt.

6.4 Auswertung

Die Messeinrichtung verfügt über eine funktionsfähige Messwertanzeige an der Frontseite des Gerätes.

6.5 Bewertung

Die Messeinrichtung verfügt über eine funktionsfähige Messwertanzeige an der Frontseite des Gerätes.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Abbildung 6 zeigt die Prüflinge mit integrierter Messwertanzeige.

Abbildung 6: 48iQ Testgeräte mit Messwertanzeige

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.2 Kalibriereingang

Das Messgerät darf über einen vom Probengaseingang getrennten Prüfgaseingang verfügen.

6.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3 Durchführung der Prüfung

Es wurde überprüft, ob die Messeinrichtung über einen vom Probengaseingang getrennten Prüfgaseingang verfügt.

6.4 Auswertung

Die Messeinrichtung verfügt über einen vom Probengaseingang getrennten Prüfgaseingang an der Rückseite des Gerätes.

6.5 Bewertung

Die Messeinrichtung verfügt über einen vom Probengaseingang getrennten Prüfgaseingang an der Rückseite des Gerätes.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die Darstellung der Funktionalität des getrennten Probengaseingangs ist unter Punkt:

7.1 8.4.13 Differenz Proben-/Kalibriereingang aufgeführt.

Seite 32 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.3 Wartungsfreundlichkeit

Die notwendigen Wartungsarbeiten an der Messeinrichtung sollten ohne größeren Aufwand möglichst von außen durchführbar sein.

6.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3 Durchführung der Prüfung

Die notwendigen regelmäßigen Wartungsarbeiten wurden nach den Anweisungen der Betriebsanleitung ausgeführt.

6.4 Auswertung

Folgende Wartungsarbeiten sind vom Benutzer durchzuführen:

- 1. Überprüfung des Gerätestatus
- Der Gerätestatus kann durch visuelle Kontrolle am Display der Messeinrichtung bzw. über einen verbundenen externen PC überwacht und kontrolliert werden.
- 2. Kontrolle und Austausch des externen Partikelfilters am Probengaseingang. Die Austauschraten des Partikelfilters hängen vom Staubgehalt der Umgebungsluft ab.

6.5 Bewertung

Wartungsarbeiten sind mit üblichen Werkzeugen und vertretbarem Aufwand von außen durchführbar.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die Arbeiten an den Geräten wurden während der Prüfung auf Basis der in den Handbüchern beschriebenen Arbeiten und Arbeitsabläufe durchgeführt. Bei Einhaltung der dort beschriebenen Vorgehensweise konnten keine Schwierigkeiten beobachtet werden. Alle Wartungsarbeiten ließen sich problemlos mit herkömmlichen Werkzeugen durchführen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 33 von 369

6.1 7.3.4 Funktionskontrolle

Soweit zum Betrieb oder zur Funktionskontrolle der Messeinrichtung spezielle Einrichtungen erforderlich sind, sind diese als zum Gerät gehörig zu betrachten und bei den entsprechenden Teilprüfungen einzusetzen.

Zur Messeinrichtung gehörende Prüfgaserzeugungssysteme sind hinsichtlich ihrer Leistungsfähigkeit durch Vergleich mit den Anforderungen an die Prüfgase für die laufende Qualitätskontrolle abzusichern. Sie müssen dem ihre Betriebsbereitschaft über ein Statussignal anzeigen und über das Messgerät direkt sowie auch telemetrisch angesteuert werden können.

6.2 Gerätetechnische Ausstattung

Bedienungshandbuch

6.3 Durchführung der Prüfung

Das geprüfte Gerät besitzt keine interne Einrichtung zur Funktionskontrolle. Der Gerätestatus der Messeinrichtung wird kontinuierlich überwacht und Probleme über eine Reihe von verschiedenen Warnungsmeldungen angezeigt.

Die Funktionskontrolle der Geräte wurde mit Hilfe von externen Prüfgasen durchgeführt.

6.4 Auswertung

Das geprüfte Gerät besitzt keine interne Einrichtung zur Funktionskontrolle. Der aktuelle Gerätestatus wird kontinuierlich überwacht und Probleme über eine Reihe von verschiedenen Warnungsmeldungen angezeigt.

Eine externe Überprüfung des Null- und Referenzpunktes ist mit Hilfe von Prüfgasen möglich.

6.5 Bewertung

Das geprüfte Gerät besitzt keine interne Einrichtung zur Funktionskontrolle. Mindestanforderung erfüllt? nicht zutreffend

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht erforderlich.

Seite 34 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.5 Rüst- und Einlaufzeiten

Die Rüst- und Einlaufzeiten der Messeinrichtung sind in der Betriebsanleitung anzugeben.

6.2 Gerätetechnische Ausstattung

Bedienungshandbuch sowie zusätzlich eine Uhr.

6.3 Durchführung der Prüfung

Die Messinstrumente wurden nach den Anweisungen des Geräteherstellers in Betrieb genommen. Die erforderlichen Zeiten für Rüst- und Einlaufzeit wurden getrennt erfasst.

Erforderliche bauliche Maßnahmen im Vorfeld der Installation, wie z. B. die Einrichtung eines Probenahmesystems im Analysenraum, wurden hier nicht bewertet.

6.4 Auswertung

Zur Rüstzeit wird im Handbuch keine Angabe gemacht. Sie ist selbstverständlich abhängig von den Gegebenheiten am Einbauort sowie der Verfügbarkeit der Spannungsversorgung am Einbauort. Da es sich beim 48iQ um einen kompakten Analysator handelt besteht die Rüstzeit hauptsächlich aus:

- Herstellen der Spannungsversorgung
- Anschließen der Verschlauchung (Probenahme, Abluft)

Bei der Erstinstallation sowie verschiedenen Positionsveränderungen im Labor (Ein/Ausbau in der Klimakammer) sowie Einbau am Feldteststandort wurde eine Rüstzeit von ca. 0,5 h ermittelt.

Beim Einschalten aus völlig kaltem Zustand benötigt das Gerät ca. 90 Minuten, bis sich der Messwert stabilisiert hat.

Das Messsystem muss witterungsunabhängig installiert werden, z. B. in einem klimatisierten Messcontainer.

6.5 Bewertung

Die Rüst- und Einlaufzeiten wurden ermittelt.

Die Messeinrichtung kann, bei überschaubarem Aufwand an unterschiedlichen Messstellen betrieben werden. Die Rüstzeit beträgt ca. 0,5 Stunden und die Einlaufzeit je nach notwendiger Stabilisierungszeit 1 - 2 Stunden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht erforderlich.

6.1 7.3.6 Bauart

Die Betriebsanleitung muss Angaben des Herstellers zur Bauart der Messeinrichtung enthalten. Im Wesentlichen sind dies: Bauform (z. B. Tischgerät, Einbaugerät, freie Aufstellung) Einbaulage (z. B. horizontaler oder vertikaler Einbau) Sicherheitsanforderungen Abmessungen Gewicht Energiebedarf Vermeidung von Kondensation im Analysator.

6.2 Gerätetechnische Ausstattung

Bedienungsanleitung sowie ein Messgerät zur Erfassung des Energieverbrauchs (Gossen Metrawatt) und eine Waage.

6.3 Durchführung der Prüfung

Der Aufbau der übergebenen Geräte wurde mit der Beschreibung in den Handbüchern verglichen. Der angegebene Energieverbrauch wird über 24 h im Normalbetrieb während des Feldtests bestimmt.

6.4 Auswertung

Die Messeinrichtung muss in horizontaler Einbaulage (z.B. auf einem Tisch oder in einem Rack) witterungsunabhängig installiert werden. Die Temperatur am Aufstellungsort muss im Bereich zwischen 0 °C bis 30 °C liegen.

Die Abmessungen und Gewichte der Messeinrichtung stimmen mit den Angaben aus dem Bedienungshandbuch überein.

Der Energiebedarf der Messeinrichtung wird vom Hersteller maximal 275 W angegeben. Im Anfahrbetrieb (Aufheizen) wurden kurzzeitig Verbrauchswerte von 250 Watt gemessen. Im Normalbetrieb liegt der Verbrauch bei ca. 140 Watt.

6.5 Bewertung

Die in der Betriebsanleitung aufgeführten Angaben zur Bauart sind vollständig und korrekt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 36 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.7 Unbefugtes Verstellen

Die Justierung der Messeinrichtung muss gegen unbeabsichtigtes und unbefugtes Verstellen gesichert werden können. Alternativ muss die Bedienungsanleitung einen deutlichen Hinweis erhalten, dass das Messgerät nur in einem gesicherten Bereich aufgestellt werden darf.

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Die Bedienung des Messgerätes erfolgt über ein frontseitiges Display mit Touch-Bedienfeld oder über einem direkt oder via Netzwerk angeschlossenem externen Rechner aus.

Das Gerät besitzt eine interne Funktion (Passwortschutz) gegen unbeabsichtigtes oder unbefugtes Verstellen. Eine Veränderung von Parametern oder die Justierung der Messeinrichtung ist nur nach Eingabe des Passwortes möglich.

6.4 Auswertung

Geräteparameter die Einfluss auf die Messeigenschaften haben, können sowohl bei Bedienung über das Display als auch über den externen PC nur nach Eingabe des richtigen Passwortes verändert werden.

6.5 Bewertung

Die Messeinrichtung ist gegen unbeabsichtigtes und unbefugtes Verstellen von Geräteparametern durch einen Passwortschutz gesichert.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.
Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.8 Messsignalausgang

Die Messsignale müssen analog (z. B. 4 mA bis 20 mA) und/oder digital angeboten werden.

6.2 Gerätetechnische Ausstattung

Analogdatenlogger Yokogawa, PC

6.3 Durchführung der Prüfung

Die Messeinrichtung verfügt über folgende Übertragungswege: Modbus, RS232, RS485, USB, Digitale Ausgänge, TCP/IP-Netzwerk. Die Messeinrichtung verfügt darüber hinaus auch über die Möglichkeit der Ausgabe von Analogsignalen (V oder mA).

6.4 Auswertung

Die Messsignale werden auf der Geräterückseite folgendermaßen angeboten:

Analog: 0 - 20 mA, 4 - 20 mA oder 0 - 1 V, 0 - 10 V, Konzentrationsbereich wählbar
 Digital: Modbus, RS232, RS485, USB, digitale Ein- und Ausgänge, TCP/IP-Netzwerk

6.5 Bewertung

Die Messsignale werden analog (0-20 mA, 4-20 mA bzw. 0-1 V, 0-10 V) und digital (über TCP/IP, RS 232, USB) angeboten.

Der Anschluss von zusätzlichen Mess- und Peripheriegeräten ist über entsprechende Anschlüsse an den Geräten möglich (z.B. Analogeingänge).

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 38 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.9 Digitale Schnittstelle

Die digitale Schnittstelle muss die Übertragung der Messsignale, Statussignale und Informationen wie Gerätetyp, Messbereich, Messkomponente und Einheit erlauben und vollständig im einschlägigen Normen- und Richtlinienwerk beschrieben sein. Der Zugriff auf das Messgerät über digitale Schnittstellen beispielsweise zur Steuerung und Datenübertragung muss gegen unbefugten Zugriff gesichert sein.

6.2 Gerätetechnische Ausstattung

Ein PC.

6.3 Durchführung der Prüfung

Die Messeinrichtung verfügt über folgende Übertragungswege: Modbus, RS232, RS485, USB, 10 Digitale Ausgänge, TCP/IP-Netzwerk. Die Messeinrichtung verfügt darüber hinaus auch über die Möglichkeit der Ausgabe von Analogsignalen (V oder mA).

6.4 Auswertung

Die Messsignale werden in digitaler Form folgendermaßen angeboten:

Modbus, RS232, RS485, USB, TCP/IP-Netzwerk

Die digitalen Augangssignale wurden überprüft. Alle relevanten Daten wie Messsignale, Statussignale, Messkomponente, Messbereich, Einheit, Geräteinformationen können digital übertragen werden.

Die digitale Datenabfrage ist immer mit einer Passwortabfrage verbunden.

6.5 Bewertung

Die digitale Messwertübertragung funktioniert korrekt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 39 von 369

6.1 7.3.10 Datenübertragungsprotokoll

Zur digitalen Übertragung der Messsignale muss das Messgerät über mindestens ein Datenübertragungsprotokoll verfügen. Jedes vom Hersteller für das Messgerät angebotene Datenübertragungsprotokoll muss die korrekte Datenübertragung erlauben und Übertragungsfehler erkennen lassen. Das Datenübertragungsprotokoll einschließlich der verwendeten Kommandos muss in der Bedienungsanleitung vollständig dokumentiert sein. Das Datenprotokoll muss mindestens die Übertragung der folgenden Daten erlauben: Messgerätekennung Komponentenkennung

Einheit Messsignal mit Zeitstempel (Datum und Uhrzeit) Betriebs und Fehlerstatus Steuerungsbefehle zur Fernsteuerung des Messgerätes

Alle Daten müssen in Klartext (ASCII-Zeichen) übertragen werden.

6.2 Gerätetechnische Ausstattung

Ein PC.

6.3 Durchführung der Prüfung

Die Messeinrichtung verfügt standardmäßig über ein installiertes Modbus Übertragungsprotokoll.

6.4 Auswertung

Die Messeinrichtung verfügt standardmäßig über ein installiertes Modbus Übertragungsprotokoll. Die Übertragung von Mess- und Statussignalen erfolgt korrekt.

6.5 Bewertung

Die Messeinrichtung verfügt standardmäßig über ein installiertes Modbus Übertragungsprotokoll. Die Übertragung von Mess- und Statussignalen erfolgt korrekt. Die verwendeten Kommandos sind für Thermo Fisher Scientific Kunden im Internet abrufbar.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 40 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.11 Messbereich

Der Messbereichsendwert der Messeinrichtung muss größer oder gleich der oberen Grenze des Zertifizierungsbereichs sein.

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Es wurde geprüft, ob der Messbereichsendwert der Messeinrichtung größer oder gleich der oberen Grenze des Zertifizierungsbereiches ist.

6.4 Auswertung

An der Messeinrichtung können theoretisch Messbereiche bis maximal 0 – 10.000 ppm eingestellt werden.

Möglicher Messbereich:10.000 ppmObere Grenze des Zertifizierungsbereichs für CO:100 mg/m³ (86 ppm)

6.5 Bewertung

Es ist standardmäßig ein Messbereich von 0 - 86 ppm (100 mg/m³) für Kohlenmonoxid eingestellt. Andere Messbereiche bis zu maximal 0 - 10.000 ppm sind möglich.

Der Messbereichsendwert der Messeinrichtung ist größer als die jeweilige obere Grenze des Zertifizierungsbereichs.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die Richtlinien VDI 4202, Blatt 1 sowie DIN EN 14626 enthalten folgende Mindestanforderungen für die Zertifizierungsbereiche von kontinuierlichen Immissionsmessgeräten für Kohlenmonoxid:

 Tabelle 3:
 Zertifizierungsbereiche VDI 4202-1 und DIN EN 14626

Messkomponente	Untere Grenze ZB	Obere Grenze ZB	Grenzwert	Beurteilungszeitraum
	in mg/m³	in mg/m³	in mg/m³	
Kohlenmonoxid	0	100	10	8 h

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.12 Negative Messsignale

Negative Messsignale oder Messwerte dürfen nicht unterdrückt werden (lebender Nullpunkt).

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Es wurde im Labor- wie auch Feldtest geprüft, ob die Messeinrichtung auch negative Messwerte ausgeben kann.

6.4 Auswertung

Die Messeinrichtung kann negative Messwerte ausgeben.

6.5 Bewertung

Die Messeinrichtung kann negative Messsignale ausgeben. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 42 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.13 Stromausfall

Bei Gerätestörungen und bei Stromausfall muss ein unkontrolliertes Ausströmen von Betriebs- und Kalibriergas unterbunden sein. Die Geräteparameter sind durch eine Pufferung gegen Verlust durch Netzausfall zu schützen. Bei Spannungswiederkehr muss das Gerät automatisch wieder den messbereiten Zustand erreichen und gemäß der Betriebsvorgabe die Messung beginnen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Es wurde ein Stromausfall simuliert und geprüft, ob das Gerät unbeschädigt bleibt und nach Wiedereinschalten der Stromversorgung wieder messbereit ist.

6.4 Auswertung

Da die Messgeräte zum Betrieb weder Betriebs- noch Kalibriergase benötigen, ist ein unkontrolliertes Ausströmen von Gasen nicht möglich.

Im Falle eines Netzausfalles befindet sich die Messeinrichtung nach der Spannungswiederkehr bis zum Erreichen eines stabilisierten Zustands bezüglich der Gerätetemperaturen in der Aufwärmphase. Die Dauer der Aufwärmphase ist abhängig von den Umgebungsbedingungen am Aufstellort und vom thermischen Gerätezustand beim Einschalten. Nach der Aufwärmphase schaltet das Gerät automatisch in den Modus der vor Spannungsabfall aktiviert war. Die Aufwärmphase wird durch verschiedene Temperaturalarme signalisiert.

6.5 Bewertung

Die Messeinrichtung befindet sich bei Spannungswiederkehr in störungsfreier Betriebsbereitschaft und führt selbstständig den Messbetrieb wieder fort.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.14 Gerätefunktionen

Die wesentlichen Gerätefunktionen müssen durch telemetrisch übermittelbare Statussignale zu überwachen sein.

6.2 Gerätetechnische Ausstattung

PC zur Datenerfassung.

6.3 Durchführung der Prüfung

Die Messeinrichtung besitzt verschiedene Schnittstellen wie beispielsweise RS232, USB, digitale und analoge Ein- und Ausgänge, TCP/IP-Netzwerk. Über einen Webbrowser kann beispielsweise eine einfache Verbindung zwischen Analysator und einem externen PC hergestellt werden (48iQ). Dies ermöglicht die telemetrische Datenübertragung, es können Konfigurationseinstellungen vorgenommen und die Analysatoranzeige auf dem PC dargestellt werden. In diesem Modus können alle Informationen und Funktionen des Analysatordisplays über einen PC abgerufen und bedient werden. Zudem ist das "Remote Betrieb" ein hilfreiches Tool um die die Gerätebetriebs- und Parameterwerte zu überprüfen.

6.4 Auswertung

Die Messeinrichtung ermöglicht eine umfassende telemetrische Kontrolle und Steuerung der Messeinrichtung über verschiedene Anschlussmöglichkeiten.

6.5 Bewertung

Die Messeinrichtung kann mittels verschiedener Anschlussmöglichkeiten von einem externen Rechner aus umfassend überwacht und gesteuert werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 44 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.15 Umschaltung

Die Umschaltung zwischen Messung und Funktionskontrolle und/oder Kalibrierung muss telemetrisch durch rechnerseitige Steuerung und manuell auslösbar sein.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Messeinrichtung kann durch den Bediener am Gerät oder aber durch die telemetrische Fernbedienung überwacht sowie gesteuert werden.

6.4 Auswertung

Alle Bedienprozeduren, die keine praktischen Handgriffe vor Ort bedingen, können sowohl vom Bedienpersonal am Gerät als auch durch telemetrische Fernbedienung überwacht werden.

6.5 Bewertung

Grundsätzlich können alle notwendigen Arbeiten zur Funktionskontrolle direkt am Gerät oder aber per telemetrischer Fernbedienung überwacht werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.3.16 Gerätesoftware

Die Version der Gerätesoftware muss vom Messgerät angezeigt werden können.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Es wurde überprüft, ob die Gerätesoftware am Gerät angezeigt werden kann. Der Gerätehersteller wurde darauf hingewiesen, dass jegliche Änderungen der Gerätesoftware dem Prüfinstitut mitgeteilt werden müssen.

6.4 Auswertung

Die aktuelle Software wird beim Einschalten des Gerätes im Display angezeigt. Sie kann zudem jederzeit im Menü "Konfiguration" eingesehen werden.

Die Prüfung wurde mit der Softwareversion 1.6.0. 32120 durchgeführt.

6.5 Bewertung

Die Version der Gerätesoftware wird im Display angezeigt. Änderungen der Gerätesoftware werden dem Prüfinstitut mitgeteilt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Abbildung 5 zeigt die Gerätesoftwareversion im Display der Messeinrichtung

Seite 46 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4 Anforderungen an Leistungskenngrössen für die Laborprüfung

6.1 7.4.1 Allgemeines

Die bei den Prüfungen im Labor zu bestimmenden Leistungskenngrößen sowie die zugehörigen Leistungskriterien sind in Tabelle A1 der VDI 4202-1 für Messkomponenten nach 39. BlmSchV angegeben.

Für andere Messkomponenten ist ein Zertifizierungsbereich festzulegen. Die Leistungskriterien sind in Anlehnung an die Tabelle A1 der VDI 4202-1 festzulegen und mit der zuständigen Stelle abzustimmen.

Die Leistungskenngrößen für die Laborprüfung sind nach den in Abschnitt 8.4 der VDI 4202-1 beschriebenen Verfahren zu bestimmen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie DIN 14626 (2012) durchgeführt.

6.4 Auswertung

Hier nicht erforderlich.

6.5 Bewertung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 47 von 369

6.1 7.4.2 Prüfbedingungen

Vor Inbetriebnahme des Messgerätes ist die Betriebsanleitung des Herstellers insbesondere hinsichtlich der Aufstellung des Gerätes und der Qualität und Menge des erforderlichen Verbrauchsmaterials zu befolgen.

Vor Durchführung der Prüfung ist die vom Hersteller festgelegte Einlaufzeit zu beachten. Falls die Einlaufzeit nicht festgelegt ist, ist eine Mindestzeit von 4 h einzuhalten.

Falls Autoskalierungs- oder Selbstkorrekturfunktionen am Gerät frei wählbar sind, dann sind diese Funktionen bei der Laborprüfung auszuschalten.

Falls Autoskalierungs- oder Selbstkorrekturfunktionen am Gerät nicht frei wählbar sind und als übliche Betriebsbedingungen angesehen werden, dann müssen Zeiten und Größen der Selbstkorrekturen für das Prüfinstitut verfügbar sein. Die Größen der Auto-Drift-Korrekturen unterliegen den gleichen Einschränkungen, wie sie in den Leistungskenngrößen festgelegt sind.

Vor der Aufgabe von Prüfgasen auf das Messgerät muss das Prüfgassystem ausreichend lange betrieben worden ein, um stabile Konzentrationen liefern zu können. Das Messgerät muss mit eingebautem Partikelfilter geprüft werden.

Die meisten Messgeräte können das Messsignal als fließenden Mittelwert einer einstellbaren Zeitspanne ausgeben. Einige Messgeräte passen diese Integrationszeit automatisch als Funktion der Frequenz der Konzentrationsschwankungen der Messkomponente an. Diese Optionen werden typischerweise zur Glättung der Ausgabedaten verwendet. Es muss nicht belegt werden, dass der eingestellte Wert für die Mittelungszeit oder die Verwendung eines aktiven Filters das Ergebnis der Prüfung der Mittelungszeit und der Einstellzeit beeinflussen.

Die Einstellungen des Messgerätes müssen den Herstellerangaben entsprechen. Alle Einstellungen sind im Prüfbericht festzuhalten.

Zur Bestimmung der verschiedenen Leistungskenngrößen sind geeignete Prüfgase zu verwenden.

Parameter: Bei der Prüfung für die einzelnen Leistungskenngrößen müssen die Werte der Parameter innerhalb des in Tabelle 3 der VDI 4202-1 angegebenen Bereichs stabil sein.

Prüfgase: Zur Bestimmung der verschiedenen Leistungskenngrößen sind auf nationale oder internationale Normale rückführbare Prüfgase zu verwenden

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie DIN 14626 (2012) durchgeführt.

6.4 Auswertung

Die im Handbuch beschriebene Einlaufzeit wurde eingehalten.

Während der Laborprüfung waren keine Autoskalierungs oder Selbstkorrekturfunktionen an den Prüflingen aktiviert.

Das Prüfgasaufgabesystem lief stabil, die Prüfungen erfolgten mit den gerätezugehörigen vorgeschaltetem Partikelfiltern.

Seite 48 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Die eingestellte Mittelungszeit während der Prüfung war 60 Sekunden. Es waren keine Glättungsfilter aktiviert.

Die verwendeten Prüfgase entsprechen den Vorgaben der VDI 4202-1.

6.5 Bewertung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.3 Einstellzeit und Memory-Effekt

Die Einstellzeit (Anstieg) der Messeinrichtung darf höchstens 180 s betragen.

Die Einstellzeit (Abfall) der Messeinrichtung darf höchstens 180 s betragen.

Die Differenz zwischen der Einstellzeit (Anstieg) und der Einstellzeit (Abfall) der Messeinrichtung darf maximal 10 % der Einstellzeit (Anstieg) oder 10 s betragen, je nachdem, welcher Wert größer ist.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Einstellzeit ist identisch mit dem Prüfpunkt zur Ermittlung der Einstellzeit nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.3 Einstellzeit verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.3 Einstellzeit.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.3 Einstellzeit. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 50 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.4 Kurzzeitdrift

Die Kurzzeitdrift bei Null darf maximal 0,1 µmol/mol betragen. Die Kurzzeitdrift beim Spanwert darf maximal 0,60 µmol/mol betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Kurzzeitdrift ist identisch mit dem Prüfpunkt zur Ermittlung der Kurzzeitdrift nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.4 Kurzzeitdrift verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.4 Kurzzeitdrift.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.4 Kurzzeitdrift.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.5 Wiederholstandardabweichung

Die Wiederholstandardabweichung am Nullpunkt darf 0,3 µmol/mol nicht überschreiten.

Die Wiederholstandardabweichung am Referenzpunkt darf 0,4 µmol/mol nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Wiederholstandardabweichung am Nullpunkt ist identisch zur Ermittlung der Wiederholstandardabweichung nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.5 Wiederholstandardabweichung verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.5 Wiederholstandardabweichung.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.5 Wiederholstandardabweichung. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 52 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 **7.4.6 Linearität**

Der Zusammenhang zwischen den Messwerten und den Sollwerten muss mithilfe einer linearen Analysenfunktion darstellbar sein.

Die Abweichung von der Linearität bei der Kalibrierfunktion darf maximal 0,5 µmol/mol am Nullpunkt sowie maximal 4 % des Messwertes bei Konzentrationen größer Null betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Linearität ist identisch zur Ermittlung des Lack of fit nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.6 Abweichung von der Linearität bei der Kalibrierfunktion verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.6 Abweichung von der Linearität bei der Kalibrierfunktion.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.6 Abweichung von der Linearität bei der Kalibrierfunktion.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.7 Empfindlichkeitskoeffizient des Probengasdrucks

Der Empfindlichkeitskoeffizient des Probengasdruckes darf 0,7 (µmol/mol)/kPa nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung des Empfindlichkeitskoeffizienten des Probengasdruckes ist identisch mit dem Prüfpunkt zur Ermittlung des Empfindlichkeitskoeffizienten des Probengasdruckes nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1

8.4.7 Empfindlichkeitskoeffizient des Probengasdrucks verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.7 Empfindlichkeitskoeffizient des Probengasdrucks.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.7 Empfindlichkeitskoeffizient des Probengasdrucks. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht notwendig.

Seite 53 von 369

Seite 54 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.8 Empfindlichkeitskoeffizient der Probengastemperatur

Der Empfindlichkeitskoeffizient der Probengastemperatur darf 0,3 (µmol/mol)/K nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung des Empfindlichkeitskoeffizienten der Probengastemperatur ist identisch mit dem Prüfpunkt zur Ermittlung des Empfindlichkeitskoeffizienten der Probengastemperatur nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.8 Empfindlichkeitskoeffizient der Probengastemperatur verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.8 Empfindlichkeitskoeffizient der Probengastemperatur.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.8 Empfindlichkeitskoeffizient der Probengastemperatur. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur

Der Empfindlichkeitskoeffizient der Umgebungstemperatur darf 0,3 (µmol/mol)/K nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung des Empfindlichkeitskoeffizienten der Umgebungstemperatur ist identisch mit dem Prüfpunkt zur Ermittlung des Empfindlichkeitskoeffizienten der Umgebungstemperatur nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht notwendig.

Seite 55 von 369

Seite 56 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung

Der Empfindlichkeitskoeffizient der elektrischen Spannung darf 0,3 (µmol/mol)/V nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung des Empfindlichkeitskoeffizienten der elektrischen Spannung ist identisch mit dem Prüfpunkt zur Ermittlung des Empfindlichkeitskoeffizienten der elektrischen Spannung nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung

6.5 Bewertung

Siehe Kapitel 7.1 8.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 57 von 369

6.1 7.4.11 Querempfindlichkeit

Die Änderung des Messwerts aufgrund von Störeinflüssen durch die Querempfindlichkeit gegenüber im Messgut enthaltenen Begleitstoffen darf am Nullpunkt und am Referenzpunkt die Anforderungen der Tabelle A der Richtlinie VDI 4202 Blatt 1 (April 2018) nicht überschreiten.

Bei Messprinzipien, die von den EN-Normen abweichen, dürfen die Absolutwerte der Summen der positiven bzw. negativen Abweichung aufgrund von Störeinflüssen durch die Querempfindlichkeit gegenüber im Messgut enthaltenen Begleitstoffen im Bereich des Nullpunkts und am Referenzpunkt nicht mehr als 3 % der oberen Grenze des Zertifizierungsbereiches betragen. Als Referenzpunkt ist ein Wert ct bei 70 bis 80 % der oberen Grenze dieses Zertifizierungsbereiches zu verwenden.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Querempfindlichkeiten ist identisch mit dem Prüfpunkt zur Ermittlung der Querempfindlichkeiten nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.11 Störkomponenten verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.11 Störkomponenten.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.11 Störkomponenten. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 58 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.12 Mittelungseinfluss

Das Messgerät muss die Bildung von Stundenmittelwerten ermöglichen.

Der Mittelungseinfluss darf maximal 7 % des Messwertes betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Siehe Kapitel 7.1 8.4.12 Mittelungsprüfung.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.12 Mittelungsprüfung.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.12 Mittelungsprüfung. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 59 von 369

6.1 7.4.13 Differenz zwischen Proben- und Kalibriereingang

Falls das Messgerät standardmäßig oder optional über einen vom Probengaseingang getrennten Prüfgaseingang verfügt, ist diese Konfiguration in der Eignungsprüfung zu prüfen.

Die Differenz zwischen Probengas und Prüfgaseingang darf maximal 1 % betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Differenz zwischen Proben- und Kalibriergaseingang ist identisch mit dem Prüfpunkt zur Ermittlung der Differenz zwischen Proben- und Kalibriergaseingang nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.4.13 Differenz Proben-/Kalibriereingang verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.4.13 Differenz Proben-/Kalibriereingang.

6.5 Bewertung

Siehe Kapitel 7.1 8.4.13 Differenz Proben-/Kalibriereingang.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 60 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.4.14 Konverterwirkungsgrad

Bei Messeinrichtungen mit einem Konverter muss dessen Wirkungsgrad in der Laborprüfung mindestens 98 % betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die geprüfte Messeinrichtung arbeitet nicht mit einem Konverter.

6.4 Auswertung

Hier nicht erforderlich.

6.5 Bewertung

Nicht zutreffend, da die Messeinrichtung nicht mit einem Konverter arbeitet. Mindestanforderung erfüllt? Nicht zutreffend

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Falls wie bei NO_x- und Ozon Messeinrichtungen die Verweilzeit im Messgerät einen Einfluss auf das Messsignal haben kann, ist diese aus dem Volumenstrom und dem Volumen der Leitungen und der anderen relevanten Komponenten im Messgerät und im Partikelfiltergehäuse zu berechnen.

Im Fall von NO_x - und Ozon Messungen darf die Verweilzeit nicht größer sein als 3 s.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Bei der hier geprüften Messeinrichtung handelt es sich nicht um ein NO_x oder Ozon Messgerät. Somit ist dieser Prüfpunkt nicht zutreffend.

6.4 Auswertung

Hier nicht erforderlich.

6.5 Bewertung

Dieser Prüfpunkt ist nicht zutreffend, da die Messeinrichtung kein NO_x oder Ozon misst. Mindestanforderung erfüllt? nicht zutreffend

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht notwendig.

Seite 61 von 369

Seite 62 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5 Anforderungen an Leistungskenngrössen für die Feldprüfung

6.1 7.5.1 Allgemeines

Die bei den Prüfungen im Feld zu bestimmenden Leistungskenngrößen sowie die zugehörigen Leistungskriterien sind in Tabelle A1 der VDI 4202-1 (2018) für Messkomponenten nach 39. BlmSchV angegeben.

Für andere Messkomponenten ist ein Zertifizierungsbereich festzulegen. Die Leistungskriterien sind in Anlehnung an die Tabelle A1 der VDI 4202-1 (2018) festzulegen und mit der zuständigen Stelle abzustimmen.

Die Leistungskenngrößen für die Laborprüfung sind nach den in Abschnitt 8.5 der VDI 4202-1 (2018) beschriebenen Verfahren zu bestimmen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie DIN 14626 (2012) durchgeführt.

6.4 Auswertung

Hier nicht erforderlich.

6.5 Bewertung

Die Prüfung wurde anhand der Leistungskriterien und Anforderungen der VDI 4202 Blatt 1 (2018) sowie der DIN 14626 (2012) durchgeführt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 63 von 369

6.1 7.5.2 Standort für die Feldprüfungen

Die Messstation für die Feldprüfung ist unter Berücksichtigung der Anforderungen der 39. BImSchV so auszuwählen, dass die zu erwartenden Konzentrationen der Messkomponente der vorgesehenen Aufgabenstellung entsprechen. Die Einrichtung der Messstation muss die Durchführung der Feldprüfung erlauben und im Rahmen der Messplanung als notwendig erachtete Kriterien erfüllen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Bei der Wahl des Standortes für die Messstation zur Durchführung der Feldprüfung wurde die Anforderungen der 39. BImSchV berücksichtigt.

6.4 Auswertung

Bei der Wahl des Standortes für die Messstation zur Durchführung der Feldprüfung wurden die Anforderungen der 39. BImSchV berücksichtigt. Die Messstation für die Feldprüfungen befand sich auf einem Parkplatz am Standort des TÜV Rheinland in Köln.

6.5 Bewertung

Bei der Wahl des Standortes für die Messstation zur Durchführung der Feldprüfung wurde die Anforderungen der 39. BImSchV berücksichtigt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 64 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.3 Betriebsanforderungen

Die Messgeräte sind in der Messstation einzubauen und nach Anschluss an die dort vorhandene oder eine separate Probenahmeeinrichtung ordnungsgemäß in Betrieb zu nehmen.

Die Einstellungen des Messgerätes müssen den Herstellerangaben entsprechen. Alle Einstellungen sind im Prüfbericht festzuhalten.

Die Messgeräte sind während der Feldprüfung nach den Vorgaben des Geräteherstellers zu warten und mit geeigneten Prüfgasen regelmäßig zu überprüfen.

Falls das Gerät über eine Autoskalierungs- oder Selbstkorrekturfunktion verfügt und dies als "übliche Betriebsbedingung" angesehen wird, ist sie bei der Feldprüfung in Funktion zu setzen. Die Größe der Selbstkorrektur muss für das Prüflabor verfügbar sein. Die Größen der Autozero- und der Auto-Drift-Korrekturen über das Kontrollintervall (Langzeitdrift) unterliegen den gleichen Einschränkungen, wie sie in den Leistungskenngrößen festgelegt sind.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Für die Feldprüfung wurde die Messeinrichtung in einer Messstation eingebaut und an das vorhandene Probennahmesystem angeschlossen. Anschließend wurde die Messeinrichtung nach den Herstellerangaben im zugehörigen Handbuch in Betrieb genommen.

Während der Feldprüfung waren keine Selbstkorrektur oder AutoZero-Funktionen aktiviert.

6.4 Auswertung

Während des Feldtest wurde die Messeinrichtung nach den Angaben des Herstellers betrieben und gewartet. Es waren keine Selbstkorrektur oder AutoZero-Funktionen aktiviert.

6.5 Bewertung

Während des Feldtest wurde die Messeinrichtung nach den Angaben des Herstellers betrieben und gewartet.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 65 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.4 Langzeitdrift

Die Langzeitdrift bei Null darf maximal 0,5 µmol/mol betragen. Die Langzeitdrift beim Spanwert darf maximal 5 % des Maximums des Zertifizierbereiches betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Langzeitdrift ist identisch mit dem Prüfpunkt zur Ermittlung der Langzeitdrift nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.5.4 Langzeitdrift verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.5.4 Langzeitdrift.

6.5 Bewertung

Siehe Kapitel 7.1 8.5.4 Langzeitdrift. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 66 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.5 Vergleichsstandardabweichung unter Feldbedingungen

Die Standardabweichung aus Doppelbestimmungen ist mit zwei baugleichen Messeinrichtungen in der Feldprüfung zu ermitteln. Die Standardabweichung unter Feldbedingungen darf maximal 5 % des Mittels über eine Zeitspanne von 3 Monaten betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung der Standardabweichung aus Doppelbestimmungen ist identisch mit dem Prüfpunkt zur Ermittlung der Standardabweichung aus Doppelbestimmungen nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1

8.5.5 Vergleichstandardabweichung für CO unter Feldbedingungen verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.5.5 Vergleichstandardabweichung für CO unter Feldbedingungen.

6.5 Bewertung

Siehe Kapitel 7.1 8.5.5 Vergleichstandardabweichung für CO unter Feldbedingungen. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

TÜVRheinland[®] Genau. Richtig.

Seite 67 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.6 Kontrollintervall

Das Kontrollintervall des Messgerätes ist in der Feldprüfung zu ermitteln und anzugeben. Das Wartungsintervall sollte möglichst drei Monate, muss jedoch mindestens zwei Wochen betragen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Durchführung und Auswertung zur Ermittlung des Kontrollintervalls ist identisch mit dem Prüfpunkt zur Ermittlung des Kontrollintervalls nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1 8.5.6 Kontrollintervall verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.5.6 Kontrollintervall

6.5 Bewertung

Siehe Kapitel 7.1 8.5.6 Kontrollintervall.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 68 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.7 Verfügbarkeit

Die Verfügbarkeit des Messgerätes ist in der Feldprüfung zu ermitteln und muss mindestens 95 % betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Auswertung zur Ermittlung der Verfügbarkeit ist identisch mit dem Prüfpunkt zur Ermittlung der Verfügbarkeit nach DIN EN 14626 (2012). Daher wird hier auf das Kapitel 7.1

8.5.7 Verfügbarkeit des Messgerätes verwiesen.

6.4 Auswertung

Siehe Kapitel 7.1 8.5.7 Verfügbarkeit des Messgerätes.

6.5 Bewertung

Siehe Kapitel 7.1 8.5.7 Verfügbarkeit des Messgerätes. Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.5.8 Konverterwirkungsgrad

Am Ende der Feldprüfung muss der Konverterwirkungsrad 95 % betragen.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die geprüfte Messeinrichtung arbeitet nicht mit einem Konverter.

6.4 Auswertung

Hier nicht erforderlich.

6.5 Bewertung

Nicht zutreffend, da die Messeinrichtung nicht mit einem Konverter arbeitet. Mindestanforderung erfüllt? nicht zutreffend

Umfassende Darstellung des Prüfergebnisses 6.6

Seite 70 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

6.1 7.6 Eignungsanerkennung und Berechnung der Messunsicherheit

Die Eignungsanerkennung des Messgerätes setzt Folgendes voraus:

1) Der Wert jeder einzelnen, im Labor geprüften Leistungskenngröße muss das in Tabelle A1 der VDI 4202-1 (2018) angegebene Kriterium erfüllen.

2) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Laborprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, muss das in Tabelle C1 der VDI 4202-1 (2018) angegebene Kriterium erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim 1-Stunden-Grenzwert. Die relevanten spezifischen Leistungskenngrößen und das Berechnungsverfahren sind im Anhang F der VDI 4202-1 (2018) angegeben.

3) Der Wert jeder einzelnen, in der Feldprüfung geprüften Leistungskenngröße muss das in Tabelle A1 der VDI 4202-1 (2018) angegebene Kriterium erfüllen.

4) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Labor- und Feldprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, muss das in Tabelle C1 der VDI 4202-1 (2018) angegebene Kriterium erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim 8-Stunden-Grenzwert. Die relevanten spezifischen Leistungskenngrößen und das Berechnungsverfahren sind im Anhang F der VDI 4202-1 (2018) angegeben.

6.2 Gerätetechnische Ausstattung

Hier nicht zutreffend.

6.3 Durchführung der Prüfung

Die Unsicherheitsbetrachtung wurde nach DIN EN 14626 (2012) durchgeführt und ist in Kapitel 7.1 8.6 Gesamtmessunsicherheit nach Anhang E der DIN EN 14626 (2012) angegeben.

6.4 Auswertung

Die Unsicherheitsbetrachtung wurde nach DIN EN 14626 (2012) durchgeführt und ist in Kapitel 7.1 8.6 Gesamtmessunsicherheit nach Anhang E der DIN EN 14626 (2012) angegeben.

6.5 Bewertung

Die Unsicherheitsbetrachtung wurde nach DIN EN 14626 (2012) durchgeführt und ist in Kapitel 7.1 8.6 Gesamtmessunsicherheit nach Anhang E der DIN EN 14626 (2012) angegeben.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7. Prüfergebnisse nach DIN EN 14626 (2012)

7.1 8.4.3 Einstellzeit

Einstellzeit (Anstieg) und Einstellzeit (Abfall) jeweils \leq 180 s. Differenz zwischen Anstiegs- und Abfallzeit \leq 10 s.

7.2 Durchführung der Prüfung

Zur Bestimmung der Einstellzeit wird die auf das Messgerät aufgegebene Konzentration sprunghaft von weniger als 20 % auf ungefähr 80 % des Maximums des Zertifizierungsbereiches geändert, und umgekehrt.

Der Wechsel von Null- auf Spangas muss unmittelbar unter Verwendung eines geeigneten Ventils durchgeführt werden. Der Ventilauslass muss direkt am Einlass des Messgerätes montiert sein und sowohl Null- als auch Spangas müssen mit dem gleichen Überschuss angeboten werden, der mit Hilfe eines T-Stücks abgeleitet wird. Die Gasdurchflüsse von Nullund Spangas müssen so gewählt werden, dass die Totzeit im Ventil und im T-Stück im Vergleich zur Totzeit des Messgerätes vernachlässigbar ist. Der sprunghafte Wechsel wird durch Umschalten des Ventils von Null- auf Spangas herbeigeführt. Dieser Vorgang muss zeitlich abgestimmt sein und ist der Startpunkt (t=0) für die Totzeit (Anstieg) nach Abbildung 7. Wenn das Gerät 98 % der aufgegebenen Konzentration anzeigt, kann wieder auf Nullgas umgestellt werden und dieser Vorgang ist der Startpunkt (t=0) für die Totzeit (Abfall). Wenn das Gerät 2 % der aufgegebenen Konzentration anzeigt, ist der in Abbildung 7 gezeigte Zyklus vollständig abgelaufen.

Die zwischen dem Beginn der sprunghaften Änderung und dem Erreichen von 90 % der endgültigen stabilen Anzeige des Messgerätes vergangene Zeit (Einstellzeit) wird gemessen. Der gesamte Zyklus muss viermal wiederholt werden. Der Mittelwert der vier Einstellzeiten (Anstieg) und der Mittelwert der vier Einstellzeiten (Abfall) werden berechnet.

Die Differenz zwischen den Einstellzeiten wird nach folgender Gleichung berechnet:

$$t_d = \bar{t}_r - \bar{t}_f$$

t_d

t,

tf

Mit

die Differenz zwischen Anstiegszeit und Abfallzeit (s)

- die Einstellzeit (Anstieg) (Mittelwert von 4 Messungen) (s)
 - die Einstellzeit (Abfall) (Mittelwert von 4 Messungen) (s)

t_r, t_f und t_d müssen die oben angegebenen Leistungskriterien erfüllen.

Seite 72 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Legende

- Signal des Messgeräts А
- 1 Totzeit
- 2
- Anstiegszeit Einstellzeit (Anstieg) 3
- 4 Abfallzeit
- 5 Einstellzeit (Abfall)

Abbildung 7: Veranschaulichung der Einstellzeit

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt. Die Datenaufzeichnung erfolgte dabei mit einem externen Datenlogger.
Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.4 Auswertung

Tabelle 4: Einstellzeiten der Messeinrichtung 48iQ für Kohlenmonoxid

	Anforderung	Gerät 1		Gerät 1	
Mittelwert Anstieg t _r [s]	≤ 180 s	48,5	✓	48,5	✓
Mittelwert Abfall t _f [s]	≤ 180 s	47,5	✓	47,5	✓
Differenz t _d [s]	≤ 10 s	1,0	~	1,0	✓

Für Gerät 1 ergibt sich für Kohlenmonoxid ein maximales t_r von 48,5 s, ein maximales t_f von 47,5 s und ein t_d von 1 s.

Für Gerät 2 ergibt sich für Kohlenmonoxid ein maximales t_r von 48,5 s, ein maximales t_f von 47,5 s und ein t_d von 1 s.

7.5 Bewertung

Die maximal zulässige Einstellzeit von 180 s wird in allen Fällen deutlich unterschritten. Die maximal ermittelte Einstellzeit beträgt für Gerät 1 48,5 s und für Gerät 2 48,5 s. Mindestanforderung erfüllt? ja

Seite 74 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 5: Einzelwerte der Einstellzeit für die Komponente Kohlenmonoxid

		Gerät 1					
	80%		Anstieg			Abfall	
Maaabaraiah hia	69.07	0.0	0.9	1.0	1.0	0.1	0.0
wessbereich bis	66.97	0.00	62.07	68.97	68.97	6.90	0.00
1. Durchgang	t = 0	10:22:00	10:22:48	10:23:00	10:28:00	10:28:47	10:29:00
	delta t		00:00:48			00:00:47	
	delta t [s]		48			47	
2. Durchgang	t = 0	10:36:00	10:36:49	10:37:00	10:42:00	10:42:48	10:43:00
	delta t		00:00:49			00:00:48	
	delta t [s]		49			48	
3. Durchgang	t = 0	10:49:00	10:49:48	10:50:00	10:55:00	10:55:48	10:56:00
	delta t		00:00:48			00:00:48	
	delta t [s]		48			48	
4. Durchgang	t = 0	11:02:00	11:02:49	11:03:00	11:08:00	11:08:47	11:09:00
	delta t		00:00:49			00:00:47	
	delta t [s]		49			47	

		Gerät 2					
	80%		Anstieg			Abfall	
Mossboroich bis	69.07	0.0	0.9	1.0	1.0	0.1	0.0
Messbereich bis	00.97	0.00	62.07	68.97	68.97	6.90	0.00
1. Durchgang	t = 0	10:22:00	10:22:48	10:23:00	10:28:00	10:28:47	10:29:00
	delta t		00:00:48			00:00:47	
	delta t [s]		48			47	
2. Durchgang	t = 0	10:36:00	10:36:49	10:37:00	10:42:00	10:42:48	10:43:00
	delta t		00:00:49			00:00:48	
	delta t [s]		49			48	
3. Durchgang	t = 0	10:49:00	10:49:49	10:50:00	10:55:00	10:55:48	10:56:00
	delta t		00:00:49			00:00:48	
	delta t [s]		49			48	
4. Durchgang	t = 0	11:02:00	11:02:48	11:03:00	11:08:00	11:08:47	11:09:00
	delta t		00:00:48			00:00:47	
	delta t [s]		48			47	

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.4 Kurzzeitdrift

Die Kurzzeitdrift bei Null darf $\leq 0,1 \ \mu mol/mol/12h$ betragen Die Kurzzeitdrift beim Span-Niveau darf $\leq 0,60 \ \mu mol/mol/12h$ betragen.

7.2 Durchführung der Prüfung

Nach der zur Stabilisierung erforderlichen Zeit wird das Messgerät beim Null- und Span-Niveau (etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches) eingestellt. Nach der Zeitspanne, die einer unabhängigen Messung entspricht, werden 20 Einzelmessungen zuerst bei Null und dann bei der Span-Konzentration durchgeführt. Aus diesen 20 Einzelmessungen wird jeweils der Mittelwert für das Null- und Spannniveau berechnet.

Das Messgerät ist unter den Laborbedingungen in Betrieb zu halten. Nach einer Zeitspanne von 12 h werden Null- und Spangas auf das Messgerät aufgegeben. Nach einer Zeitspanne, die einer unabhängigen Messung entspricht, werden 20 Einzelmessungen zuerst bei Null und dann bei der Span-Konzentration durchgeführt. Die Mittelwerte für Null- und Span-Niveau werden berechnet.

Die Kurzzeitdrift beim Null und Span-Niveau ist:

 $D_{S,Z} = (C_{Z,2} - C_{Z,1})$

Dabei ist:

D_{s.z} die 12-Stunden-Drift beim Nullpunkt

 C_{z_1} der Mittelwert der Nullgasmessung zu Beginn der Driftzeitspanne

 $C_{z,2}$ der Mittelwert der Nullgasmessung am Ende der Driftzeitspanne

D_{s.z} muss das oben angegebene Leistungskriterium erfüllen.

 $D_{S,S} = (C_{S,2} - C_{S,1}) - D_{S,Z}$

Dabei ist:

D_{s.s} die 12-Stunden-Drift beim Span-Niveau

C_{5.1} der Mittelwert der Spangasmessung zu Beginn der Driftzeitspanne

C_{5.2} der Mittelwert der Spangasmessung am Ende der Driftzeitspanne

 $D_{S,S}$ muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt. Die Prüfung soll dabei gemäß DIN EN 14626 bei einem Konzentrationslevel von 70 % bis 80 % des Zertifizierungsbereiches für Kohlenmonoxid durchgeführt werden.

7.4 Auswertung

In Tabelle 6 sind die ermittelten Messwerte der Kurzzeitdrift angegeben.

Seite 76 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 6: Ergebnisse der Kurzzeitdrift

	Anforderung	Gerät 1		Gerät 2	
Mittelwert Nullpunkt Anfangswerte [µmol/mol]	-	0,05		-0,07	
Mittelwert Nullpunkt Endwerte (12h) [µmol/mol]	-	0,09		-0,05	
Mittelwert Span Anfangswerte [µmol/mol]	-	65,32		64,92	
Mittelwert Span Endwerte (12h) [µmol/mol]	-	65,56		65,05	
12-Studen-Drift Nullniveau D _{s,z} [µmol/mol]	≤ 0,1	0,04	~	0,01	~
12-Studen-Drift Spaniveau D _{s,s} [µmol/mol]	≤ 0,6	0,20	~	0,12	~

7.5 Bewertung

Es ergibt sich ein Wert für die Kurzzeitdrift am Nullpunkt von 0,04 µmol/mol für Gerät 1 sowie 0,01 µmol/mol für Gerät 2.

Es ergibt sich ein Wert für die Kurzzeitdrift am Referenzpunkt von 0,20 µmol/mol für Gerät 1 sowie 0,12 µmol/mol für Gerät 2.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Die Einzelwerte der Prüfung sind in Tabelle 7 und Tabelle 8 dargestellt.

Γ

09:50:00

09:51:00

09:52:00

09:53:00

09:54:00

09:55:00

Mittelwert

0,1

0,1

0,1

0,1

0,1

0,1

0,0

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Anfangswerte				Ar
	Nullpunkt		Sp	ban
	Gerät 1	Gerät 2		
Uhrzeit	[µmol/mol]	[µmol/mol]	Uhrzeit	
09:36:00	0,0	-0,1	10:01:00	
09:37:00	0,0	-0,1	10:02:00	
09:38:00	0,0	-0,1	10:03:00	
09:39:00	0,1	-0,1	10:04:00	
09:40:00	0,1	-0,1	10:05:00	
09:41:00	0,1	-0,1	10:06:00	
09:42:00	0,0	-0,1	10:07:00	
09:43:00	0,1	-0,1	10:08:00	
09:44:00	0,1	-0,1	10:09:00	
09:45:00	0,1	-0,1	10:10:00	
09:46:00	0,1	-0,1	10:11:00	
09:47:00	0,1	-0,1	10:12:00	
09:48:00	0,1	-0,1	10:13:00	
09:49:00	0.1	-0.1	10:14:00	

-0,1

-0,1

-0,1

-0,1

-0,1

-0,1

-0,1

Tabelle 7: Einzelwerte der Prüfung zur Kurzzeitdrift 1. Prüfgasaufgabe

1

Г

Anfangswerte				
Span-Konzentration				
	Gerät 1	Gerät 2		
Uhrzeit	[µmol/mol]	[µmol/mol]		
10:01:00	65,3	64,9		
10:02:00	65,3	64,8		
10:03:00	65,3	64,8		
10:04:00	65,3	64,9		
10:05:00	65,3	64,9		
10:06:00	65,4	64,9		
10:07:00	65,4	64,9		
10:08:00	65,3	65,0		
10:09:00	65,3	64,8		
10:10:00	65,3	64,9		
10:11:00	65,4	64,9		
10:12:00	65,4	64,9		
10:13:00	65,3	64,9		
10:14:00	65,3	64,9		
10:15:00	65,3	64,9		
10:16:00	65,3	64,9		
10:17:00	65,3	64,9		
10:18:00	65,4	65,0		
10:19:00	65,4	65,1		
10:20:00	65,3	65,0		
Mittelwert 65,3 64,9				

Seite 78 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Nach 12h				
	Nullpunkt			
	Gerät 1 Gerät 2			
Uhrzeit	[µmol/mol]	[µmol/mol]		
21:36:00	0,1	0,0		
21:37:00	0,1	-0,1		
21:38:00	0,1	-0,1		
21:39:00	0,1	-0,1		
21:40:00	0,1	-0,1		
21:41:00	0,1	-0,1		
21:42:00	0,1	-0,1		
21:43:00	0,1	-0,1		
21:44:00	0,1	-0,1		
21:45:00	0,1	-0,1		
21:46:00	0,1	-0,1		
21:47:00	0,1	-0,1		
21:48:00	0,1	-0,1		
21:49:00	0,1	-0,1		
21:50:00	0,1	-0,1		
21:51:00	0,1	-0,1		
21:52:00	0,1	-0,1		
21:53:00	0,1	-0,1		
21:54:00	0,1	-0,1		
21:55:00	0,1	-0,1		
Mittelwert	0,1	-0,1		

Tabelle 8: Einzelwerte der Prüfung zur Kurzzeitdrift 2. Prüfgasaufgabe

Nach 12h			
Span-Konzentration			
	Gerät 1	Gerät 2	
Uhrzeit	[µmol/mol]	[µmol/mol]	
22:01:00	65,5	65,1	
22:02:00	65,5	65,0	
22:03:00	65,5	65,0	
22:04:00	65,6	65,0	
22:05:00	65,6	65,0	
22:06:00	65,6	65,1	
22:07:00	65,6	65,0	
22:08:00	65,5	65,0	
22:09:00	65,6	65,0	
22:10:00	65,6	65,0	
22:11:00	65,6	65,0	
22:12:00	65,6	65,0	
22:13:00	65,5	65,0	
22:14:00	65,6	65,1	
22:15:00	65,5	65,0	
22:16:00	65,5	65,1	
22:17:00	65,5	65,1	
22:18:00	65,5	65,1	
22:19:00	65,6	65,0	
22:20:00	65,6	65,1	
Mittelwert	65,6	65,0	

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.5 Wiederholstandardabweichung

Die Wiederholstandardabweichung muss sowohl das Leistungskriterium bei Null \leq 0,3 µmol/mol als auch bei der Prüfgaskonzentration am Referenzpunkt \leq 0,4 µmol/mol erfüllen.

7.2 Prüfvorschrift

Nach der Zeitspanne, die einer unabhängigen Messung entspricht, werden 20 Einzelmessungen bei der Konzentration Null und einer Prüfgaskonzentration (c_t), die ähnlich dem 8-Stunden-Grenzwert ist, durchgeführt.

Die Wiederholstandardabweichung dieser Messungen bei der Konzentration Null und bei der Konzentration c_t wird folgendermaßen berechnet:

$$s_r = \sqrt{\frac{\sum \left(x_i - \overline{x}\right)^2}{n - 1}}$$

Dabei ist

- *s*_r die Wiederholstandardabweichung
- x_i die i-te Messung
- *x* der Mittelwert der 20 Messungen
- *n* die Anzahl der Messungen

Die Wiederholstandardabweichung wird getrennt für beide Messreihen (Nullgas und Konzentration c_t) berechnet.

s_r muss das oben angegebene Leistungskriterium sowohl bei der Konzentration Null als auch der Prüfgaskonzentration c_t (8-Stunden-Grenzwert) erfüllen.

Aus der Wiederholstandardabweichung bei Null und der nach 8.4.6 bestimmten Steigung der Kalibrierfunktion wird die Nachweisgrenze des Messgeräts nach folgender Gleichung berechnet:

$$l_{\rm det} = 3,3 \cdot \frac{s_{r,z}}{B}$$

Dabei ist

 $l_{\rm det}$ die Nachweisgrenze des Messgeräts, in µmol/mol

- $s_{r,z}$ die Wiederholstandardabweichung bei null, in µmol/mol
- *B* die nach Anhang A mit den Daten aus 8.4.6 ermittelte Steigung der Kalibrierfunktion.

Seite 79 von 369

Seite 80 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt. Die Prüfung soll dabei gemäß DIN EN 14626 bei einem Konzentrationslevel von ca. 8,6 µmol/mol CO durchgeführt werden.

7.4 Auswertung

In Tabelle 9 sind die Ergebnisse der Untersuchung zur Wiederholstandardabweichung angegeben.

Tabelle 9:	Wiederholstandardabweichung am Null- und Referenzpunk
------------	---

	Anforderung	Gerät 1		Gerät 2	
Wiederholstandardabweichung $s_{r,z}$ bei Null [µmol/mol]	≤ 0,3	0,02	~	0,02	~
Wiederholstandardabweichung $s_{r,ct}$ bei c_t [µmol/mol]	≤ 0,4	0,01	~	0,03	~
Nachweisgrenze [µmol/mol]		0,05		0,07	

7.5 Bewertung

Es ergibt sich ein Wert für die Wiederholstandardabweichung am Nullpunkt von 0,02 µmol/mol für Gerät 1 sowie 0,02 µmol/mol für Gerät 2. Für die Wiederholstandardabweichung am Referenzpunkt ergibt sich ein Wert von 0,01 µmol/mol für Gerät 1 sowie 0,03 µmol/mol für Gerät 2.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

In Tabelle 10 sind die Ergebnisse der Einzelmessungen angegeben.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 10: Einzelergebnisse der Untersuchung zur Wiederholstandardabweichung

Null Konzentration				
	Gerät 1	Gerät 2		
Uhrzeit	[µmol/mol]	[µmol/mol]		
11:27:00	0,16	0,16		
11:28:00	0,16	0,16		
11:29:00	0,16	0,16		
11:30:00	0,16	0,16		
11:31:00	0,16	0,16		
11:32:00	0,16	0,16		
11:33:00	0,16	0,16		
11:34:00	0,16	0,16		
11:35:00	0,16	0,16		
11:36:00	0,16	0,16		
11:37:00	0,16	0,16		
11:38:00	0,16	0,22		
11:39:00	0,16	0,16		
11:40:00	0,16	0,16		
11:41:00	0,16	0,16		
11:42:00	0,16	0,22		
11:43:00	0,11	0,16		
11:44:00	0,16	0,16		
11:45:00	0,16	0,22		
11:46:00	0,11	0,22		
Mittelwert	0,16	0,17		

Ct-Konzentration				
	Gerät 1	Gerät 2		
Uhrzeit	[µmol/mol]	[µmol/mol]		
12:14:00	8,71	8,60		
12:15:00	8,71	8,60		
12:16:00	8,71	8,60		
12:17:00	8,71	8,65		
12:18:00	8,71	8,60		
12:19:00	8,71	8,60		
12:20:00	8,71	8,60		
12:21:00	8,71	8,60		
12:22:00	8,71	8,60		
12:23:00	8,71	8,55		
12:24:00	8,71	8,60		
12:25:00	8,71	8,55		
12:26:00	8,71	8,60		
12:27:00	8,71	8,60		
12:28:00	8,71	8,55		
12:29:00	8,71	8,55		
12:30:00	8,71	8,55		
12:31:00	8,65	8,60		
12:32:00	8,71	8,60		
12:33:00	8,71	8,55		
Mittelwert	8,70	8,59		

Seite 82 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.6 Abweichung von der Linearität bei der Kalibrierfunktion

Die Abweichung von der Linearität bei der Kalibrierfunktion darf maximal 0,5 µmol/mol am Nullpunkt sowie maximal 4 % des Messwertes bei Konzentrationen größer Null betragen.

7.2 Prüfvorschrift

Die Abweichung von der Linearität bei der Kalibrierfunktion des Messgeräts ist über den Bereich von 0 % bis 95 % des Maximums des Zertifizierungsbereiches mit mindestens sechs Konzentrationen (einschließlich des Nullpunktes) zu prüfen. Das Messgerät ist bei einer Konzentration von etwa 90 % des Maximums des Zertifizierungsbereiches zu justieren. Bei jeder Konzentration (einschließlich des Nullpunktes) werden mindestens fünf Einzelmessungen durchgeführt.

Die Konzentrationen werden in folgender Reihenfolge aufgegeben: 80 %, 40 %, 0 %, 60 %, 20 % und 95 %. Nach jedem Wechsel der Konzentration sind mindestens vier Einstellzeiten abzuwarten, bevor die nächste Messung durchgeführt wird.

Die Berechnung der linearen Regressionsfunktion und der Abweichungen wird nach Anhang A der DIN EN 14626 durchgeführt. Die Abweichungen von der linearen Regressionsfunktion müssen das oben angegebene Leistungskriterium erfüllen.

Erstellung der Regressionsgeraden:

Eine Regressionsgerade der Form $Y_i = A + B * X_i$ ergibt sich durch Berechnung der Funktion

$$Y_i = a + B(X_i - X_z)$$

Zur Berechnung der Regression werden alle Messpunkte (einschließlich Null) herangezogen. Die Anzahl der Messpunkte n ist gleich der Anzahl der Konzentrationsniveaus (mindestens sechs einschließlich Null) multipliziert mit der Anzahl der Wiederholungen (mindestens fünf) bei jedem Konzentrationsniveau.

Der Koeffizient a ist:

$$a = \sum Y_i \, / \, n$$

Dabei ist:

- a der Mittelwert der Y-Werte
- Y_i der einzelne Y-Wert
- N die Anzahl der Kalibrierpunkte

Der Koeffizient B ist:

$$B = \left(\sum Y_{i}(X_{i} - X_{z})\right) / \sum (X_{i} - X_{z})^{2}$$

Dabei ist:

- X_z der Mittelwert der X-Werte $\left(=\sum (X_i / n)\right)$
- X_i der einzelne X-Wert

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Die Funktion $Y_i = a + B (X_i - X_z)$ wird über die Berechnung von A umgewandelt in $Y_i = A + B * X_i$

$$A = a - B * X_z$$

Die Abweichung der Mittelwerte der Kalibrierpunkte (einschließlich des Nullpunktes) werden folgendermaßen berechnet.

Der Mittelwert jedes Kalibrierpunktes (einschließlich des Nullpunktes) bei ein und derselben Konzentration c ist:

$$(Y_a)_c = \sum (Y_i)_c / m$$

Dabei ist:

- (Y_a)_c der mittlere Y-Wert beim Konzentrationsniveau c
- (Y_i)_c der einzelne Y-Wert beim Konzentrationsniveau c
- M die Anzahl der Wiederholungen beim Konzentrationsniveau c

Die Abweichung jedes Mittelwertes (r_c) bei jedem Konzentrationsniveau ist:

 $r_c = (Y_a)_c - (A + B \times c)$

Jede Abweichung eines Wertes relativ zu seinem Konzentrationsniveau c ist:

$$r_{c,rel} = \frac{r_c}{c} \times 100\%$$

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt.

7.4 Auswertung

Es ergeben sich folgende lineare Regressionen:

In Abbildung 8 und Abbildung 9 sind die Ergebnisse der Gruppenmittelwertuntersuchungen zusammenfassend für Kohlenmonoxid graphisch dargestellt.

Tabelle 11: Abweichungen der Analysenfunktion für Kohlenmonoxid

	Anforderung	Gerät 1		Gerät 2	
Größte relative Abweichung r _{max} [%]	≤ 4,0	1,33	~	1,24	~
Abweichung bei Null r _z [µmol/mol]	≤ 0,5	0,13	✓	-0,01	✓

Seite 84 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Abbildung 8: Analysenfunktion aus den Gruppenmittelwerten für Gerät 1

Abbildung 9: Analysenfunktion aus den Gruppenmittelwerten für Gerät 2

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 85 von 369

7.5 Bewertung

Für Gerät 1 ergibt sich eine Abweichung von der linearen Regressionsgerade von 0,13 µmol/mol am Nullpunkt und maximal 1,33 % vom Sollwert bei Konzentrationen größer Null. Für Gerät 2 ergibt sich eine Abweichung von der linearen Regressionsgerade von -0,01 µmol/mol am Nullpunkt und maximal 1,24 % vom Sollwert bei Konzentrationen größer Null.

Die Abweichungen von der idealen Regressionsgeraden überschreiten nicht die in der DIN EN 14626 geforderten Grenzwerte.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Die Einzelwerte der Prüfung sind in Tabelle 12 zu finden.

Seite 86 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

		Gerät 1 [µmol/mol]		Gerät 2 [µmol/mol]		
Zeit	Stufe [%]	lst Wert y _i	Soll Wert x _i	lst Wert y _i	Soll Wert x _i	
10:31:00	80	70,25	68,97	69,71	68,97	
10:32:00	80	70,25	68,97	69,77	68,97	
10:33:00	80	70,25	68,97	69,77	68,97	
10:34:00	80	70,20	68,97	69,77	68,97	
10:35:00	80	70,31	68,97	69,82	68,97	
Mittelw	vert	70,25		69,77		
r _{c,re}		-0,10		-0,12		
10:40:00	40	34,83	34,48	34,50	34,48	
10:41:00	40	34,77	34,48	34,50	34,48	
10:42:00	40	34,77	34,48	34,50	34,48	
10:43:00	40	34,77	34,48	34,50	34,48	
10:44:00	40	34,77	34,48	34,50	34,48	
Mittelw	vert	34,79		34,50		
r _{c,re}	I	-0,56		-0,54		
10:49:00	0	0,11	0,00	-0,05	0,00	
10:50:00	0	0,11	0,00	-0,05	0,00	
10:51:00	0	0,11	0,00	0,00	0,00	
10:52:00	0	0,11	0,00	-0,05	0,00	
10:53:00	0	0,22	0,00	0,11	0,00	
Mittelw	/ert	0,13		-0,01		
r _z		0,13		-0,01		
10:58:00	60	52,03	51,72	51,65	51,72	
10:59:00	60	51,97	51,72	51,75	51,72	
11:00:00	60	51,97	51,72	51,65	51,72	
11:01:00	60	52,03	51,72	51,65	51,72	
11:02:00	60	51,81	51,72	51,43	51,72	
Mittelw	vert	51,96		51,62		
r _{c,re}		-1,33		-1,24		
11:07:00	20	17,14	17,24	16,93	17,24	
11:08:00	20	17,14	17,24	16,93	17,24	
11:09:00	20	17,14	17,24	16,93	17,24	
11:10:00	20	17,14	17,24	16,98	17,24	
11:11:00	20	17,25	17,24	17,14	17,24	
Mittelw	/ert	17,16		16,98		
r _{c,re}		-0,84		-0,75		
11:16:00	95	84,09	81,90	83,55	81,90	
11:17:00	95	84,20	81,90	83,55	81,90	
11:18:00	95	84,20	81,90	83,65	81,90	
11:19:00	95	84,20	81,90	83,65	81,90	
11:20:00	95	84,20	81,90	83,65	81,90	
Mittelw	vert	84,17		83,61		
r _{c,re}	I	0,74		0,71		

Tabelle 12: Einzelwerte "lack of fit" Prüfung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.7 Empfindlichkeitskoeffizient des Probengasdrucks

Der Empfindlichkeitskoeffizient des Probengasdruckes muss $\leq 0,7 \mu mol/mol/kPa$ betragen.

7.2 Prüfvorschriften

Messungen werden bei einer Konzentration von etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches bei absoluten Drücken von etwa 80 kPa \pm 0,2 kPa und etwa 110 kPa \pm 0,2 kPa durchgeführt. Bei jedem Druck sind nach einer Zeitspanne, die einer unabhängigen Messung entspricht, drei Einzelmessungen durchzuführen. Die Mittelwerte dieser Messungen bei den beiden Drücken werden berechnet.

Messungen bei verschiedenen Drücken müssen durch mindestens vier Einstellzeiten voneinander getrennt sein.

Der Empfindlichkeitskoeffizient des Probendruckes ergibt sich wie folgt:

$$b_{gp} = \frac{\left(C_{P2} - C_{P1}\right)}{\left(P_2 - P_1\right)}$$

Dabei ist:

b_{ep} der Empfindlichkeitskoeffizient des Probengasdruckes

 C_{P1} der Mittelwert der Messung beim Probengasdruck P₁

 $C_{_{P2}}$ der Mittelwert der Messung beim Probengasdruck P₂

 P_1 der Probengasdruck P_1

*P*₂ der Probengasdruck P₂

 b_{gp} muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt.

Ein Unterdruck konnte durch Verringerung des zugeführten Prüfgasvolumens mittels Restriktion der Probengasleitung erzeugt werden. Bei der Überdruckprüfung wurde die Messeinrichtung an eine Prüfgasquelle angeschlossen. Die erzeugte Prüfgasmenge wurde höher als die von den Analysatoren angesaugte Probengasmenge eingestellt. Das überschüssige Gas wird über ein T-Stück abgeleitet. Die Erzeugung des Überdrucks wurde durch entsprechende Restriktion der Bypassleitung durchgeführt. Der Prüfgasdruck wurde dabei von einem Druckaufnehmer im Prüfgasweg ermittelt.

Einzelmessungen werden mit Konzentrationen von etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches und Probengasdrücken von 80 kPa und 110 kPa durchgeführt.

Seite 88 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.4 Auswertung

Es ergaben sich folgende Empfindlichkeitskoeffizienten für den Probengasdruck.

Tabelle 13: Empfindlichkeitskoeffizient des Probengasdrucks

	Anforderung	Gerät 1		Gerät 2	
Empfindlichkeitskoeff. Probengasdruck bgp [µmol/mol/kPa]	≤ 0,7	0,02	~	0,02	✓

7.5 Bewertung

Für Gerät 1 ergibt sich ein Empfindlichkeitskoeffizient des Probengasdrucks von 0,02 µmol/mol/kPa.

Für Gerät 2 ergibt sich ein Empfindlichkeitskoeffizient des Probengasdrucks von 0,02 $\mu mol/mol/kPa.$

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 14: Einzelwerte der Empfindlichkeit gegen Änderungen des Probengasdrucks

			Gerät 1	Gerät 2
Uhrzeit	Druck [kPa]	Konzentration	[µmol/mol]	[µmol/mol]
13:04:00	80	64,66	64,50	64,72
13:05:00	80	64,66	64,50	64,82
13:06:00	80	64,66	64,55	64,88
	Mittelwert C _{P1}		64,52	64,80
13:17:00	110	64,66	65,09	65,36
13:18:00	110	64,66	65,09	65,36
13:19:00	110	64,66	65,15	65,47
	Mittelwert C _{P2}		65,11	65,40

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.8 Empfindlichkeitskoeffizient der Probengastemperatur

Der Empfindlichkeitskoeffizient der Probengastemperatur muss \leq 0,3 µmol/mol/K betragen.

7.2 Prüfvorschriften

Zur Bestimmung der Abhängigkeit von der Probengastemperatur werden Messungen bei Probengastemperaturen von $T_1 = 0$ °C und $T_2 = 30$ °C durchgeführt. Die Temperaturabhängigkeit wird bei einer Konzentration von etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches bestimmt. Nach einer Zeitspanne, die einer unabhängigen Messung entspricht, sind drei Einzelmessungen bei jeder Temperatur durchzuführen.

Die Probengastemperatur am Einlass des Messgerätes muss mindestens 30 min konstant sein.

Der Empfindlichkeitskoeffizient der Probengastemperatur ergibt sich wie folgt:

$$b_{gt} = \frac{(C_{GT,2} - C_{GT,1})}{(T_{G,2} - T_{G,1})}$$

Dabei ist:

b_{et} der Empfindlichkeitskoeffizient der Probengastemperatur

 $C_{GT.1}$ der Mittelwert der Messung bei der Probengastemperatur T_{G,1}

 $C_{\rm \tiny CT}$, der Mittelwert der Messung bei der Probengastemperatur T_{G,2}

 $T_{G,1}$ die Probengastemperatur $T_{G,1}$

 $T_{G,2}$ die Probengastemperatur $T_{G,2}$

*b*_{or} muss das oben genannte Leistungskriterium erfüllen

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt.

Zur Prüfung wurde das Prüfgasgemisch durch ein ca. 40 Meter langes Schlauchbündel geführt, welches sich in einer Klimakammer befand. Die Messgeräte wurden unmittelbar vor der Klimakammer installiert. Das Ende des Schlauchbündels wurde aus der Klimakammer herausgelegt und an die Messsysteme angeschlossen. Die Zuleitung außerhalb der Klimakammer wurde isoliert und unmittelbar vor den Messeinrichtungen wurde die Prüfgastemperatur mittels eines Thermoelementes überwacht. Die Klimakammertemperatur wurde eingeregelt, so dass die Gastemperatur unmittelbar vor den Analysatoren 0 °C betrug. Zur Überprüfung der 30°C Gastemperatur wurde das Gas statt durch das Schlauchbündel in der Klimakammer durch eine temperierte Heizleitung geleitet und den Messgeräten zugeführt.

TÜVRheinland[®] Genau. Richtig.

Seite 89 von 369

Seite 90 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.4 Auswertung

 Tabelle 15:
 Empfindlichkeitskoeffizient der Probengastemperatur

	Anforderung	Gerät 1		Gerät 2	
Empfindlichkeitskoeff. Probengasdruck bgt [µmol/mol/K]	≤ 0,3	0,06	~	0,10	~

7.5 Bewertung

Für Gerät 1 ergibt sich ein Empfindlichkeitskoeffizient der Probengastemperatur von 0,06 µmol/mol/K.

Für Gerät 2 ergibt sich ein Empfindlichkeitskoeffizient der Probengastemperatur von 0,10 µmol/mol/K.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 16: Einzelwerte der Bestimmung des Einflusses des Probengastemperatur

			Gerät 1	Gerät 2
Uhrzeit	Temp [⁰C]	Konzentration	[µmol/mol]	[µmol/mol]
10:44:00	0	65,00	67,73	66,97
10:45:00	0	65,00	67,67	67,03
10:46:00	0	65,00	67,89	67,13
	Mittelwert $C_{GT,1}$		67,76	67,04
12:53:00	30	65,00	65,41	63,69
12:54:00	30	65,00	66,38	64,12
12:55:00	30	65,00	65,84	64,18
	Mittelwert $C_{GT,1}$		65,88	64,00

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

TÜVRheinland® Genau. Richtig. Seite 91 von 369

7.1 8.4.9 Empfindlichkeitskoeffizient der Umgebungstemperatur

Der Empfindlichkeitskoeffizient der Umgebungstemperatur muss \leq 0,3 µmol/mol/K betragen.

7.2 Prüfvorschriften

Der Einfluss der Umgebungstemperatur ist innerhalb des vom Hersteller angegebenen Bereichs bei folgenden Temperaturen zu bestimmen:

1) der niedrigsten Temperatur $T_{min} = 0$ °C

2) der Labortemperatur $T_1 = 20 \text{ °C}$

3) der höchsten Temperatur T_{max} = 30 °C

Für diese Prüfungen ist eine Klimakammer erforderlich.

Der Einfluss wird bei der Konzentration Null und einer Konzentration von etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches bestimmt. Bei jeder Temperatur sind nach einer Zeitspanne, die einer unabhängigen Messung entspricht, drei Einzelmessungen bei Null und der Span-Konzentration durchzuführen.

Die Messungen werden bezüglich der Temperatur in folgender Reihenfolge durchgeführt:

T_{I} , T_{min} , T_{I} und T_{I} , T_{max} , T_{I}

Bei der ersten Temperatur (T_I) wird das Messgerät bei Null- und Spanniveau (70 % bis 80 % des Maximums des Zertifizierungsbereiches) eingestellt. Dann werden nach einer Zeitspanne, die einer unabhängigen Messung entspricht, drei Einzelmessungen bei T_I, T_{min} und wieder bei T_I durchgeführt. Diese Vorgehensweise wird bei der Temperaturfolge T_I, T_{max} und T_I wiederholt.

Um eine auf andere Faktoren als die Temperatur zurückgehende Drift auszuschließen, werden die Messungen bei T₁ gemittelt; diese Mittelung wird in der folgenden Gleichung zur Berechnung des Einflusses der Umgebungstemperatur berücksichtigt:

$$b_{st} = \frac{x_T - \frac{x_1 + x_2}{2}}{T_s - T_{s,0}}$$

Dabei ist:

- *b_{st}* der Empfindlichkeitskoeffizient von der Umgebungstemperatur
- x_{T} der Mittelwert der Messungen bei T_{min} oder T_{max}

 x_1 der erste Mittelwert der Messungen bei T₁

 x_2 der zweite Mittelwert der Messungen bei T₁

T_s die Umgebungstemperatur im Labor

 $T_{s,0}$ die mittlere Umgebungstemperatur am festgelegten Punkt

Für die Dokumentation der Abhängigkeit von der Umgebungstemperatur wird der höhere der Werte der Temperaturabhängigkeit bei T_{S,1} oder T_{S,2} gewählt.

 b_{st} muss das oben angegebene Leistungskriterium erfüllen.

Seite 92 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt.

7.4 Auswertung

Es ergaben sich folgende Empfindlichkeiten gegenüber der Umgebungstemperatur

Tabelle 17: En	pfindlichkeitskoeffizient der Umgebungstemperatur
----------------	---

	Anforderung	Gerät 1		Gerät 2	
Empf. Koeffizient bei 0 ºC für Nullniveau [µmol/mol/K]	≤ 0,3	0,014	✓	0,029	✓
Empf. Koeffizient bei 30 °C für Nullniveau [µmol/mol/K]	≤ 0,3	0,002	~	0,035	✓
Empf. Koeffizient bei 0 ºC für Span-Niveau [µmol/mol/K]	≤ 0,3	0,000	~	0,008	✓
Empf. Koeffizient bei 30ºC für Span-Niveau [µmol/mol/K]	≤ 0,3	0,021	~	0,081	✓

Wie in Tabelle 17 zu sehen, erfüllt der Empfindlichkeitskoeffizient der Umgebungstemperatur am Null- und Referenzpunkt die Leistungsanforderungen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 93 von 369

7.5 Bewertung

Der Empfindlichkeitskoeffizient b_{st} der Umgebungstemperatur überschreitet nicht die Anforderungen von maximal 0,3 µmol/K. In der Unsicherheitsberechnung wird für beide Geräte der größte Empfindlichkeitskoeffizient b_{st} gewählt. Dies sind für Gerät 1 0,021 µmol/mol/K und für Gerät 2 0,081 µmol/mol/K.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Die Einzelwerte der Prüfung sind in Tabelle 18 aufgeführt.

					-			
		Nullp	ounkt			Span-Kor	zentration	
			Gerät 1	Gerät 2			Gerät 1	Gerät 2
Datum	Uhrzeit	Temp [⁰C]	[µmol/mol]	[µmol/mol]	Uhrzeit	Temp [⁰C]	[µmol/mol]	[µmol/mol]
28.05.2018	08:07:00	20	0,0	0,0	08:17:00	20	65,4	64,6
28.05.2018	08:08:00	20	-0,1	-0,1	08:18:00	20	65,1	64,6
28.05.2018	08:09:00	20	0,2	-0,1	08:19:00	20	64,6	64,3
Mittelwert (X _{1(TS1)})		0,1	0,0			65,0	64,5
28.05.2018	14:39:00	0	0,5	0,6	14:49:00	0	65,1	65,0
28.05.2018	14:40:00	0	0,3	0,6	14:50:00	0	65,1	64,9
28.05.2018	14:41:00	0	0,4	0,6	14:51:00	0	65,0	64,8
Mittelwert	(X _{T s,1})		0,4	0,6			65,1	64,9
29.05.2018	07:54:00	20	0,2	0,1	08:04:00	20	65,3	65,5
29.05.2018	07:55:00	20	0,2	0,1	08:05:00	20	65,1	65,6
29.05.2018	07:56:00	20	0,3	0,1	08:06:00	20	65,1	65,6
Mittelwert (X _{2(TS}	$_{(1)}) = (X_{1(TS2)})$		0,2	0,1			65,2	65,6
29.05.2018	14:41:00	30	0,5	-0,3	14:51:00	30	65,4	64,6
29.05.2018	14:42:00	30	0,3	-0,3	14:52:00	30	65,9	64,5
29.05.2018	14:43:00	30	0,4	-0,3	14:53:00	30	65,8	64,6
Mittelwert	(X _{T s,2})		0,4	-0,3			65,7	64,6
30.05.2018	08:18:00	20	0,5	0,1	08:28:00	20	66,3	65,2
30.05.2018	08:19:00	20	0,6	0,1	08:29:00	20	65,4	65,3
30.05.2018	08:20:00	20	0,5	0,1	08:30:00	20	65,7	64,9
Mittelwert (X _{2(TS2)})		0,6	0,1			65,8	65,1

Tabelle 18:Einzelwerte zur Prüfung des Empfindlichkeitskoeffizienten der Umgebungstempera-
tur

Seite 94 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.10 Empfindlichkeitskoeffizient der elektrischen Spannung

Der Empfindlichkeitskoeffizient der elektrischen Spannung muss \leq 0,3 µmol/mol/V betragen.

7.2 Prüfvorschriften

Die Abhängigkeit von der Netzspannung wird an den beiden Grenzen des vom Hersteller angegebenen Spannungsbereiches bei der Konzentration Null und einer Konzentration von etwa 70 % bis 80 % des Maximums des Zertifizierungsbereiches bestimmt. Nach einer Zeitspanne, die einer unabhängigen Messung entspricht, werden drei Einzelmessungen bei jedem Spannungs- und Konzentrationsniveau durchgeführt.

Der Empfindlichkeitskoeffizient der Spannung nach der Richtlinie DIN EN 14626 ergibt sich wie folgt:

$$b_{v} = \left| \frac{(C_{V2} - C_{V1})}{(V_{2} - V_{1})} \right|$$

Dabei ist:

- *b*, der Empfindlichkeitskoeffizient der elektrischen Spannung
- C_{V1} der Mittelwert der Messung bei der Spannung V₁

 $C_{_{\mathcal{V}\mathcal{I}}}$ der Mittelwert der Messung bei der Spannung V₂

 V_1 die niedrigste Spannung V_{min}

 V_{2} die höchste Spannung V_{max}

Für die Spannungsabhängigkeit ist der höhere Wert der Messungen beim Null- und Spanniveau zu wählen.

 b_v muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Zur Prüfung des Empfindlichkeitskoeffizienten der Spannung wurde ein Transformator in die Stromversorgung der Messeinrichtung geschaltet und bei verschiedenen Spannungen Prüfgas am Null- und Referenzpunkt aufgegeben.

7.4 Auswertung

Es ergaben sich folgende Empfindlichkeiten gegenüber der elektrischen Spannung:

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 19: Empfindlichkeitskoeffizient der elektrischen Spannung

	Anforderung	Gerät 1		Gerät 2	
Empf. Koeff. elekt. Spannung bv bei Null Niveau [µmol/mol/V]	≤ 0,3	0,00	~	0,00	~
Empf. Koeff. elekt. Spannung bv bei Span [µmol/mol/V]	≤ 0,3	0,00	~	0,00	✓

7.5 Bewertung

Der Empfindlichkeitskoeffizient der Spannung b_v überschreitet bei keinem Prüfpunkt die Anforderungen der DIN EN 14626 von maximal 0,3 µmol/mol/V. In der Unsicherheitsberechnung wird für beide Geräte der größte b_v gewählt. Dies sind für Gerät 1 0,00 µmol/mol/V und für Gerät 2 0,00 µmol/mol/V.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 20: Einzelwerte des Empfindlichkeitskoeffizienten der elektrischen Spannung

			Gerät 1	Gerät 2
Uhrzeit	Spannung [V]	Konzentration	[µmol/mol]	[µmol/mol]
12:19:00	207	0	0,05	0,00
12:20:00	207	0	0,05	0,00
12:21:00	207	0	0,05	0,05
Mi	ttelwert C _{V1} bei N	lull	0,05	0,02
12:29:00	253	0	0,11	0,05
12:30:00	253	0	0,11	0,05
12:31:00	253	0	0,11	0,05
Mi	ttelwert C_{V2} bei N	lull	0,11	0,05
13:11:00	207	65,00	65,20	65,58
13:12:00	207	65,00	65,31	65,58
13:13:00	207	65,00	65,20	65,52
Mit	telwert C _{V1} bei Sp	ban	65,23	65,56
13:21:00	253	65,00	65,25	65,52
13:22:00	253	65,00	65,15	65,52
13:23:00	253	65,00	65,20	65,47
Mit	65,20	65,50		

Seite 96 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.11 Störkomponenten

Störkomponenten bei Null und bei der Konzentration c_t (beim Niveau des 8-Stunden Grenzwerts = 8,6 µmol/mol für CO). Die maximal erlaubten Abweichungen für die Störkomponenten CO₂, NO und N₂O betragen je \leq 0,5 µmol/mol sowie für H₂O \leq 1,0 µmol/mol.

7.2 Prüfvorschriften

Das Signal des Messgerätes gegenüber verschiedenen in der Luft erwarteten Störkomponenten ist zu prüfen. Diese Störkomponenten können ein positives oder negatives Signal hervorrufen. Die Prüfung wird bei der Konzentration Null und einer Prüfgaskonzentration (c_t), die ähnlich dem 8-Stunden-Grenzwert (8,6 µmol/mol für CO) ist, durchgeführt.

Die Konzentrationen der Prüfgasgemische mit der jeweiligen Störkomponente müssen eine Unsicherheit von kleiner als 5 % aufweisen und auf nationale Standards rückführbar sein. Die zu prüfenden Störkomponenten und ihre Konzentrationen sind in Tabelle 21 angegeben. Der Einfluss jeder Störkomponente muss einzeln bestimmt werden. Die Konzentration der Messgröße ist für den auf die Zugabe der Störkomponente (z.B. Wasserdampf) zurückgehenden Verdünnungsfluss zu korrigieren.

Nach der Einstellung des Messgerätes bei Null und beim Spanniveau wird ein Gemisch von Nullgas und der zu untersuchenden Störkomponente mit der in Tabelle 21 angegebenen Konzentration aufgegeben. Mit diesem Gemisch wird eine unabhängige Messung, gefolgt von zwei Einzelmessungen durchgeführt. Diese Vorgehensweise wird mit einem Gemisch der Messgröße bei der Konzentration c_t und der zu untersuchenden Störkomponente wiederholt. Die Einflussgröße bei Null und der Konzentration c_t ist:

$$X_{\text{int},z} = x_z$$

$$X_{\text{int,}ct} = x_{ct} - c_t$$

Dabei ist:

X_{int z} die Einflussgröße der Störkomponente bei Null

- *x*_z der Mittelwert der Messungen bei Null
- $X_{_{\mathrm{int},\mathrm{ct}}}$ die Einflussgröße der Störkomponenten bei der Konzentration c_t
- x_{cr} der Mittelwert der Messungen bei der Konzentration c_t
- *c*_{*t*} die Konzentration des aufgegebenen Gases beim Niveau des 8-Stunden-Grenzwertes

Die Einflussgröße der Störkomponenten muss die in oben angegebenen Leistungsanforderungen sowohl bei Null als auch der Konzentration c_t erfüllen.

7.3 Durchführung der Prüfung

Die Prüfung wurde entsprechend den zuvor genannten Prüfvorschriften der DIN EN 14626 durchgeführt. Die Geräte wurden bei Null und der Konzentration c_t (ca. 8,6 µmol/mol) eingestellt. Anschließend wurde Null- und Prüfgas mit den verschiedenen Störkomponenten aufgegeben. Es wurden die in Tabelle 21 aufgeführten Stoffe in den entsprechenden Konzentrationen geprüft.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 21: Störkomponenten nach DIN EN 14626

Störkomponente	Wert
H ₂ O	19 mmol/mol
CO ₂	500 µmol/mol
NO	1 µmol/mol
N ₂ O	50 nmol/mol

7.4 Auswertung

In der folgenden Übersicht sind die Einflussgrößen der verschiedenen Störkomponenten aufgelistet. Bei Ermittlung des Einflusses der Feuchte wurde der Verdünnungseffekt bereits im Prüfgaserzeugungssystem miteinberechnet.

Tabelle 22 [.]	Finfluss der geprüften	Störkomponenten	(c _t = 8.6 µmol/mol)	
	Ennuos dei gepraten	Otomoniponenten	$(o_t = 0, 0 \mu m o m n o)$	

	Anforderung	Gerät 1		Gerät 2	
Einflussgröße Störkomponente H ₂ O bei Null [nmol/mol/V]	≤ 1,0 µmol/mol	0,05	~	0,14	✓
Einflussgröße Störkomponente H ₂ O bei c _t [nmol/mol/V]	≤ 1,0 µmol/mol	0,02	~	0,00	✓
Einflussgröße Störkomponente CO ₂ bei Null [nmol/mol/V]	≤ 0,5 µmol/mol	-0,03	✓	-0,22	✓
Einflussgröße Störkomponente CO ₂ bei c _t [nmol/mol/V]	≤ 0,5 µmol/mol	-0,11	~	-0,08	✓
Einflussgröße Störkomponente NO bei Null [nmol/mol/V]	≤ 0,5 µmol/mol	-0,11	~	-0,05	✓
Einflussgröße Störkomponente NO bei ct [nmol/mol/V]	≤ 0,5 µmol/mol	-0,10	✓	-0,07	✓
Einflussgröße Störkomponente N ₂ O bei Null [nmol/mol/V]	≤ 0,5 µmol/mol	-0,04	~	-0,04	✓
Einflussgröße Störkomponente N ₂ O bei c _t [nmol/mol/V]	≤ 0,5 µmol/mol	-0,07	✓	0,00	✓

7.5 Bewertung

Es ergibt sich ein Wert für die Querempfindlichkeit am Nullpunkt von 0,05 µmol/mol für Gerät 1 sowie 0,14 µmol/mol für Gerät 2 bei H₂O, -0,03 µmol/mol für Gerät 1 sowie -0,22 µmol/mol für Gerät 2 bei CO₂, -0,11 µmol/mol für Gerät 1 sowie -0,05 µmol/mol für Gerät 2 bei NO, -0,04 µmol/mol für Gerät 1 sowie -0,04 µmol/mol für Gerät 2 bei N₂O.

Für die Querempfindlichkeit am Grenzwert c_t ergibt sich ein Wert von 0,02 µmol/mol für Gerät 1 sowie 0,00 µmol/mol für Gerät 2 bei H₂O, -0,11 µmol/mol für Gerät 1 wie -0,08 µmol/mol für Gerät 2 bei CO₂, -0,10 µmol/mol für Gerät 1 sowie -0,07 µmol/mol für Gerät 2 bei NO, -0,07 µmol/mol für Gerät 1 sowie 0,00 µmol/mol für Gerät 2 bei N₂O.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

In Tabelle 23 sind die Einzelwerte der Untersuchung angegeben.

Seite 98 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 23: Einzelwerte der Untersuchung gegenüber Störkomponenten

	ohn	e Störkompone	nte	m	it Störkomponer	nte
	Uhrzeit	Gerät 1	Gerät 2	Uhrzeit	Gerät 1	Gerät 2
	09:58:00	0,11	-0,05	10:04:00	0,16	0,11
Nullgas + H ₂ O	09:59:00	0,11	0,00	10:05:00	0,16	0,16
(19 mmol/mol)	10:00:00	0,11	0,00	10:06:00	0,16	0,11
(Mittelwert x _z	0,11	-0,02	Mittelwert x _z	0,16	0,13
	10:10:00	8,55	8,55	10:16:00	8,55	8,55
Prüfgas c _t + H ₂ O	10:11:00	8,55	8,60	10:17:00	8,55	8,55
(19 mmol/mol)	10:12:00	8,55	8,55	10:18:00	8,60	8,60
(Mittelwert \mathbf{x}_{ct}	8,55	8,57	Mittelwert x_{ct}	8,57	8,57
	13:00:00	0,05	0,00	13:06:00	0,05	-0,22
Nullgas + CO ₂	13:01:00	0,05	0,05	13:07:00	0,05	-0,16
(500 µmol/mol)	13:02:00	0,05	0,00	13:08:00	-0,05	-0,22
(,	Mittelwert x _z	0,05	0,02	Mittelwert x _z	0,02	-0,20
	13:16:00	8,60	8,39	13:22:00	8,49	8,28
Prüfgas ct + CO ₂	13:17:00	8,60	8,39	13:23:00	8,49	8,33
(500 umol/mol)	13:18:00	8,60	8,39	13:24:00	8,49	8,33
(,	Mittelwert x_{ct}	8,60	8,39	Mittelwert x_{ct}	8,49	8,31
	13:39:00	0,11	-0,11	13:45:00	0,00	-0,16
Nullgas + NO	13:40:00	0,11	-0,11	13:46:00	0,00	-0,16
(1 µmol/mol)	13:41:00	0,11	-0,11	13:47:00	0,00	-0,16
	Mittelwert x _z	0,11	-0,11	Mittelwert x _z	0,00	-0,16
	13:54:00	8,65	8,44	14:00:00	8,55	8,39
Prüfgas c _t + NO	13:55:00	8,65	8,44	14:01:00	8,55	8,39
(1 umol/mol)	13:56:00	8,65	8,44	14:02:00	8,55	8,33
(Mittelwert \mathbf{x}_{ct}	8,65	8,44	Mittelwert x_{ct}	8,55	8,37
	14:08:00	0,11	-0,05	14:14:00	0,11	-0,05
Nullgas + N ₂ O	14:09:00	0,11	-0,05	14:15:00	0,05	-0,11
(50 nmol/mol)	14:10:00	0,11	-0,05	14:16:00	0,05	-0,11
	Mittelwert xz	0,11	-0,05	Mittelwert xz	0,07	-0,09
	14:22:00	8,71	8,39	14:28:00	8,60	8,39
Prüfgas c _t + N₂O	14:23:00	8,71	8,44	14:29:00	8,60	8,44
(50 nmol/mol)	14:24:00	8,65	8,44	14:30:00	8,65	8,44
(00	Mittelwert x _{ct}	8,69	8,42	Mittelwert x _{ct}	8,62	8,42

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.12 Mittelungsprüfung

Der Mittelungseinfluss muss bei ≤ 7 % des Messwertes liegen.

7.2 Prüfbedingungen

Die Mittelungsprüfung liefert ein Maß für die Unsicherheit der gemittelten Werte, die durch kurzzeitige Konzentrationsänderungen im Probengas, die kürzer als die Messwerterfassung im Messgerät sind, verursacht werden. Im Allgemeinen ist die Ausgabe eines Messgerätes das Ergebnis der Bestimmung einer Bezugskonzentration (üblicherweise Null) und der tatsächlichen Konzentration, die eine gewisse Zeit benötigt.

Zur Bestimmung der auf die Mittelung zurückgehenden Unsicherheit werden die folgenden Konzentrationen auf das Messgerät aufgegeben und die entsprechenden Messwerte registriert: eine konstante Kohlenmonoxid Konzentration zwischen null und der Konzentration c_t (8,6 µmol/mol).

Die Zeitspanne (t_c) der konstanten Kohlenmonoxid-Konzentrationen muss mindestens gleich der zum Erzielen von vier unabhängigen Anzeigewerten. Notwendigen Zeitspanne sein (ent-sprechend mindestens 16 Einstellzeiten). Die Zeitspanne (t_v) der geänderten Kohlenmono-xid-Konzentration muss mindestens gleich der zum Erzielen von vier unabhängigen Anzeigewerten erforderlichen Zeitspanne (t_{O3}) für die Kohlenmonoxid-Konzentration muss 45 s betragen, gefolgt von der Zeitspanne (t_{zero}) von 45 s für die Konzentration Null. Weiterhin gilt:

ct ist die Prüfgaskonzentration

 t_v ist die Gesamtzahl der t_{CO} - und t_{zero} -Paare (mindestens drei Paare)

Der Wechsel von t_{CO} auf t_{zero} muss innerhalb von 0,5 s erfolgen. Der Wechsel von t_c zu t_v muss innerhalb einer Einstellzeit des zu prüfenden Messgerätes erfolgen.

Der Mittelungseinfluss (E_{av}) ist:

$$E_{av} = \frac{C_{const}^{av} - 2C_{var}^{av}}{C_{const}^{av}} *100$$

Dabei ist:

- E_{av} der Mittelungseinfluss (%)
- *C*^{*av*} der Mittelwert von mindestens vier unabhängigen Messungen während der Zeitspanne der konstanten Konzentration
- *C*^{*av*}_{var} der Mittelwert von mindestens vier unabhängigen Messungen während der Zeitspanne der variablen Konzentration

Seite 100 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Legende

Y Konzentration (nmol/mol)

X Zeit

Abbildung 10: Prüfung des Mittelungseinflusses ($t_{SO^{*}} = t_{zero} = 45$ s.)

7.3 Durchführung der Prüfung

Die Mittelungsprüfung wurde nach den Vorgaben der DIN EN 14626 durchgeführt. Die Prüfung mit einer sprunghaft veränderten Kohlenmonoxid Konzentration zwischen Null und der Konzentration c_t (8,6 µmol/mol) durchgeführt. Zuerst wurde bei einer konstanten Prüfgaskonzentration der Mittelwert gebildet. Danach wurde mit Hilfe eines Dreiwegeventils im 45 s Takt zwischen Null und Prüfgas hin und her geschaltet. Über die Zeit der wechselnden Prüfgasaufgabe wurde ebenfalls der Mittelwert gebildet.

7.4 Auswertung

In der Prüfung wurden folgende Mittelwerte ermittelt:

Tabelle 24: Ergebnisse der Mittelungsprüfung

	Anforderung	Gerät 1		Gerät 2	
Mittelungseinfluss E _{av} [%]	≤7%	-1,2	✓	2,0	✓

Daraus ergeben sich folgende Mittelungseinflüsse:

Gerät 1: -1,2 %

Gerät 2: 2,0 %

7.5 Bewertung

Das Leistungskriterium der DIN EN 14626 wird mit -1,2 % für Gerät 1 und 2,0 % für Gerät 2 in vollem Umfang eingehalten.

Mindestanforderung erfüllt? ja

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.6 Umfassende Darstellung des Prüfergebnisses

In Tabelle 25 sind die Einzelergebnisse der Untersuchung zum Mittelungseinfluss angegeben.

Tabelle 25:	Einzelwerte d	ler Untersuchung	zum Mittelungseinfluss
-------------	---------------	------------------	------------------------

		Gerät 1	Gerät 2
	Uhrzeit	[µmol/mol]	[µmol/mol]
Mittelwert	15:35:00		
Konstanter Wert	bis	8,55	8,48
C _{av,c}	15:54:00		
Mittelwert	15:55:00		
Variabler Wert	bis	4,32	4,15
C _{av,v}	16:14:00		

		Gerät 1	Gerät 2
	Uhrzeit	[µmol/mol]	[µmol/mol]
Mittelwert	16:25:00		
Konstanter Wert	bis	8,58	8,44
C _{av,c}	16:44:00		
Mittelwert	16:45:00		
Variabler Wert	bis	4,21	4,02
C _{av,v}	17:04:00		

		Gerät 1	Gerät 2
	Uhrzeit	[µmol/mol]	[µmol/mol]
Mittelwert	17:15:00		
Konstanter Wert	bis	8,60	8,43
C _{av,c}	17:33:00		
Mittelwert	17:34:00		
Variabler Wert	bis	4,49	4,25
C _{av,v}	17:53:00		

Seite 101 von 369

Seite 102 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.4.13 Differenz Proben-/Kalibriereingang

Die Differenz zwischen dem Proben- und Kalibriereingang darf maximal \leq 1,0 % betragen.

7.2 Prüfvorschriften

Falls das Messgerät über verschiedene Eingänge für Proben- und Prüfgas verfügt, ist die Differenz des Messsignals bei Aufgabe der Proben über den Proben- oder Kalibriereingang zu prüfen. Hierzu wird Prüfgas mit der Konzentration von 70 % bis 80 % des Maximums des Zertifizierungsbereiches über den Probeneingang auf das Messgerät aufgegeben. Die Prüfung besteht aus einer unabhängigen Messung, gefolgt von zwei Einzelmessungen. Nach einer Zeitspanne von mindestens vier Einstellzeiten wird die Prüfung unter Verwendung des Kalibriereingangs wiederholt. Die Differenz wird folgendermaßen berechnet:

$$\Delta x_{sc} = \frac{x_{sam} - x_{cal}}{c_t} \times 100$$

Dabei ist

Δx_{sc}	die Differenz	Proben-/Kalibriereingang
		5 5

- x_{sam} der Mittelwert der Messungen über den Probeneingang
- *x_{cal}* der Mittelwert der Messungen über den Kalibriereingang
- *c*_t die Konzentration des Prüfgases
- Δ_{sc} muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Die Prüfung wurde nach den Vorgaben der DIN EN 14626 durchgeführt. Bei der Prüfgasaufgabe wurde der Weg des Gases mit Hilfe eines Drei-Wege-Ventils zwischen Sample- und Spangaseingang umgeschaltet.

7.4 Auswertung

Bei der Prüfung wurden folgende Differenzen zwischen Proben und Kalibriergaseingang ermittelt:

Tabelle 26: Ergebnisse der Differenz zwischen Proben-/Kalibriereingang

	Anforderung	Gerät 1		Gerät 2	
Differenz Proben-/Kalibriereingang Δx_{cs} [%]	≤ 1%	-0,06	✓	-0,08	✓

7.5 Bewertung

Das Leistungskriterium der DIN EN 14626 wird mit -0,06 % für Gerät 1 und -0,08 % für Gerät 2 in vollem Umfang eingehalten.

Mindestanforderung erfüllt? ja

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.6 Umfassende Darstellung des Prüfergebnisses

Die Einzelwerte sind Tabelle 27 zu entnehmen.

		Gerät 1	Gerät 2
	Uhrzeit	[µmol/mol]	[µmol/mol]
	13:30:00	65,3	65,4
Probeneingang	13:31:00	65,1	65,4
	13:32:00	65,3	65,4
	13:40:00	65,3	65,4
Kalibriereingang	13:41:00	65,2	65,4
	13:42:00	65,3	65,4

Seite 104 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.5.4 Langzeitdrift

Die Langzeitdrift bei Null darf maximal $\leq 0,5 \ \mu$ mol/mol betragen. Die Langzeitdrift beim Spanniveau darf maximal $\leq 5 \%$ des Zertifizierungsbereiches betragen.

7.2 Prüfvorschriften

Nach jeder zweiwöchigen Kalibrierung ist die Drift der in der Prüfung befindlichen Messgeräte bei Null und beim Spanniveau entsprechend den in diesem Abschnitt angegebenen Verfahren zu berechnen. Falls die Drift im Vergleich zur Anfangskalibrierung eine der Leistungskenngrößen bezüglich der Drift bei Null oder beim Spanniveau erreicht, ergibt sich das Kontrollintervall als Anzahl der Wochen bis zur Feststellung der Überschreitung minus 2 Wochen. Für weitere (Unsicherheits-)Berechnungen sind für die Langzeitdrift die Werte für die Null- und Spandrift über die Zeitspanne des Kontrollintervalls zu verwenden.

Zu Beginn der Driftzeitspanne werden direkt nach der Kalibrierung fünf Einzelmessungen beim Null- und Spanniveau durchgeführt (nach einer Wartezeit, die einer unabhängigen Messung entspricht).

Die Langzeitdrift wird folgendermaßen berechnet:

$$D_{L,Z} = (C_{Z,1} - C_{Z,0})$$

Dabei ist:

 D_{LZ} die Drift bei Null

C_{z0} der Mittelwert der Messungen bei Null zu Beginn der Driftzeitspanne

C_{z1} der Mittelwert der Nullgasmessung am Ende der Driftzeitspanne

 D_{LZ} muss das oben angegebene Leistungskriterium erfüllen.

$$D_{L,S} = \frac{(C_{S,1} - C_{S,0}) - D_{L,Z}}{C_{S,1}} \times 100$$

Dabei ist:

D_{L.S} die Drift bei der Span-Konzentration

 $C_{s,o}$ der Mittelwert der Messungen beim Spanniveau zu Beginn der Driftzeitspanne

 C_{s_1} der Mittelwert der Messungen beim Spanniveau am Ende der Driftzeitspanne

 D_{LS} muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Die Prüfung wurde so durchgeführt, dass alle 2 Wochen Prüfgas aufgegeben wurde. In Tabelle 28 und Tabelle 29 sind die gefundenen Messwerte der zweiwöchentlichen Prüfgasaufgaben angegeben.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.4 Auswertung

Tabelle 28: Ergebnisse der Langzeitdrift am Nullpunkt

		Anforderung	Gerät 1		Gerät 2	
Mittel zu Beginn Cz,1 bei Null [µmol/mol]	23.07.2018	≤ 0,5		~		✓
Langzeitdrift DL,z bei Null [µmol/mol]	06.08.2018	≤ 0,5	0,21	~	0,06	✓
Langzeitdrift DL,z bei Null [µmol/mol]	20.08.2018	≤ 0,5	0,02	~	0,04	✓
Langzeitdrift DLz bei Null [µmol/mol]	03.09.2018	≤ 0,5	0,16	✓	0,04	✓
Langzeitdrift DLz bei Null [µmol/mol]	17.09.2018	≤ 0,5	0,09	✓	0,05	✓
Langzeitdrift DLz bei Null [µmol/mol]	01.10.2018	≤ 0,5	0,10	✓	-0,05	✓
Langzeitdrift DLz bei Null [µmol/mol]	15.10.2018	≤ 0,5	0,31	✓	0,21	✓
Langzeitdrift DLz bei Null [µmol/mol]	29.10.2018	≤ 0,5	0,43	✓	0,33	✓

Tabelle 29: Ergebnisse der Langzeitdrift am Referenzpunkt

		Anforderung	Gerät 1		Gerät 2	
Mittel zu Beginn Cs,1 bei Span [µmol/mol]	23.07.2018	≤ 5,0 %		~		✓
Langzeitdrift D∟s bei Span [µmol/mol]	06.08.2018	≤ 5,0 %	0,33	~	0,05	✓
Langzeitdrift DL,sbei Span [µmol/mol]	20.08.2018	≤ 5,0 %	-0,23	✓	-0,13	✓
Langzeitdrift DL,s bei Span [µmol/mol]	03.09.2018	≤ 5,0 %	-0,52	~	-0,19	✓
Langzeitdrift DL,s bei Span [µmol/mol]	17.09.2018	≤ 5,0 %	-0,09	✓	0,14	✓
Langzeitdrift DL,s bei Span [µmol/mol]	01.10.2018	≤ 5,0 %	1,21	✓	-0,06	✓
Langzeitdrift DL,s bei Span [µmol/mol]	15.10.2018	≤ 5,0 %	1,74	~	0,75	✓
Langzeitdrift DL,s bei Span [µmol/mol]	29.10.2018	≤ 5,0 %	2,75	~	0,72	✓

7.5 Bewertung

Die maximale Langzeitdrift am Nullpunkt D_{L,z} liegt bei 0,43 µmol/mol für Gerät 1 und 0,33 µmol/mol für Gerät 2. Die maximale Langzeitdrift am Referenzpunkt D_{L,s} liegt bei 2,75 % für Gerät 1 und 0,75 % für Gerät 2.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Die Einzelwerte der Ermittlung der Langzeitdrift sind in Tabelle 30 dargestellt.

Seite 105 von 369

Seite 106 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 30: Einzelwerte der Driftuntersuchungen

Null Konzentration				
		Gerät 1	Gerät 2	
Datum	Uhrzeit	[µmol/mol]	[µmol/mol]	
23.07.2018	12:10:00	0,05	0,11	
	12:11:00	0,05	0,11	
	12:12:00	0,05	0,11	
	Mittel	0,05	0,11	
	12:14:00	0,05	0,11	
	12:15:00	0.05	0.11	
	12:16:00	0.05	0.11	
	Mittel	0,05	0,11	
	12:18:00	0.05	0.05	
	12:19:00	0.05	0.11	
	12:20:00	0.05	0.11	
	Mittel	0.05	0.09	
	12:22:00	0.05	0.11	
	12:23:00	0.11	0.11	
	12:24:00	0.05	0.11	
	Mittel	0.07	0.11	
	12:26:00	0.05	0,11	
	12:27:00	0.05	0,11	
	12:28:00	0,05	0,11	
	12.20.00	0.05	0.11	
		0,00		
Mittelwert F	eldstart cz,0	0,06	0,10	
06.08.2018	09:40:00	0,27	0,16	
	09:41:00	0,27	0,16	
	09:42:00	0.27	0.16	
	09:43:00	0,27	0,16	
	09:44:00	0.27	0.16	
	Mittel Cz,1	0.27	0.16	
20.08.2018	13:35:00	0.05	0.05	
2010012010	13:36:00	0.05	0,00	
	13.30.00	0,05	0,11	
	13:37:00	0,05	0,11	
	13:38:00	0,05	0,16	
	13:39:00	0,16	0,27	
	IVIILLEI CZ,1	0,08	0,14	
00.00.0040	40.07.00	0.00	0.07	
03.09.2018	10:37:00	0,22	0,27	
	10.36.00	0,22	0,11	
	10:39.00	0,22	0,11	
	10:40.00	0,22	0,11	
	10:41:00 Mittel e- 4	0,22	0,11	
	IVIILLEI CZ,1	0,22	0,14	
47.00.0040	00.50.00	0.40	0.40	
17.09.2018	09.50:00	0,43	0,10	
	09.31.00	0,10	0.10	
	09.32.00	0,05	0,10	
	09.33.00	0,05	0,10	
	Mittel c- 4	0,05	0,10	
	IVIILLEI UZ,1	0,10	0,10	
01 10 2019	12:40:00	0.16	0.05	
01.10.2010	12:40.00	0,10	0,05	
	12:41:00	0,10	0,05	
	12:42.00	0,10	0,05	
	12:43:00	0,10	0,05	
	Nittel 0- 1	0,10	0,05	
	IVIILLEI UZ,1	0,10	0,00	
15 10 2018	09:58:00	0.38	0.27	
10.10.2010	09:59:00	0.38	0.32	
	10:00:00	0.38	0.32	
	10:01:00	0.38	0.02	
	10:02:00	0,00	0.27	
	Mittel cz 1	0,32	0,30	
	IVIILUEI UZ, I	0,37	0,31	
29 10 2018	12:06:00	0.48	0.32	
23.10.2010	12:00:00	0,40	0.32	
	12:07:00	0,40	0.32	
	12:00:00	0,40	0,52	
	12:09:00	0,40	0,59	
	Mittel c= 4	0,40	0,59	
	1911101 02,1	U,40	0,40	

C _t -Konzentration						
		Gerät 1	Gerät 2			
Datum	Uhrzeit	[µmol/mol]	[µmol/mol]			
23.07.2018	12:38:00	65,31	65,31			
	12:39:00	65,31	65,31			
	12:40:00	65,36	65,41			
	Mittel	65,32	65,34			
	12:42:00	65,36	65,36			
	12:43:00	65,31	65,41			
	12:44:00	65,31	65,41			
	Mittel	65,32	65,40			
	12:46:00	65,41	65,47			
	12:47:00	65,36	65,47			
	12:48:00	65,36	65,41			
	IVIITEI	65,38	65,45			
	12:50:00	65.36	65.41			
	12:52:00	65.41	65.41			
	Mittel	65 40	65 41			
	12:54:00	65.36	65.36			
	12:55:00	65.36	65.41			
	12:56:00	65,41	65,36			
		65,38	65,38			
Mittelwert F	eldstart cs,0	65,36	65,40			
06.08.2018	09:53:00	65,74	65,36			
	09:54:00	65,84	65,47			
	09:55:00	65,79	65,58			
	09:56:00	65,79	65,52			
	09:57:00	65,79	65,52			
	Mittel Cs,1	65,79	65,49			
	10.10.00					
20.08.2018	13:48:00	65,25	65,36			
	13:49:00	65,25	65,31			
	13:50:00	65,20	65,36			
	13:51:00	65,20	65,36			
	13:52:00	65,25	65,36			
	Willer Cs,1	05,25	00,00			
03.09.2018	10:50:00	65.20	65.31			
	10:51:00	65,15	65,31			
	10:52:00	65,20	65,31			
	10:53:00	65,20	65,20			
	10:54:00	65,15	65,41			
	Mittel Cs,1	65,18	65,31			
17.00.0010						
17.09.2018	10:03:00	65,36	65,52			
	10:04:00	05,30	00,00			
	10:00:00	65.26	65 47			
	10:00:00	65 41	65.52			
	Mittel Cs.1	65.39	65.53			
01.10.2018	12:53:00	66,27	65,31			
	12:54:00	66,27	65,31			
	12:55:00	66,22	65,25			
	12:56:00	66,27	65,31			
	12:57:00	66,27	65,36			
	Mittel Cs,1	66,26	65,31			
15.10.2018	10:11:00	66,87	66,01			
	10:12:00	66,76	66,06			
	10:13:00	66,87	66,06			
	10:14:00	66,87	66,38			
	10:15:00	66,81	66,01			
	IVIITEI Cs,1	66,83	66,10			
29.10.2018	12:19:00	67.67	66.33			
	12:20:00	67,62	66,27			
	12:21:00	67,67	65,63			
	12:22:00	67,62	66,44			
	12:23:00	67,67	66,33			
	Mittel Cs 1	67 65	66 20			

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.5.5 Vergleichstandardabweichung für CO unter Feldbedingungen

Die Vergleichsstandardabweichung unter Feldbedingungen darf maximal \leq 5 % des Mittels über eine Zeitspanne von 3 Monaten betragen.

7.2 Prüfvorschriften

Die Vergleichstandardabweichung unter Feldbedingungen wird aus den während der dreimonatigen Zeitspanne stündlich gemittelten Messwerten berechnet.

Die Differenz Δx_{f_i} für jede i-te Parallelmessung ist:

$$\Delta x_{f,i} = x_{f,1,i} - x_{f,2,i}$$

Dabei ist:

$\Delta x_{f,i}$	die i-te Differenz einer Parallelmessung
------------------	--

 $x_{f,1,i}$ das i-te Messergebnis von Messgerät 1

 $x_{f,2,i}$ das i-te Messergebnis von Messgerät 2

Die Vergleichstandardabweichung (unter Feldbedingungen) ist:

$$s_{r,f} = \frac{\left(\sqrt{\frac{\sum_{i=1}^{n} \Delta x_{f,i}^{2}}{2*n}}\right)}{c_{f}} \times 100$$

Dabei ist:

 $s_{r,f}$ die Vergleichsstandardabweichung unter Feldbedingungen (%)

n die Anzahl der Parallelmessungen

*c*_f die bei der Feldprüfung gemessene mittlere Kohlenmonoxid-Konzentration

Die Vergleichstandardabweichung unter Feldbedingungen, $s_{r,f}$, muss das oben angegebene Leistungskriterium erfüllen.

7.3 Durchführung der Prüfung

Aus den während der Feldprüfung 8-stündlich gemittelten Werten, wurde die Vergleichstandardabweichung unter Feldbedingungen mit Hilfe der oben genannten Formeln ermittelt.

Da die Aussenluft in Mitteleuropa üblicherweise eine Kohlenmonoxidkonzentration nahe Null aufweist, wurde die Probenluft über den Zeitraum von 14 Tagen mit Kohlenmonoxid in verschiedenen Konzentrationen angereichert. Dabei konnte bestätigt werden, dass die Messeinrichtungen auch bei höheren Konzentrationen identisch arbeiten. Zur Anreicherung wurde mit Hilfe eines Nadelventils eine geringe Menge höher konzentriertes Prüfgas in das Probennahmesystem der Messstation dosiert. Abgesehen von der Kohlenmonoxidkonzentration wurde die Gasmatrix dabei hinsichtlich Feuchte, Druck, Temperatur und der übrigen messbaren Luftbestandteile kaum verändert.

Seite 107 von 369

Seite 108 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.4 Auswertung

Tabelle 31:Bestimmung der Vergleichsstandardabweichung auf Basis aller Daten aus dem
Feldtest

Vergleichsstandardabweichung im Feldtest			
Stichprobenumfang	[n]	295	
Mittelwert beider Geräte	[µmol/mol]	9,00	
Stabw. Aus Doppelbestimmungen	[µmol/mol]	0,137	
Vergleichstandardabweichung im Feld $\mathbf{S}_{\mathrm{r,f}}$	[%]	1,52	
Anforderung	≤ 5,0 %	✓	

Es ergibt sich eine Vergleichstandardabweichung unter Feldbedingungen von 1,52 % des Mittelwertes.

7.5 Bewertung

Die Vergleichstandardabweichung für Kohlenmonoxid unter Feldbedingungen betrug 1,52 % bezogen auf den Mittelwert über die Dauer des Feldtests von 3 Monaten. Damit sind die Anforderungen der DIN EN 14626 eingehalten.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

In Abbildung 11 ist die Vergleichstandardabweichung im Feld grafisch dargestellt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Abbildung 11: Grafische Darstellung der Vergleichsstandardabweichung im Feld

Seite 110 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.5.6 Kontrollintervall

Das Wartungsintervall muss mindestens 2 Wochen betragen.

7.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

7.3 Durchführung der Prüfung

Bei dieser Mindestanforderung wurde untersucht, welche Wartungsarbeiten in welchen Zeitabständen für eine einwandfreie Funktionsfähigkeit der Messeinrichtung erforderlich sind. Weiterhin wurden die Ergebnisse der Driftbestimmung für Null- und Referenzpunkt gemäß 7.1 8.5.4 Langzeitdrift zur Ermittlung des Wartungsintervalls berücksichtigt.

7.4 Auswertung

Es konnten für die Messeinrichtungen über den gesamten Feldtestzeitraum keine unzulässigen Driften festgestellt werden. Das Wartungsintervall wird daher durch die anfallenden Wartungsarbeiten bestimmt.

Innerhalb des dreimonatigen Feldtests konnte die Wartung im Wesentlichen auf die Kontrolle von Verschmutzungen, Plausibilitätschecks und etwaigen Status-/Fehlermeldungen beschränkt werden. Die Austauschrate des externen Partikelfilters hängt natürlich vom Staubgehalt der Umgebung des Aufstellortes ab. Hinweise zu Arbeiten im Wartungsintervall sind in Kapitel 5 des Handbuches sowie Kapitel 8 dieses Berichtes gegeben.

7.5 Bewertung

Das Kontrollintervall wird durch die notwendigen Wartungsarbeiten bestimmt. Diese beschränken sich im Wesentlichen auf die Kontrolle von Verschmutzungen, Plausibilitätschecks und etwaigen Status-/Fehlermeldungen. Der externe Partikelfilter muss ja nach Staubbelastung am Messort gewechselt werden. Eine Überprüfung des Null- und Referenzpunktes muss nach DIN EN 14626 mindestens alle 14 Tage erfolgen.

Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht notwendig.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.1 8.5.7 Verfügbarkeit des Messgerätes

Die Verfügbarkeit des Messgerätes muss ≥ 90 % betragen.

7.2 Prüfvorschriften

Der korrekte Betrieb des Messgerätes ist mindestens alle 14 Tage zu prüfen. Es wird empfohlen, diese Prüfung während der ersten 14 Tage täglich durchzuführen. Diese Prüfungen beinhalten die Plausibilitätsprüfung der Messwerte, sofern verfügbar, Statussignale und andere relevante Parameter. Zeitpunkt, Dauer und Art von Fehlfunktionen sind zu registrieren.

Die für die Berechnung der Verfügbarkeit zu berücksichtigende Zeitspanne ist diejenige Zeitspanne in der Feldprüfung, während der valide Messdaten für die Außenluftkonzentrationen gewonnen werden. Dabei darf die für Kalibrierungen, Konditionierung der Probengasleitung, Filter und Wartungsarbeiten aufgewendete Zeit nicht einbezogen werden.

Die Verfügbarkeit des Messgerätes ist:

$$A_a = \frac{t_u}{t_t} * 100$$

Dabei ist:

- A_a die Verfügbarkeit des Messgerätes (%)
- *t*^{*u*} die gesamte Zeitspanne mit validen Messwerten
- t_t die gesamte Zeitspanne der Feldprüfung, abzüglich der Zeit für Kalibrierung und Wartung t_u und t_r müssen in den gleichen Einheiten angegeben werden.

Die Verfügbarkeit muss das oben angegebene Leistungskriterium erfüllen.

Seite 112 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.3 Durchführung der Prüfung

Aus der Gesamtzeit des Feldtests und den dabei aufgetretenen Ausfallzeiten wurde die Verfügbarkeit mit Hilfe der oben genannten Formel berechnet.

Auswertung

Die während des Feldtestes aufgetretenen Ausfallzeiten sind in Tabelle 32 aufgelistet.

Tabelle 32: Verfügbarkeit des Messgerätes 48iQ

		Gerät 1	Gerät 2
Einsatzzeit	h	2360	2360
Ausfallzeit	h	0	0
Wartungszeit	h	8	8
Tatsächliche Betriebszeit	h	2352	2352
Tatsächliche Betriebszeit inklusive Wartungszeit	h	2360	2360
Verfügbarkeit	%	100	100

Die Wartungszeiten ergeben sich aus den täglichen Prüfgasaufgaben zur Bestimmung des Driftverhaltens und des Wartungsintervalls sowie aus den Zeiten, die zum Austausch der geräteinternen Teflonfilter im Probengasweg benötigt wurden.

7.5 Bewertung

Die Verfügbarkeit beträgt 100 %. Somit ist die Anforderung der EN 14626 erfüllt. Mindestanforderung erfüllt? ja

7.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht erforderlich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

TÜVRheinland[®]

Genau. Richtig.

7.1 8.6 Gesamtmessunsicherheit nach Anhang E der DIN EN 14626 (2012)

Die Eignungsanerkennung des Messgerätes besteht aus folgenden Schritten:

1) Der Wert jeder einzelnen, im Labor geprüften Leistungskenngröße muss das in Tabelle E.1 der DIN EN 14626 angegebene Kriterium erfüllen.

2) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Laborprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, muss das in Anhang I der Richtlinie 2008/50/EG angegebene Kriterium (15 % für ortsfeste Messungen und 25 % für orientierende Messungen) erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim 8-Stunden-Grenzwert. Die relevanten spezifischen Leistungskenngrößen und das Berechnungsverfahren sind im Anhang E der DIN EN 14626 angegeben.

3) Der Wert jeder einzelnen, in der Feldprüfung geprüften Leistungskenngröße muss das in Tabelle E.1 der DIN EN 14626 angegebene Kriterium erfüllen.

4) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Laborund Feldprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, muss das in Anhang I der Richtlinie 2008/50/EG angegebene Kriterium (15 % für ortsfeste Messungen und 25 % für orientierende Messungen) erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim 8-Stunden-Grenzwert. Die relevanten spezifischen Leistungskenngrößen und das Berechnungsverfahren sind im Anhang E der DIN EN 14626 angegeben.

7.2 Gerätetechnische Ausstattung

Berechnung der Gesamtunsicherheit nach Anhang E der DIN EN 14626 (2012).

7.3 Durchführung der Prüfung

Am Ende der Eignungsprüfung wurden die Gesamtunsicherheiten mit den während der Prüfung ermittelten Werten berechnet.

7.4 Auswertung

- Zu 1) Der Wert jeder einzelnen, im Labor geprüften Leistungskenngrößen erfüllt das in Tabelle E.1 der DIN EN 14626 angegebene Kriterium.
- Zu 2) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Laborprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, erfüllt das geforderte Kriterium.
- Zu 3) Der Wert jeder einzelnen, in der Feldprüfung geprüften Kenngröße erfüllt das in Tabelle E.1 der DIN EN 14626 angegeben Kriterium.
- Zu 4) Die erweiterte Messunsicherheit, die aus den Standardunsicherheiten der in der Laborund Feldprüfung ermittelten spezifischen Leistungskenngrößen berechnet wurde, erfüllt das geforderte Kriterium.

7.5 Bewertung

Die Anforderung an die erweiterte Messunsicherheit der Messeinrichtung wird erfüllt.

Mindestanforderung erfüllt? ja

Seite 114 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

7.6 Umfassende Darstellung des Prüfergebnisses

Die Ergebnisse zu den Punkten 1 und 3 sind in Tabelle 33 zusammengefasst.

Die Ergebnisse zu Punkt 2 sind in und Tabelle 36 zu finden.

Die Ergebnisse zu Punkt 4 sind in Tabelle 35 und Tabelle 37 zu finden.

Leistu	ingskenngröße	Leistungskriterium	Prüfergebnis	einge- halten	Seite
8.4.5	Wiederholstan- dardabweichung bei Null	≤ 0,3 µmol/mol	S _r Gerät 1: 0,02 μmol/mol S _r Gerät 2: 0,02 μmol/mol	ja	79
8.4.5	Wiederholstan- dardabweichung bei der Konzentration ct	≤ 0,4 µmol/mol	S _r Gerät 1: 0,01 μmol/mol S _r Gerät 2: 0,03 μmol/mol	ja	79
8.4.6	"lack of fit" (Abwei- chung von der line- aren Regression)	Größte Abweichung von der linearen Re- gressionsfunktion bei Konzentrationen grö- ßer als Null $\leq 4,0 \%$ des Messwertes Abweichung bei Null $\leq 0,5 \mu$ mol/mol	X _{I,z} Gerät 1: NP 0,13 μmol/mol X _I Gerät 1: RP 1,33 % X _{I,z} Gerät 2: NP -0,01 μmol/mol X _I Gerät 2: RP 1,24 %	ja	82
8.4.7	Empfindlichkeitsko- effizient des Pro- bengasdruckes	≤ 0,70 µmol/mol/kPa	b _{gp} Gerät 1: 0,02 μmol/mol/kPa b _{gp} Gerät 2: 0,02 μmol/mol/kPa	ja	87
8.4.8	Empfindlichkeitsko- effizient der Pro- bengastemperatur	≤ 0,3 µmol/mol/K	b _{gt} Gerät 1: 0,06 μmol/mol/K b _{gt} Gerät 2: 0,10 μmol/mol/K	ja	89
8.4.9	Empfindlichkeitsko- effizient der Umge- bungstemperatur	≤ 0,3 µmol/mol/K	b _{st} Gerät 1: 0,021 μmol/mol/K b _{st} Gerät 2: 0,081 μmol/mol/K	ja	91
8.4.10	Empfindlichkeitsko- effizient der elektri- schen Spannung	≤ 0,3 µmol/mol/V	b _v Gerät 1: 0,00 μmol/mol/V b _v Gerät 2: 0,00 μmol/mol/V	ja	94
8.4.11	Störkomponenten bei Null und der Konzentration ct	H ₂ O ≤ 1,0 µmol/mol CO ₂ ≤ 0,5 µmol/mol NO ≤ 0,5 µmol/mol NO ₂ ≤ 0,5 µmol/mol	H ₂ O Gerät 1: NP 0,05 μmol/mol / RP 0,02 μmol/mol Gerät 2: NP 0,14 μmol/mol / RP 0,00 μmol/mol CO ₂ Gerät 1: NP -0,03 μmol/mol / RP -0,11 μmol/mol Gerät 2: NP -0,22 μmol/mol / RP -0,08 μmol/mol NO Gerät 1: NP -0,11 μmol/mol / RP -0,00 μmol/mol Gerät 2: NP -0,05 μmol/mol / RP -0,07 μmol/mol NO ₂ Gerät 1: NP -0,04 μmol/mol / RP -0,07 μmol/mol Gerät 2: NP -0,04 μmol/mol / RP 0,00 μmol/mol	ja	96

Tabelle 33:Leistungsanforderungen nach DIN EN 14626

Seite 115 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Leistungskenngröße	Leistungskriterium	Prüfergebnis	einge- halten	Seite	
8.4.12 Mittelungseinfluss	≤ 7,0 % des Messwertes	E _{av} Gerät 1: -1,2 % E _{av} Gerät 2: 2,0 %	ja	99	
8.4.13 Differenz Proben- /Kalibriereingang	≤ 1,0 %	Δ _{SC} Gerät 1: -0,06 % Δ _{SC} Gerät 2: -0,08 %	ja	102	
8.4.3 Einstellzeit (Anstieg)	≤ 180 s	t _r Gerät 1: 48,5 s t _r Gerät 2: 48,5 s	ja	71	
8.4.3 Einstellzeit (Abfall)	≤ 180 s	t _f Gerät 1: 47,5 s t _f Gerät 2: 47,5 s	ja	71	
8.4.3 Differenz zwischen An- stiegs und Abfallzeit	≤ 10 % relative Differenz o- der 10 s, je nachdem, wel- cher Wert größer ist	t _d Gerät 1: 1 s t _d Gerät 2: 1 s	ja	71	
8.5.7 Verfügbarkeit des Messgerätes	> 90 %	A _a Gerät 1: 100 % A _a Gerät 2: 100 %	ja	111	
8.5.5 Vergleichstandardab- weichung unter Feldbe- dingungen	≤ 5,0 % des Mittels über ei- nen Zeitraum von drei Mo- naten	Sr,f Gerät 1: 1,52 % Sr,f Gerät 2: 1,52 %	ja	107	
8.5.4 Langzeitdrift bei Null	≤ 0,50 µmol/mol	D _{I,z} Gerät 1: 0,43 µmol/mol D _{I,z} Gerät 2: 0,33 µmol/mol	ja	104	
8.5.4 Langzeitdrift beim Span- niveau	≤ 5,0 % des Maximums des Zertifizierungsbereiches	D _{I,s} Gerät 1: 2,75 % D _{I,s} Gerät 2: 0,75 %	ja	104	
8.4.4 Kurzzeitdrift bei Null	≤ 0,10 µmol/mol über 12 h	D _{s,z} Gerät 1: 0,04 µmol/mol D _{s,z} Gerät 2: 0,01 µmol/mol	ja	75	
8.4.4 Kurzzeitdrift beim Spanniveau	≤ 0,60 µmol/mol über 12 h	D _{s,s} Gerät 1: 0,20 μmol/mol D _{s,s} Gerät 2: 0,12 μmol/mol	ja	75	

Seite 116 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Messgerät:	48iQ					Seriennummer:	1180540007	
Messkomponente:	со					8h-Grenzwert:	8,62	µmol/mol
Nr.	Leistungskenngröße		Anforderung	Ergebnis	Teilu	insicherheit	Quadrat der Teilunsicherheit	
1	Wiederholstandardabweichung bei Null	≤	0,3 µmol/mol	0,020	U _{r,z}	0,00	0,0000	
2	Wiederholstandardabweichung beim 8h-Grenzwert	≤	0,4 µmol/mol	0,010	ur	0,00	0,0000	
3	"lack of fit" beim 8h-Grenzwert	≤	4,0% des Messwertes	1,330	u	0,07	0,0044	
4	Änderung des Probengasdrucks beim 8h-Grenzwert	≤	0,7 µmol/mol/kPa	0,020	u _{gp}	0,05	0,0021	
5	Änderung der Probengastemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,060	ugt	0,13	0,0175	1
6	Änderung der Umgebungstemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,021	Ust	0,05	0,0023	1
7	Änderung der el. Spannung beim 8h-Grenzwert	≤	0,3 µmol/mol/V	0,000	uv	0,00	0,0000	
80	8a Störkomponente H ₂ O mit 19 mmol/mol	≤	1,0 µmol/mol (Null)	0,050	u _{H2O} 0,01	0.0002	1	
od		≤	1,0 µmol/mol (Span)	0,020		0,01	0,0002	
8b	Störkomponente CO ₂ mit 500 umol/mol		0,5 µmol/mol (Null)	-0,030	U _{int,pos}			
		≤	0,5 µmol/mol (Span)	-0,110			0,0262	
8c	Störkomponente NO mit 1 µmol/mol	≤	0,5 µmol/mol (Null)	-0,110		0,16		
		 <	0,5 µmol/mol (Span)	-0,100	oder			
8d	Störkomponente N2O mit 50 nmol/mol	<	0.5 umol/mol (Span)	-0.070	lline and			
9	Mittelungsfehler	_ 	7.0% des Messwertes	-1.200	-inc,neg	-0.06	0.0036	-
18	Differenz Proben-/Kalibriergaseingang	_ 	1.0%	-0.060	-av	-0.01	0.0000	1
21	Unsicherheit Prüfgas	_	3.0%	2.000	U _{ca}	0.09	0.0074	-
			Kombinierte	Standardun	sicherheit	Ue	0.2526	umol/mol
Erweiterte							0.5052	umol/mol
Relative erweiterte Unsicherhei					sicherheit	Ŵ	5,86	%
			Maximal erlaubte e	rweiterte Un	sicherheit	Wreq	15	%

Tabelle 34: Erweiterte Unsicherheit aus der Laborprüfung für Gerät 1

Tabelle 35:	Erweiterte Unsicherheit aus	der Labor- und F	Feldprüfung für Gerät 1

Messgerät:	48iQ					Seriennummer:	1180540007	
Messkomponente:	со					8h-Grenzwert:	8,62	µmol/mol
Nr.	Leistungskenngröße		Anforderung	Ergebnis	Tei	lunsicherheit	Quadrat der Teilunsicherheit	
1	Wiederholstandardabweichung bei Null	×	0,3 µmol/mol	0,020	u _{r,z}	0,00	0,0000	
2	Wiederholstandardabweichung beim 8h-Grenzwert	VI	0,4 µmol/mol	0,010	ur	nicht berücksichtigt, da ur = 0 < ur,f	-	
3	"lack of fit" beim 8h-Grenzwert	vı	4,0% des Messwertes	1,330	u	0,07	0,0044	
4	Änderung des Probengasdrucks beim 8h-Grenzwert	≤	0,7 µmol/mol/kPa	0,020	u _{gp}	0,05	0,0021	
5	Änderung der Probengastemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,060	u _{gt}	0,13	0,0175	
6	Änderung der Umgebungstemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,021	u _{st}	0,05	0,0023	
7	Änderung der el. Spannung beim 8h-Grenzwert	s	0,3 µmol/mol/V	0,000	uv	0,00	0,0000	
80	Stärkompoponto H O mit 10 mmol/mol	s	1,0 µmol/mol (Null)	0,050		0.01	0.0002	
sa Storkomponente H ₂ O mit 19 mmo/m	Storkomponente H2O mit 19 mmol/mol	≤	1,0 µmol/mol (Span)	0,020	u _{H20}	0,01	0,0002	
9b	Stärkomponente CO, mit 500 umel/mel	×	0,5 µmol/mol (Null)	-0,030	U _{int,pos}			
00		≤	0,5 µmol/mol (Span)	-0,110		0,16	0.0262	
8c	Störkomponente NO mit 1 umol/mol	≤	0,5 µmol/mol (Null)	-0,110				
		×1	0,5 µmol/mol (Span)	-0,100	oder		-,	
8d	Störkomponente N2O mit 50 nmol/mol	1	0,5 µmol/mol (Null)	-0,040				
0	Mittalungafablar	1	7.0% des Messwertes	-0,070	Uint,neg	0.06	0.0026	
9		-	5.0% des Mittels über 3 Man	-1,200	u _{av}	-0,08	0,0036	
10		-	5,0% des Mittels über 5 Mori.	1,320	u _{r,f}	0,13	0,0172	
11	Langzeitdrift bei Geer	2	0,5 µmor/mor	0,430	U _{d,l,z}	0,25	0,0616	
12	Langzeitdnit bei Span	2	5,0% des Max. des zen.bereichs	2,750	U _{d,I,8h}	0,14	0,0187	
18	Differenz Proben-/Kalibriergaseingang	5	1,0%	-0,060	U _{Asc}	-0,01	0,0000	
21	Unsicherheit Prutgas	≤	3,0%	2,000	Ucg	0,09	0,0074	
			Kombinierte Standardunsicherheit		uc	0,4017	µmol/mol	
			Erweiterte Unsicherheit		U	0,8033	µmol/mol	
			Relative erw	eiterte Un	sicherheit	VV M	9,32	% 0/
			waximal enauble erw	enene Un	sichemeit	vv req	15	70

TÜVRheinland[®] Genau. Richtig. Seite 117 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Tabelle 36: Erweiterte Unsicherheit aus der Laborprüfung für Gerät 2

Messgerät:	48iQ				S	eriennummer:	1171780048	
Messkomponente:	со				8	3h-Grenzwert:	8,62	µmol/mol
Nr.	Leistungskenngröße		Anforderung	Ergebnis	Teilun	sicherheit	Quadrat der Teilunsicherheit	
1	Wiederholstandardabweichung bei Null	N	0,3 µmol/mol	0,020	U _{r,z}	0,00	0,0000	
2	Wiederholstandardabweichung beim 8h-Grenzwert	≤	0,4 µmol/mol	0,030	ur	0,01	0,0000	
3	"lack of fit" beim 8h-Grenzwert	≤	4,0% des Messwertes	1,240	u	0,06	0,0038	
4	Änderung des Probengasdrucks beim 8h-Grenzwert	≤	0,7 µmol/mol/kPa	0,020	u _{gp}	0,05	0,0021	
5	Änderung der Probengastemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,100	u _{gt}	0,22	0,0495	
6	Änderung der Umgebungstemperatur beim 8h-Grenzwert	≤	0,3 µmol/mol/K	0,081	u _{st}	0,19	0,0352	
7	Änderung der el. Spannung beim 8h-Grenzwert	≤	0,3 µmol/mol/V	0,000	uv	0,00	0,0000	
80	Stärkomponente H O mit 10 mmel/mel	≤	1,0 µmol/mol (Null)	0,140		0.00	0.0000	
od		≤	1,0 µmol/mol (Span)	0,000	u _{H2O} 0,00	0,0000		
8b	Störkomponente CO ₂ mit 500 umol/mol	≤	0,5 µmol/mol (Null)	-0,220	U _{int,pos}			
		≤	0,5 µmol/mol (Span)	-0,080				
8c	Störkomponente NO mit 1 µmol/mol	≤	0,5 µmol/mol (Null)	-0,050		0,09	0,0075	
		<	0,5 µmol/mol (Span)	-0,070	oder			
8d	Störkomponente N2O mit 50 nmol/mol	_ 	0.5 umol/mol (Span)	0.000	Unit			
9	Mittelungsfehler	≤	7.0% des Messwertes	2.000	U _{av}	0.10	0.0099	
18	Differenz Proben-/Kalibriergaseingang	≤	1,0%	-0,080	U _{Asc}	-0,01	0,0000	
21	Unsicherheit Prüfgas	≤	3,0%	2,000	u _{cg}	0,09	0,0074	
			Kombinierte	Standardun	sicherheit	uc	0,3399	µmol/mol
			Er	weiterte Un:	sicherheit	U	0,6798	µmol/mol
Relative erweiterte Unsiche					sicherheit	W	7,89	%
			Maximal erlaubte er	weiterte Un:	sicherheit	W _{req}	15	%

Tabelle 37: Erweiterte Unsicherheit aus der Labor- und Feldprüfung für Gerät 2

Messgerät:	48iQ					Seriennummer:	1171780048	
Messkomponente:	СО					8h-Grenzwert:	8,62	µmol/mol
Nr.	Leistungskenngröße		Anforderung	Ergebnis	Teil	unsicherheit	Quadrat der Teilunsicherheit	
1	Wiederholstandardabweichung bei Null	vı	0,3 µmol/mol	0,020	U _{r,z}	0,00	0,0000	
2	Wiederholstandardabweichung beim 8h-Grenzwert	VI	0,4 µmol/mol	0,030	u _r	nicht berücksichtigt, da ur = 0 < ur,f	-	
3	"lack of fit" beim 8h-Grenzwert	vı	4,0% des Messwertes	1,240	u	0,06	0,0038	
4	Änderung des Probengasdrucks beim 8h-Grenzwert	v	0,7 µmol/mol/kPa	0,020	u _{gp}	0,05	0,0021	
5	Änderung der Probengastemperatur beim 8h-Grenzwert	VI	0,3 µmol/mol/K	0,100	u _{gt}	0,22	0,0495	Ĩ
6	Änderung der Umgebungstemperatur beim 8h-Grenzwert	v	0,3 µmol/mol/K	0,081	Ust	0,19	0,0352	Ĩ
7	Änderung der el. Spannung beim 8h-Grenzwert	v	0,3 µmol/mol/V	0,000	uv	0,00	0,0000	Ĩ
80	Störkompoporto H-O mit 19 mmol/mol	≤	1,0 µmol/mol (Null)	0,140	U _{H2O}	0.00	0.0000	1
od	Storkomponente H2O mit 19 mino/mor	vı	1,0 µmol/mol (Span)	0,000		0,00	0,0000	
8b	Störkompopente CO., mit 500 umol/mol	vı	0,5 µmol/mol (Null)	-0,220	U _{int,pos}	0,09	0,0075	
		vı	0,5 µmol/mol (Span)	-0,080				
8c	Störkomponente NO mit 1 µmol/mol	≤	0,5 µmol/mol (Null)	-0,050	oder			
		s c	0,5 µmol/mol (Span)	-0,070				
8d	Störkomponente N2O mit 50 nmol/mol	- <	0.5 umol/mol (Span)	0,040				
9	Mittelungsfehler	_ ≤	7.0% des Messwertes	2.000	-Inc, neg	0.10	0.0099	ł
10	Veraleichspräzision unter Feldbedingungen	≤	5.0% des Mittels über 3 Mon.	1.520	Urf	0.13	0.0172	ł
11	Langzeitdrift bei Null	≤	0,5 µmol/mol	0,330	U _{d 1 z}	0,19	0,0363	t
12	Langzeitdrift bei Span	≤	5,0% des Max. des Zert.bereichs	0,750	u _{d.l.8h}	0,04	0,0014	1
18	Differenz Proben-/Kalibriergaseingang	≤	1,0%	-0,080	U _{Asc}	-0,01	0,0000	1
21	Unsicherheit Prüfgas	≤	3,0%	2,000	u _{cg}	0,09	0,0074	1
			Kombinierte S	tandardun	sicherheit	uc	0,4127	µmol/mol
			Erv	veiterte Un	sicherheit	U	0,8254	µmol/mol
			Relative erweiterte Unsicherhei			W	9,58	%
			Maximal erlaubte erw	veiterte Un	sicherheit	Wreq	15	%

Seite 118 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

8. Empfehlungen zum Praxiseinsatz

Arbeiten im Wartungsintervall

Folgende regelmäßige Arbeiten sind an der geprüften Messeinrichtung erforderlich:

- Regelmäßige Sichtkontrolle / Telemetrische Überwachung
- Gerätestatus in Ordnung
- Keine Fehlermeldungen
- Austausch des externen Teflonfilters am Probengaseingang je nach Bedingungen am Messort
- Nach DIN EN 14626 alle 14 Tage Durchführung einer Null und Referenzpunkt Überprüfung mit geeigneten Prüfgasen

Im Übrigen sind die Wartungsanweisungen des Herstellers im Kapitel 5 des Handbuches zu beachten.

Immissionsschutz/Luftreinhaltung

M. Schneit

Dipl.-Ing. Martin Schneider

Köln, 4. Februar 2019 936/21242986/D

Juido Baim

Dipl.-Ing. Guido Baum

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

9. Literaturverzeichnis

- [1] VDI 4202 Blatt 1: Eignungsprüfung, Eignungsbekanntgabe und Zertifizierung von Messeinrichtungen zur punktförmigen Messung von gasförmigen Immissionen vom April 2018
- [2] Europäische Norm DIN EN 14626: Außenluft Messverfahren zur Bestimmung von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie, vom Dezember 2012
- [3] Richtlinie 2008/50/EG des Europäischen Rates vom 21. Mai 2008 über die Luftqualität und saubere Luft für Europa

Seite 120 von 369

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

10. Anlagen

Anhang 1 Akkreditierungs-Urkunde nach DIN EN ISO/IEC 17025:2005

Anhang 2 Handbuch

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 121 von 369

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

TÜV Rheinland Energy GmbH

mit seinen in der Urkundenanlage aufgeführten Messstellen

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Bestimmung (Probenahme und Analytik) von anorganischen und organischen gas- oder partikel-förmigen Luftinhaltsstoffen im Rahmen von luftgetragenen polyhalogenierten Dibenzo-p-Dioxinen und Dibenzofuranen bei Emissionen und Immissionen; Probenahme von faserförmigen Partikeln bei Emissionen und Immissionen; Ermittlung von gas- oder partikelförmigen Luftinhaltsstoffen mit kontinuierlich arbeitenden Messgeräten; Bestimmung vor Geruchsstoffen in Luft; Kalibrierungen und Funktionsprüfungen kontinuierlich arbeitender Messgeräte für Luftinhaltsstoffe einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung; Feuerraummessungen; Eignungsprüfungen von automatisch arbeitenden Emissions- und Immissionsmesseinrichtungen einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung; Ermittlung der Emissionen und Immissionen von Geräuschen; Ermittlung von Geräuschen und Vibrationen am Arbeitsplatz; akustische und schwingungstechnische Messungen im Eisenbahnwesen; Bestimmung vo Schallleistungspegeln von zur Verwendung im Freien vorgesehenen Geräten und Maschinen nach Richtlinie 2000/14/EG und Konformitätsbewertungsverfahren; Schornsteinhöhenberechnung und Immissionsprognose auf der Grundlage der Technisch Anleitung zur Reinhaltung der Luft und der Geruchsimmissions-Richtlinie und der VDI 3783 Blatt 13: Windenergieanlagen: nung von Windpotential, Energieerträgen, Standorterträgen und Standortgüte nach EEG, standortbezogenen Turbule charakteristika und Extremwinde: Schallimmissionsprognosen, Schattenwurfimmissionsberechnung und Sichtbarkeitsbestimmung; Probenahme und mikrobiologische Untersuchungen von Nutzwasser gemäß §3 Absatz 8 42. BImSchV; physikalische, physikalisch-chemische und mikrobiologische Untersuchungen von Wasser (Abwasser, Wasser aus Rückkühlwerken sowie raumlufttechnischen Anlagen); Probenahme von Abwasser; mikrobiologische und ausgewählte chemische Untersuchungen gemäß Trinkwasserverordnung; Probenahme von Roh- und Trinkwasser; ausgewählte mikrobiologische Untersuchungen von Bedarfsgegenständen und kosmetischen Mitteln; Probenahme anorganischer faserförmiger Partikel sowie von partikel- und gasförmigen luftverunreinigenden Stoffen in der Innenraumluft; ausgewählte mikrobiologische Untersuchungen in Innenräu Ermittlung von Aerosolen und Faserstäuben, anorganischen und organischen Gasen und Dämpfen sowie ausgewählten Parametern und/oder in ausgewählten Gebieten bei Arbeitsplatzmessungen gemäß Gefahrstoffverordnung §7, Abs. 10; Modul Immissionsschutz

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 02.08.2018 mit der Akkreditierungsnummer D-PL-11120-02-00 und ist gültig bis 10.12.2022. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 55 Seiten.

Registrierungsnummer der Urkunde: D-PL-11120-02-00

Nalbuena

Im Auftrag Dipl.-Ing. Andrea Valbuena Abteilungsleiterin

Berlin, 02.08.2018

Siehe Hinweise auf der Rückseite

Abbildung 12: Akkreditierungs-Urkunde nach DIN EN ISO/IEC 17025:2005

Seite 122 von 369

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkkS). Ausgenommen davon ist die separate Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in unveränderter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. I S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L 218 vom 9. Juli 2008, S. 30). Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:

- EA: www.european-accreditation.org
- ILAC: www.ilac.org
- IAF: www.iaf.nu

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung 48iQ der Firma Thermo Fisher Scientific für die Komponente Kohlenmonoxid, Berichts-Nr.: 936/21242986/D

Seite 123 von 369

Abbildung 12: Akkreditierungs-Urkunde nach DIN EN ISO/IEC 17025:2005 - Seite 2

Anhang 1

Handbuch

48iQ

Betriebsanleitung Kohlenmonoxid-Analysator Bestellnummer 117080-00 15. Januar 2018

Inhaltsverzeichnis

Kapitel 1	Einleitung	1-1
	iQ Series Instrumentenplattform	1-1
	Funktionsprinzip des 48iQ	1-3
	Technische Daten	1-5
	Abmessungen	1-7
Kanital Q		0.4
Kapitel Z	Installation und Einrichtung	2-1
	Auspacken und Überprüfen der Lieferung	2-1
	Entfernen und Wiederanbringen der Abdeckung	2-2
	Montageoptionen	2-3
	Tischaufstellung	2-3
	Gestellmontage	2-4
	Einrichtungsverfahren	2-6
	Einschalten	2-8
Kapitel 3	Betrieb	3-1
	Geräteanzeige	
	Hauptmenüs und Tastaturen	
	Calibration (Kalibrierung)	
	Calibrate Background (Hintergrund kalibrieren)	. 3-11
	Calibrate Span Coefficient (Messbereichskoeffizient kalibrieren)	. 3-12
	Zero/Span Schedule (Geplante Nullpunkt-/	
	Messbereichskalibrierung)	3-15
	Calibrate O ₂ Span Coefficient	•••••
	(O ₂ -Messbereichskoeffizient kalibrieren)	3-17
	Advanced Calibration (Erweiterte Kalibrierung)	3-19
	Data (Daten)	3-34
	View Data Log (Last Hour) (Datenprotokoll anzeigen	
	(Letzte Stunde))	3-35
	View Data Log (Last 24 Hour) (Datenprotokoll anzeigen	• 5 57
	(I etzte 24 Stunden))	3-36
	View Data Log (User Defined Time) (Datenprotokoll anzeigen	. 5 50
	(Benutzerdefinierte Zeit))	. 3-37
	Advanced Data Setup (Erweiterte Dateneinrichtung)	. 3-40
	Settings (Einstellungen)	. 3-47
	Health Check (Zustandsprüfung)	. 3-48
	Measurement Settings (Messungseinstellungen)	. 3-77
	Communications (Kommunikation)	. 3-96

	Instrument Settings (Geräteeinstellungen)	03
	Configuration (Konfiguration)	13
	Security Access Levels (Zugriffssicherheitsstufen)	14
	USB Drive (USB-Laufwerk)	19
	User Contact Information (Benutzer-Kontaktdaten)	26
	Update Bootloader (Bootloader aktualisieren)	27
Kapitel 4	Kalibrierung4	I-1
	Erforderliche Geräte4	í-1
	CO-Konzentrationsstandard 4	í-1
	Nullluftgenerator	í-1
	Externe Durchflussmesser und -regler 4	í-2
	Vorkalibrierung	í-2
	Kalibrierung	í-3
	Anschließen des Geräts4	í-3
	Detektorverstärkung	í-4
	Initial S/R (Anfänglicher P/R-Wert)	í-5
	Mehrpunktkalibrierung4	í-6
	Mehrpunktkalibrierung für den oberen und den unteren Bereich 4	í-8
	Häufigkeit der Kalibrierung	í-8
	Hintergrund kalibrieren	í-9
	Messbereichskoeffizient kalibrieren	10
	Regelmäßige Nullpunkt- und Messbereichsprüfungen	12
	Manuelle Kalibrierung	13
	Adjust Background (Hintergrund anpassen)	13
	Adjust Span Coefficient (Messbereichskoeffizient anpassen)	14
	Reset Bkg to 0.000 and Span Coef to 1.000 (Hintergrund	
	auf 0,000 und Messbereichskoeffizienten auf 1,000 zurücksetzen): 4-	14
	Zero/Span Schedule (Geplante Nullpunkt-/ Messbereichskalibrierung) 4-	15
	Next Time (Nächster Zeitpunkt)	15
	Zeitraum	15
	Nullluft-/Prüfgas-/ Spüldauer in Minuten	16
	Schedule Averaging Time (Plan-Mittelungszeit)	16
	Hintergrund- und Messbereichskalibrierung	16
	Nullpunkt- und Messbereichskalibrierung	16
	Nullpunkt/Messbereich-Verhältnis 4-	17
	Referenzen	17
Kapitel 5	Wartung	<u>5</u> -1
	Sicherheitsvorkehrungen5	5 -1
	Inspektion und Reinigung des Lüfterfilters5	j -1
	Überholung der Pumpe5	5-2
	Dichtigkeitsprüfung	i-5
	Reinigen der Optik5	<i>i-</i> 6
	Austausch der IR-Quelle5	<i>i</i> -8

Kapitel 6	Fehlersuche und -behebung	6-1
	Sicherheitsvorkehrungen	6-1
	Anleitung zur Fehlersuche und -behebung	6-1
Kapitel 7	Instandhaltung	7-1
	Sicherheitsvorkehrungen	7-1
	Firmware-Updates	
	Ersatzteilliste	
	Austausch von Sicherungen	7-5
	Austausch von Filtern	7-6
	Austausch des Lüfters	7-7
	Ausbau und Austausch der Messseite	7-9
	Austausch des LCD-Moduls	7-12
	Austausch der E/A-Karten	7-14
	Austausch des Peripheriemoduls und des System Controller Board	ls7-16
	DMC-Druck- und Durchfluss-Platine	7-17
	Austausch der Pumpe	7-19
	Reinigung und/oder Austausch der Kapillaren	7-22
	Austausch der Kapillaren-O-Ringe	7-24
	Austausch des Netzteils	7-25
	Austausch der STEP POL-Karte	7-27
	Optische Messbank-DMC	7-30
	Ausbau der optischen Messbank	7-31
	Austausch des optischen Schalters	7-32
	Ausbau des Spülradgehäuses	7-35
	Austausch des Filterrads	7-36
	Austausch des Motors	7-38
	Ausrichtung von Motor und Filterrad	7-40
	Ausbau der optischen Messbank/des Heizelements	7-42
	Ausbau der Vorverstärker/ Detektor-Baugruppe	7-44
	Austausch der IR-Quelle	7-46
	Austausch des optionalen Verteilers	7-49
	Austausch des optionalen Nullluftabscheiders	7-51
	Optionaler DMC-Sauerstoffsensor	7-52
	Ausbau des Sauerstoffsensors	7-52
	Austausch der Sauerstoffsensor-Platine	7-56
	Austausch der Sauerstoffsensor-Kapillaren	7-58
	Austausch des Sauerstoffsensors	7-60
Kapitel 8	Systembeschreibung	8-1
	Optische Messbank-DMC	8-2
	Hardware für optische Messbank	8-2
	Filterradmotor	8-2
	Detektor/Vorverstärker	8-3
	Infrarotquelle	8-3

	Optische Messbank-DMC-Platine	8-4
	Allgemeine Elektronik	8-4
	Stromversorgung	8-7
	Frontblende	8-7
	E/A- und Kommunikationskomponenten	8-7
	System Controller Board	8-7
	Rückwandplatine	8-7
	Peripherie-Unterstützungssystem	8-8
	Lüfter	8-8
	STEP POL-Karte	8-8
	Probennahmepumpe	8-8
	Magnetventilplatte (optional)	8-8
	Durchfluss/ Druck-DMC	8-8
	Firmware	8-8
	Sauerstoffsensor (optional)	8-9
Kapitel 9	Optionales Zubehör	9-1
	Anschluss von externen Geräten	9-1
	Kommunikationsbaugruppe	9-2
	Analoge E/A-Karte	9-4
	Kalibrierung der Analogausgänge	9-6
	Digitale E/A-Karte	9-11
	Interne Nullluft-/ Prüfgas-Baugruppe	9-17
	Interner Sauerstoffsensor (O ₂)	9-18
	Interner Nullluftabscheider	9-18
	PTFE-Partikelfilter	9-18
Anhang A	Sicherheit, Garantie und WEEE	A-1
, unitarig , t	Sicherheit	A-1
	Sicherheitshinweise und Warnhinweise zu Schäden am Gerät	A-1
	Gewährleistung	A-2
	WEEE-Konformität	A-4
	WEEE-Symbol	A-4
Anhang B	Kurzanleitung	B-1
	Abbildungen	B-1
	Tabellen	B-3
Anhang C	GNU Lesser General Public License	C-1
U	GNU Lesser General Public License	C-1

Kapitel 1 Einleitung

Der Thermo Scientific[™] 48iQ Kohlenmonoxid (CO)-Analysator misst den Kohlenmonoxidgehalt in der Luft mithilfe der Gasfilter-Korrelationstechnik.

Der Analysator basiert auf dem Prinzip, dass Kohlenmonoxid (CO) Infrarotstrahlung bei einer Wellenlänge von 4,6 µm absorbiert. Da die Infrarotabsorption eine nicht lineare Messtechnik ist, muss die Elektronik des Geräts das Basissignal des Analysators in einen linearen Ausgang umwandeln.

Der Gasanalysator 48iQ verwendet eine exakte Kalibrierungskurve, um den Geräteausgang über einen beliebigen Bereich bis zu einer Konzentration von 10.000 ppm präzise zu linearisieren.

iQ Series Instrumentenplattform

Die iQ Series Instrumentenplattform ist eine intelligente Umweltüberwachungslösung für die Umgebungs- und Quellgasanalyse, die eine verbesserte Kontrolle über die Geräteleistung und Datenverfügbarkeit bietet.

- Das modulare DMC-Design (Distributed Measurement and Control) ist auf eine einfache Wartung ausgelegt. Jedes DMC-Modul verfügt über eine eigene Mikroprozessorsteuerung, die eine Validierung der funktionalen Leistung auf der Modulebene ermöglicht.
- Die integrierte vorausschauende Diagnose und Pläne für die vorbeugende Wartung ermöglichen die Erkennung von potenziellen Problemen, bevor sie auftreten. Die iQ Series Plattform sendet E-Mail-Benachrichtigungen direkt an das erstklassige Service-Supportteam von Thermo Fisher Scientific oder benannte lokale Empfänger, um die Leistungsdaten des Analysators proaktiv zu übermitteln und den Bedarf an Ersatzteilen zu bestimmen, bevor es zu Betriebsstörungen kommt.
- Die iQ Series Plattform unterstützt Modbus, VNC und Streaming-Protokolle über serielle und Ethernet-Verbindungen sowie digitale Ein-/Ausgänge und lässt sich somit mühelos in die meisten Datenverwaltungssysteme integrieren.
- Drei Standard-USB-Anschlüsse ermöglichen einen bequemen Datenexport sowie den Anschluss weiterer Hardware wie eine PC-Tastatur oder Maus.

• Die Benutzeroberfläche der iQ Series wird auf einem 7-Zoll-Farb-Touchscreen ausgeführt. Die Benutzeroberfläche ist hoch flexibel und kann umfassend angepasst werden, um dem Bediener die tägliche Arbeit zu vereinfachen. Die speziell entwickelte ePort Software ermöglicht den Zugriff auf den Analysator von einem PC aus. Die ePort Steuerung erzeugt dieselbe Benutzeroberfläche wie der Touchscreen des Instruments und bietet somit ein schnelles und vertrautes Benutzererlebnis.

Funktionsprinzip des 48iQ

Der 48iQ arbeitet nach dem Prinzip, dass Kohlenmonoxid (CO) Infrarotstrahlung bei einer Wellenlänge von 4,6 µm absorbiert. Die Gasfilterkorrelation (Gas Filter Correlation, GFC) ist eine spezielle Infrarottechnik, die selektiv die ausschließlich durch CO bewirkte Lichtabsorption misst. Dazu wird das Verhältnis von durch die Probe absorbiertem Licht zu einer gefilterten Referenzmessung bestimmt. Licht aus einer Breitband-Infrarotquelle durchläuft ein Gasfilterrad, das jeweils mit einer N₂- und einer CO-gefüllten Zelle bestückt ist, und gelangt danach durch einen schmalen Bandpass-Interferenzfilter zu dem Volumen mit dem Probengas. Das durch die N2-Zelle gestrahlte Licht wird vom CO im Probengas normal absorbiert und ergibt das Probensignal. Das durch die CO-Zelle gestrahlte Licht ist in dem Bereich, in dem die CO-Absorption erfolgt, bereits blockiert und wird somit vom Proben-CO nicht verändert. Dieses Licht dient als Referenz. Das Verhältnis von "Probe" zu "Referenz" (P/R) wird mit hoher Geschwindigkeit erfasst und um die Lichtstärke und andere Veränderungen korrigiert, um eine präzise Messung zu erhalten. Da die Filterung mit dem CO-Gas selbst erfolgt, ist die GFC-Technik für CO spezifisch.

Die sogenannte "spektrale Auflösung" der Technik ist so, dass das gemessene Verhältnis wie vom Beerschen Gesetz vorhergesagt teilweise, jedoch nicht strikt linear ist. Der 48iQ verwendet eine intern gespeicherte Kalibrierungskurve, um den Geräteausgang über einen beliebigen Bereich bis zu einer Konzentration von 10.000 ppm präzise zu linearisieren.

Die Gasprobe wird über die Rückwand des Analysators und durch die optische Messbank mithilfe einer integrierten Einlasspumpe in den 48iQ gesaugt (siehe Abbildung 1–2). Das Gas kann aus der Umgebung stammen oder von einem weiter entfernten Ort über Standardleitungen zugeführt werden, die an die Rückwand angeschlossen werden. An der Rückwand können sich eine einfache Schottverschraubung oder drei durch Magnetventile geregelte Eingänge befinden: In der Regel wird die Konfiguration mit drei Eingängen verwendet, um unabhängige Nullluft- und Messbereichsmessungen durchzuführen.

Zusätzlich zur Eingangskonfiguration können Optionen wie ein Sauerstoffsensor oder ein "Nullluftabscheider" hinzugefügt werden, der CO zu CO₂ katalysiert, um eine Nullluftreferenz zu liefern. Diese Optionen werden innerhalb der Basis-Gaseingangspfade wie oben beschrieben betrieben.

Abbildung 1–2 zeigt das einfachste Flussdiagramm im Gerät. Gas wird durch den Anschluss "SAMPLE" nahezu mit Umgebungsdruck zugeführt (weiter unten wird eine Abblasleitung beschrieben, die eine Probenzufuhr mit atmosphärischem Druck gewährleistet). Das Gas wird von einer einstufigen Pumpe durch die 48 DMC-Messbank gepumpt, in der CO detektiert wird. Danach strömt das Gas durch eine Verengung (eine Kapillare im Durchfluss-Druck-DMC-Modul), die den Einlassdurchfluss auf ca. 1 l/min reduziert, während der Umgebungsdruck auf der Seite der optischen Messbank überwacht und aufrechterhalten wird. Beachten Sie, dass auch eine Filterspülung vorhanden ist, die die Probennahme umgeht, jedoch nach der Verengung ebenfalls durch die Pumpe angesaugt wird. Abbildung 1–3 zeigt ein Beispiel einer Konfiguration mit drei Eingängen mit Nullluft/Messbereichs-Funktionen und einem Nullluftabscheider.

Abbildung 1–3. 48iQ Flussdiagramm mit Nullluft/Prüfgas-Baugruppe und Nullluftabscheider

Technische Daten

Tabelle 1–1 enthält die technischen Daten des 48iQ. Tabelle 1–1. Technische Daten des 48iQ

Messbereich	0 bis 10.000 (ppm oder mg/m³)
Nullpunktrauschen	0,02 ppm RMS (30 Sekunden Mittelungszeit)
Nachweisgrenze	0,04 ppm (30 Sekunden Mittelungszeit)
Nullpunktabweichung	< 0,1 ppm (24 Stunden)
Referenzpunktabweichung	±0,5 % des Messwerts (24 Stunden)
Ansprechzeit	60 Sekunden (30 Sekunden Mittelungszeit)
Linearität	± 1 % des Skalenendwerts \leq 1000 ppm $\pm 2,5$ % des Skalenendwerts > 1000 ppm
Durchfluss	1,0 l/min (1 atm Einlassdruck)
Betriebstemperaturbereich	5 bis 45 °C (sicherer Betrieb im Bereich von 0 bis 45 °C) (nach EN 14626 = 0 - 30°)
Stromversorgung	100 – 240 VAC, 50/60 Hz 275 Watt
Abmessungen	24 Zoll (T) x 16,75 Zoll (B) x 8,72 Zoll (H) [609 mm (T) 425,45 mm (B) x 221,48 mm (H)]
Gewicht	34,3 lbs
Analoge E/A	4 isolierte Spannungseingänge 0 – 10 V
	6 isolierte analoge Spannungseingänge mit 4 wählbaren Bereichen
	6 isolierte analoge Stromeingänge mit 2 wählbaren Bereichen
Digitale E/A	16 Digitaleingänge (TTL)
	8 Magnetventilantrieb-Ausgänge
	10 digitale Reed-Relaiskontakt-Ausgänge
Serielle Schnittstellen	1 RS-232/485-Schnittstelle
	1 RS-485-Schnittstelle für externes Zubehör
Weitere Schnittstellen	3 Full Speed USB-Schnittstellen (eine an der Vorderseite, zwei an der Rückseite)
	1 Gigabit Ethernet-Schnittstelle
Kommunikationsprotokolle	MODBUS, Streaming
Zulassungen und Zertifizierungen	CE, TÜV-SÜD Sicherheit, EPA

Tabelle 1–2. Technische Daten des optionalen internen 48iQ Sauerstoffsensors
--

T 1 1 1	
Technologie	Paramagnetisch
Messbereich	0 bis 100 % O_2
Genauigkeit (Grundfehler)	< ±0,1 % 0 ₂
Linearität	<±0,1 % 0 ₂
Wiederholgenauigkeit	<±0,1 % 0 ₂
Nullpunktabweichung	$<\pm0,2$ % O_z pro Monat (ohne Berücksichtigung von bis zu 0,1 % O_2 in den ersten 24 Betriebsstunden)
Antwortzeit (T ₁₀ -T ₉₀)	< 2,5 Sekunden
Gewicht	Ca. 2 lbs. (zusätzlich zum Standardmessgerät)

Abmessungen

Abbildung 1-4. Tischaufstellung (Abmessungen in Zoll [mm])

Abbildung 1-5. Gestellmontage (Abmessungen in Zoll [mm])

Abbildung 1–6. Anforderungen für Gestellmontage

Abbildung 1–7. Anforderungen für Gestellmontage, Teil 2

Kapitel 2 Installation und Einrichtung

In diesem Kapitel wird beschrieben, wie das Gerät ausgepackt, eingerichtet und in Betrieb genommen wird. Nach der Installation sollte das Gerät immer wie im Kapitel "Kalibrierung" dieser Anleitung beschrieben kalibriert werden.

Auspacken und Überprüfen der Lieferung

Der 48iQ wird komplett in einer Packeinheit geliefert. Wenn die Versandverpackung bei Erhalt des Instruments offensichtlich beschädigt ist, benachrichtigen Sie unverzüglich den Spediteur und bewahren Sie die

Verpackung zur Überprüfung auf. Der Spediteur ist für Transportschäden verantwortlich.

Gehen Sie folgendermaßen vor, um das Gerät zu überprüfen und auszupacken.

Beschädigung des Geräts Versuchen Sie nicht, das Gerät an der Abdeckung oder an anderen vorstehenden Bauteilen anzuheben. ▲

- 1. Nehmen Sie das Gerät aus der Versandverpackung und platzieren Sie es so auf einem Tisch oder einer Werkbank, dass es von vorne und von hinten gut zugänglich ist.
- 2. Entfernen Sie die Abdeckung, um die inneren Komponenten freizulegen. (Siehe "Abbildung 2–1" auf Seite 2-2.)
- 3. Überprüfen Sie das Gerät auf Transportschäden.
- 4. Stellen Sie sicher, dass alle Stecker und Platinen fest sitzen.
- 5. Bringen Sie die Abdeckung wieder an.
- 6. Entfernen Sie jegliches Kunststoffmaterial von der Außenseite des Gehäuses.

Entfernen und Wiederanbringen der Abdeckung

Verwenden Sie das folgende Verfahren, um die Abdeckung zu entfernen und wieder anzubringen.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Lösen Sie die vier 8-32"-Schrauben, mit denen die Abdeckung befestigt ist (Transportschrauben).
- 2. Drücken Sie die beiden Verriegelungen an der oberen Abdeckung nach innen und ziehen Sie die Abdeckung nach oben. Stellen Sie sie aufrecht hin.

Abbildung 2-1. Entfernen der Abdeckung

3. Um die Abdeckung wieder anzubringen, richten Sie sie richtig aus und drücken Sie sie nach unten. Die Verriegelungen rasten automatisch ein.

Montageoptionen

Für die Installation des Geräts gibt es folgende Optionen:

- Tischaufstellung
- Gestellmontage

Tischaufstellung

Platzierung auf einem Tisch, beinhaltet das Anbringen der Füße. Siehe Abbildung 2–2.

Erforderliche Ausrüstung:

Schlitzschraubendreher, 5/16 Zoll

1. Bringen Sie die Füße je nach der gewünschten Tiefe an Position 1 oder 2 an.

Abbildung 2–2. Anbringen der Füße

Gestellmontage

Die Gestellmontage umfasst das Abnehmen der Frontblende, das Anbringen der Griffe und Positionieren der Montagebleche.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

1. Fassen Sie die Frontblende an den beiden oberen Ecken an und ziehen Sie sie nach vorne. Siehe Abbildung 2–3.

Abbildung 2–3. Entfernen der Frontblende

- 2. Lösen Sie die vier 8-32"-Flachkopfschrauben.
- 3. Schieben Sie die Montagebleche nach außen.
- 4. Schrauben Sie sie mit den zuvor verwendeten vier 8-32"-Flachkopfschrauben fest.
- 5. Bringen Sie die Griffe mit den vier 8-32"-Senkkopfschrauben, die dem Griffsatz beiliegen, an der Rückseite an. Siehe Abbildung 2–4.

Abbildung 2–4. Anbringen der Montagebleche und Griffe

Einrichtungsverfahren

Gehen Sie zur Einrichtung des Geräts folgendermaßen vor:

 Schließen Sie die Probenleitung am Schottanschluss SAMPLE an der Rückwand (Abbildung 2–5) an. Stellen Sie sicher, dass die Probenleitung frei von Schmutz, Feuchtigkeit und nicht kompatiblen Materialien ist. Alle Leitungen sollten aus PTFE, Edelstahl 316, Borosilikatglas oder ähnlichen Materialien bestehen. Der Außendurchmesser muss mindestens 1/4 Zoll und der Innendurchmesser mindestens 1/8 Zoll betragen. Der Schlauch darf nicht länger als 10 Fuß sein.

Hinweis Dem Gerät muss partikelfreies Gas zugeführt werden. Möglicherweise muss der PTFE-Partikelfilter wie im Abschnitt "PTFE-Partikelfilter" auf Seite 9-18 beschrieben verwendet werden. ▲

Hinweis Dem Gerät muss Gas mit atmosphärischem Druck zugeführt werden. Möglicherweise muss eine atmosphärische Abblasleitung wie in Abbildung 2–6 gezeigt verwendet werden, wenn der Gasdruck höher als der atmosphärische Druck ist. ▲

- Schließen Sie den Schottanschluss EXHAUST an eine geeignete Entlüftung an. Die Entlüftungsleitung sollte einen Außendurchmesser von 1/4 Zoll und mindestens einen Innendurchmesser von 1/8 Zoll aufweisen. Die Entlüftungsleitung darf nicht länger als 10 Fuß sein. Stellen Sie sicher, dass diese Leitung nicht verengt oder verstopft ist.
- 3. Wenn der externe Spülfilter installiert ist, schließen Sie eine Quelle für druckbeaufschlagte trockene, saubere Nullluft oder ein nicht toxisches Inertgas mit 10 psig an den Spülanschluss an, das als Spülgas für das Filterrad verwendet wird. Um eine optimale Leistung zu erzielen, wird ein Spülgasfluss von 140 cm³/min empfohlen. Die Filterradspülung wird auf Seite 8-2 ausführlich beschrieben.
- 4. Wenn die optionalen Nullluft-/Prüfgasventile installiert sind, schließen Sie eine Quelle CO-freier Luft an den Schottanschluss ZERO IN und eine Quelle für CO-Prüfgas an den Schottanschluss SPAN an.
- 5. Schließen Sie ein geeignetes Aufzeichnungsgerät an den Anschluss an der Rückwand an. Ausführliche Erläuterungen zur Herstellung von Anschlüssen an das Gerät finden Sie unter:

"Anschluss von externen Geräten" auf Seite 9-1

Kommunikation > "Analog I/O" auf Seite 3-63 und "Digital I/O" auf Seite 3-65.
6. Schließen Sie das Gerät an eine Steckdose mit der erforderlichen Spannung und Frequenz an.

Einschalten Gehen Sie zum Einschalten des Geräts folgendermaßen vor.

- 1. Schalten Sie die Stromversorgung ein.
- 2. Warten Sie 90 Minuten, bis sich das Gerät stabilisiert hat.
- 3. Stellen Sie die Geräteparameter wie die Betriebsbereiche und Mittelungszeiten wie erforderlich ein. Weitere Informationen zu den Geräteparametern finden Sie in Kapitel "Betrieb".
- 4. Bevor Sie mit der eigentlichen Überwachung beginnen, führen Sie eine Mehrpunktkalibrierung wie im Kapitel "Kalibrierung" beschrieben durch.

Abbildung 2–7. Frontblende und Touchscreen-Display

Kapitel 3 **Betrieb**

In diesem Kapitel wird die Funktionalität der Touchscreen-Benutzeroberfläche beschrieben.

Geräteanzeige Die Geräteanzeige besteht aus der Titelleiste, der Bedienoberfläche und der Statusleiste. In der Titelleiste am oberen Rand befinden sich die Schaltflächen "Startbildschirm" und "Hilfe", dazwischen werden der Gerätename und der Gasmodus des Geräts angezeigt. Die Bedienoberfläche in der Mitte der Anzeige ermöglicht den Zugriff auf den Startbildschirm und alle anderen Bildschirme. Auf der linken Seite des Startbildschirms befinden sich drei Hauptmenü-Schaltflächen: "Calibration" (Kalibrierung), "Data" (Daten) und "Settings" (Einstellungen). Rechts von den Schaltflächen werden die Bezeichnung(en) der Chemikalien, der/die Konzentrationswert(e) und die Einheit(en) angezeigt. Die Statusleiste am unteren Rand enthält die Schaltflächen "Zurück", "Zugriffsstufen", "Zustandsprüfung" und "Favoriten". Rechts davon werden Datum und Uhrzeit sowie Kontaktinformationen angezeigt.

Startbildschirm (Einzelbereichsmodus mit O₂-Option)

Die Geräteanzeige enthält folgende Elemente:

- Titelleiste:
 - *Schaltfläche "Startbildschirm":* Wenn Sie diese Schaltfläche drücken, gelangen Sie zum Startbildschirm.
 - *Titeltext:* Zeigt auf dem Startbildschirm den Gerätenamen an. Auf allen anderen Bildschirmen gibt der Titeltext die Bezeichnung der Chemikalie, den aktuellen Konzentrationsmesswert und die Einheit an. Wenn Sie auf die Einheit drücken, gelangen Sie zum Auswahlbildschirm für Gaseinheiten.
 - *Schaltfläche "Gasmodus":* Zeigt den aktuellen Gasmodus des Geräts an. Wenn Sie diese Schaltfläche drücken, gelangen Sie zum Auswahlbildschirm für den Gasmodus.
 - *Schaltfläche "Hilfe":* Wenn Sie diese Schaltfläche drücken, gelangen Sie zu den Hilfebildschirmen.
- Bedienoberfläche:
 - *Schaltfläche "Calibration" (Kalibrierung):* Ermöglicht dem Benutzer, das Gerät zu kalibrieren, automatische Kalibrierungen einzurichten und Kalibrierungsdaten anzuzeigen.
 - *Schaltfläche* "*Data" (Daten):* Ermöglicht dem Benutzer, Daten anzuzeigen, in Diagrammen darzustellen, zu übertragen und zu analysieren.
 - *Schaltfläche "Settings" (Einstellungen):* Zeigt den Status in Echtzeit und Alarme an, außerdem vorausschauende Diagnosedaten und den Wartungsverlauf. Enthält Steuerelemente für die Bedienung des Geräts, Kommunikation und zum Festlegen von Geräteoptionen.
 - *Konzentration*: Zeigt im Einzelbereichsmodus je nach der Betriebsart die CO-Konzentrationen in großen, deutlich sichtbaren Zeichen an. Im dualen oder automatischen Bereichsmodus werden abhängig von der Bereichseinstellung Werte für den oberen oder für den unteren Bereich angezeigt.
- Statusleiste:
 - *Schaltfläche "Zurück":* Durch Drücken dieser Schaltfläche wird der vorherige Bildschirm angezeigt.
 - *Schaltfläche "Zugriffsstufen":* Ermöglicht dem Benutzer, Zugriffssicherheitsstufen festzulegen, um den Zugriff auf bestimmte Funktionalitäten je nach der ausgewählten Zugriffsstufe zu erlauben oder zu verbieten.

- *Schaltfläche "Zustandsprüfung":* Durch Drücken dieser Schaltfläche gelangen Sie zum Bildschirm "Health Check" (Zustandsprüfung).
- Schaltfläche "Favoriten": Ermöglicht die Festlegung von Favoriten-Schaltflächen durch den Benutzer. Um eine Schaltfläche zum Favoriten-Bildschirm hinzuzufügen, halten Sie die gewünschte Bildschirmtaste 2 Sekunden lang gedrückt. Daraufhin wird der Favoriten-Bildschirm geöffnet, auf dem die Position der Schaltfläche ausgewählt werden kann. Um eine Favoriten-Schaltfläche vom Favoriten-Bildschirm zu entfernen, halten Sie die Schaltfläche 2 Sekunden lang gedrückt.
- *Uhr:* Zeigt das aktuelle Datum und die aktuelle Uhrzeit an.
- Schaltfläche "Thermo Scientific Information": Zeigt Kontaktinformationen an.

Hauptmenüs und Tastaturen

Die Hauptmenüs auf dem Startbildschirm enthalten drei Untermenüs. Jedes Untermenü enthält drei zugehörige Geräteeinstellungen. In diesem Kapitel werden alle Untermenüs und Bildschirme ausführlich beschrieben. Weitere Informationen finden Sie in den jeweiligen Abschnitten.

Numerische Tastatur Der Benutzer gibt Werte in das Eingabefeld über die numerische Tastatur ein. Wenn der Benutzer einen Wert ändern muss, z. B. für Durchflussraten, Temperaturen oder Drücke, wird die numerische Tastatur automatisch eingeblendet. In dem Feld über der Tastatur wird zunächst der aktuelle Wert angezeigt. Geben Sie einen neuen Wert über die Tastatur ein und drücken Sie dann die **Eingabetaste**, um den neuen Wert zu übernehmen, oder drücken Sie die Taste **Abbrechen**, um den Tastaturbildschirm zu verlassen und zum vorherigen Bildschirm zurückzukehren, ohne die Änderung zu speichern.

Alphanumerische Tastatur

Der Benutzer gibt Werte in das Eingabefeld über die Tastatur ein. Wenn der Benutzer einen alphanumerischen Wert ändern muss, wird diese Tastatur automatisch eingeblendet. In dem Feld über der Tastatur wird zunächst der aktuelle Wert angezeigt. Geben Sie einen neuen Wert über die Tastatur ein und drücken Sie dann die **Eingabetaste**, um den neuen Wert zu übernehmen, oder drücken Sie die Taste **Abbrechen**, um den Tastaturbildschirm zu verlassen und zum vorherigen Bildschirm zurückzukehren, ohne die Änderung zu speichern. Die alphanumerische Tastatur ist nur verfügbar, wenn der Benutzer Buchstaben eingeben muss.

Calibration (Kalibrierung)

Der Bildschirm "Calibration" (Kalibrierung) ermöglicht dem Benutzer, das System zu kalibrieren, automatische Kalibrierungen einzurichten und Kalibrierungsdaten anzuzeigen. Ausführliche Anweisungen zur Durchführung von Kalibrierungen finden Sie in Kapitel 4, "Kalibrierung".

Die folgenden Bildschirme zeigen die Kalibrierungsbildschirme im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus. (Der einzige Unterschied zwischen den Bildschirmen sind die Begriffe "High Range" (Oberer Bereich) und "Low Range" (Unterer Bereich).) Für den dualen und den automatischen Bereichsmodus gibt es zwei CO-Messbereichskoeffizienten (einen oberen und einen unteren). Dies ermöglicht, jeden Bereich separat zu kalibrieren. Dies ist nötig, wenn die beiden verwendeten Bereiche nicht nahe aneinanderliegen, z. B ein unterer CO-Bereich von 50 ppm und ein oberer CO-Bereich von 1000 ppm. Weitere Informationen zu den Bereichsmodi finden Sie unter "Range Mode Selection (Bereichsmodusauswahl)" auf Seite 3-81.

Startbildschirm > Calibration (Kalibrierung) (Einzelbereichsmodus mit O₂-Option)

Startbildschirm > Calibration (Kalibrierung) (dualer oder automatischer Bereichsmodus mit O₂-Option)

Das Menü "Calibration" (Kalibrierung) enthält folgende Elemente:

- *Calibrate Background (Hintergrund kalibrieren):* Stellt den CO-Messwert auf Null ein.
- *Calibrate Span Coefficient (Messbereichskoeffizient kalibrieren):* Stellt im Einzelbereichsmodus den Messbereichskoeffizienten ein.
- *Calibrate High Range Span Coefficient (Messbereichskoeffizient für oberen Bereich kalibrieren):* Stellt im dualen oder automatischen Bereichsmodus den Messbereichskoeffizienten für den oberen Bereich ein.
- Calibrate Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich kalibrieren): Stellt im dualen oder automatischen Bereichsmodus den Messbereichskoeffizienten für den unteren Bereich ein.
- Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung): Programmiert das Gerät für die Durchführung von vollautomatischen Nullpunkt- und Messbereichsprüfungen oder -anpassungen.
- *Calibrate O₂ Span Coefficient (O2-Messbereichskoeffizient kalibrieren):* Diese Schaltfläche wird angezeigt, wenn die O₂-Sensor-Option aktiviert ist (auf dem Bildschirm "Settings" (Einstellungen) > "Configuration" (Konfiguration)). Sie ermöglicht die Durchführung einer O₂-Kalibrierung.
- *Advanced Calibration (Erweiterte Kalibrierung):* Kalibriert das Gerät mithilfe einer manuellen Nullpunkt-/Messbereichskalibrierung oder einer Mehrpunktkalibrierung und zeigt den Kalibrierungsverlauf an.

Calibrate Background (Hintergrund kalibrieren)

Der Bildschirm "Calibrate Background" (Hintergrund kalibrieren) wird verwendet, um den Null-Hintergrund des Geräts zu kalibrieren. Bevor Sie Anpassungen vornehmen, stellen Sie sicher, dass der Analysator mindestens 5 Minuten lang Nullluft ansaugt.

Es ist wichtig, bei der Kalibrierung die Mittelungszeit zu erfassen. Je länger die Mittelungszeit, desto präziser sind die Ergebnisse der Kalibrierung. Um eine maximale Präzision zu erreichen, warten Sie nach jeder Änderung des Eingangsgases ab, bis sich das Gerät stabilisiert hat, und stellen Sie die Mittelungszeit auf 300 Sekunden ein. Die Option "Averaging Time" (Mittelungszeit) befindet sich unter "Settings" (Einstellungen) > "Measurement Settings" (Messungseinstellungen) > "Averaging Time" (Mittelungszeit).

Startbildschirm > Calibration (Kalibrierung) > Calibrate Background (Hintergrund kalibrieren)

Das Menü "Calibrate Background" (Hintergrund kalibrieren) enthält folgende Elemente:

- *Target Concentration (Zielkonzentration):* Schreibgeschützt. Zeigt an, welcher Konzentrationswert sich ergibt, wenn die Schaltfläche "Calibrate" (Kalibrieren) gedrückt wird.
- *Current Background (Aktueller Hintergrund):* Schreibgeschützt. Zeigt den vom Benutzer eingestellten Hintergrund an.
- *Calculated Background (Berechneter Hintergrund):* Schreibgeschützt. Zeigt an, welcher aktuelle benutzerdefinierte Hintergrund sich ergibt, wenn die Schaltfläche "Calibrate" (Kalibrieren) gedrückt wird.
- *Calibrate (Kalibrieren):* Wenn Sie diese Schaltfläche drücken, wird der Hintergrund aktualisiert, sodass die Konzentration auf Null geht.

Calibrate Span Coefficient (Messbereichskoeffizient kalibrieren)

Der Bildschirm "Calibrate Span Coefficient" (Messbereichskoeffizient kalibrieren) wird verwendet, um den Messbereichskoeffizienten für CO zu kalibrieren. Der CO-Messbereichskoeffizient wird berechnet, gespeichert und verwendet, um den aktuellen Messwert zur korrigieren.

Die folgenden Bildschirme werden im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus angezeigt. Im dualen oder automatischen Bereichsmodus wird "High" (Hoch) oder "Low" (Niedrig) angezeigt, um die Kalibrierung des Koeffizienten für den oberen oder unteren Bereich anzugeben. Die Bildschirme "Calibrate High Range Span Coefficient" (Messbereichskoeffizient für oberen Bereich kalibrieren) und Calibrate Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich kalibrieren) arbeiten auf dieselbe Weise.

Es ist wichtig, bei der Kalibrierung die Mittelungszeit zu erfassen. Je länger die Mittelungszeit, desto präziser sind die Ergebnisse der Kalibrierung. Um eine maximale Präzision zu erreichen, warten Sie nach jeder Änderung des Eingangsgases ab, bis sich das Gerät stabilisiert hat, und stellen Sie die Mittelungszeit auf 300 Sekunden ein.

Startbildschirm > Calibration (Kalibrierung) > Calibrate Span Coefficient (Messbereichskoeffizient kalibrieren) (Einzelbereichsmodus)

Startbildschirm > Calibration (Kalibrierung) > Calibrate High Range Span Coefficient (Messbereichskoeffizient für oberen Bereich kalibrieren) (Dualer oder automatischer Bereichsmodus)

Das Menü "Calibrate Span Coefficient" (Messbereichskoeffizient kalibrieren) enthält folgende Elemente:

- *Edit Span Concentration (Messbereichskonzentration bearbeiten):* Der Benutzer gibt im Einzelbereichsmodus die Messbereichskonzentration ein.
- *Edit High Range Span (Messbereich für oberen Bereich bearbeiten):* Der Benutzer gibt im dualen oder automatischen Bereichsmodus die Messbereichskonzentration für den oberen Bereich ein.
- *Edit Low Range Span (Messbereich für unteren Bereich bearbeiten):* Der Benutzer gibt im dualen oder automatischen Bereichsmodus die Messbereichskonzentration für den unteren Bereich ein.
- *Current High Range Concentration (Aktuelle Konzentration im oberen Bereich):* Schreibgeschützt. Im dualen oder automatischen Bereichsmodus der aktuelle Messwert für die Konzentration im oberen Bereich.
- *Current Low Range Concentration (Aktuelle Konzentration im unteren Bereich):* Schreibgeschützt. Im dualen oder automatischen Bereichsmodus der aktuelle Messwert für die Konzentration im unteren Bereich.
- Current Span Coefficient (Aktueller Messbereichskoeffizient): Schreibgeschützt. Zeigt im Einzelbereichsmodus den aktuellen benutzerdefinierten Messbereichskoeffizienten an.
- *Current High Range Coefficient (Aktueller Koeffizient für oberen Bereich):* Zeigt im dualen oder automatischen Bereichsmodus den aktuellen benutzerdefinierten Messbereichskoeffizienten für den oberen Bereich an.
- *Current Low Range Coefficient (Aktueller Koeffizient für unteren Bereich):* Zeigt im dualen oder automatischen Bereichsmodus den aktuellen benutzerdefinierten Messbereichskoeffizienten für den unteren Bereich an.
- *Calculated Span Coefficient (Berechneter Messbereichskoeffizient):* Schreibgeschützt. Nachdem der Wert für "Edit Span Concentration" (Messbereichskonzentration bearbeiten) eingegeben wurde, wird im Einzelbereichsmodus der neue berechnete Messbereichskoeffizient angezeigt.
- Calculated High Range Span Coefficient (Berechneter Messbereichskoeffizient für oberen Bereich): Schreibgeschützt. Nachdem der Wert für "Edit High Range Span Concentration" (Messbereichskonzentration für oberen Bereich bearbeiten) eingegeben wurde, wird im dualen oder automatischen Bereichsmodus der neue berechnete Messbereichskoeffizient für den oberen Bereich angezeigt.

- Calculated Low Range Span Coefficient (Berechneter Messbereichskoeffizient für unteren Bereich): Schreibgeschützt. Nachdem der Wert für "Edit Low Range Span Concentration" (Messbereichskonzentration für unteren Bereich bearbeiten) eingegeben wurde, wird im dualen oder automatischen Bereichsmodus der neue berechnete Messbereichskoeffizient für den unteren Bereich angezeigt.
- *Calibrate (Kalibrieren):* Durch Drücken dieser Schaltfläche wird der Koeffizient aktualisiert, und die Konzentration sollte der Messbereichskonzentration entsprechen.

Zero/Span Schedule (Geplante Nullpunkt-/ Messbereichskalibrierung)

Die geplante Nullpunkt-/Messbereichskalibrierung wird verwendet, um das Gerät für die Durchführung von vollautomatischen Nullpunkt- und Messbereichsprüfungen oder -anpassungen zu programmieren.

Startbildschirm > Calibration (Kalibrierung) > Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung)

Startbildschirm > Calibration (Kalibrierung) > Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung) > More (Mehr)

Der Bildschirm "Zero/Span Schedule" (Geplante Nullpunkt-/ Messbereichskalibrierung) enthält folgende Elemente:

- Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung): Schaltet "Zero/Span Schedule" (Geplante Nullpunkt-/Messbereichskalibrierung) zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) um.
- *Next Time (Nächster Zeitpunkt):* Ermöglicht dem Benutzer, den Startzeitpunkt (Datum und Uhrzeit im 24-Stunden-Format) der geplanten Nullpunkt-/Messbereichskalibrierung anzuzeigen und festzulegen.

- Period (Zeitraum): Legt den Zeitraum oder das Intervall zwischen Prüfungen oder Kalibrierungen des Nullpunkts/Messbereichs fest. Wenn der Wert auf 0 eingestellt ist, wird der Plan kontinuierlich ausgeführt.
- *Zero Duration (Nullluftdauer):* Legt fest, wie lange Nullluft von dem Gerät angesaugt wird.
- *Span Duration (Prüfgasdauer):* Legt fest, wie lange Prüfgas von dem Gerät angesaugt wird.
- *Purge Duration (Spüldauer):* Legt fest, wie lang der Spülzeitraum am Ende des Plans ist.
- *Total Duration (Gesamtdauer):* Schreibgeschützt. Legt die Gesamtzeitdauer aller geplanten Ereignisse fest.
- Schedule Averaging Time (Plan-Mittelungszeit): Ermöglicht dem Benutzer, die Mittelungszeit der geplanten Nullpunkt-/Messbereichskalibrierung festzulegen. Diese Mittelungszeit wirkt sich nur auf die geplante Nullpunkt-/Messbereichskalibrierung aus.
- *Background Calibration (Hintergrundkalibrierung):* Schaltet zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) um. Wenn die Option aktiviert ist, wird der Hintergrundwert kalibriert. Wenn die Option deaktiviert ist, führt der Plan nur eine Hintergrundprüfung aus und der Hintergrundwert wird nicht aktualisiert.
- Span Calibration (Messbereichskalibrierung): Schaltet zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) um. Wenn die Option aktiviert ist, wird der Messbereichskoeffizient kalibriert. Wenn die Option deaktiviert ist, führt der Plan nur eine Kalibrierungsprüfung aus und der Messbereichskoeffizient wird nicht aktualisiert.
- Zero: Span Ratio (Nullpunkt/Messbereich-Verhältnis): Ermöglicht dem Benutzer, mehr geplante Hintergrundkalibrierungsprüfungen als Messbereichs-Kalibrierungsprüfungen durchzuführen. Der Standardwert ist 1 und wird als "1:1" angezeigt. (Das bedeutet, dass bei jeder Ausführung des Plans sowohl die Nullluftdauer auch die Prüfgasdauer anfällt.) Die zulässigen Werte für das Nullpunkt/Messbereich-Verhältnis sind 1 bis 99. Wenn 99 ausgewählt ist, führt der Plan die Messbereichsprüfung nur bei jeder 99. Ausführung durch.

Calibrate O₂ Span Coefficient (O₂-Messbereichskoeffizient kalibrieren)

Der Bildschirm "Calibrate O₂ Span Coefficient" (O₂-Messbereichskoeffizient kalibrieren) wird verwendet, um die O₂-Messbereichskonzentration einzugeben und den O₂-Messbereichskoeffizienten zu kalibrieren, während Prüfgas mit einer bekannten Konzentration angesaugt wird. Diese Schaltfläche wird angezeigt, wenn die O₂-Sensor-Option auf dem Konfigurationsbildschirm ausgewählt ist.

Es ist wichtig, bei der Kalibrierung die Mittelungszeit zu erfassen. Je länger die Mittelungszeit, desto präziser sind die Ergebnisse der Kalibrierung. Um eine maximale Präzision zu erreichen, warten Sie nach jeder Änderung des Eingangsgases ab, bis sich das Gerät stabilisiert hat, und stellen Sie die Mittelungszeit auf 300 Sekunden ein. Die Option "O₂ Averaging Time" (O₂-Mittelungszeit) befindet sich unter "Settings" (Einstellungen) > "Measurement Settings" (Messungseinstellungen) > "Averaging Time" (Mittelungszeit).

Startbildschirm > Calibration (Kalibrierung) > Calibrate O₂ Span Coefficient (O₂-Messbereichskoeffizient kalibrieren) (Einzelbereichsmodus)

Der Bildschirm "Calibrate O₂ Span Coefficients" (O₂-Messbereichskoeffizienten kalibrieren) enthält folgende Elemente:

- *Edit O₂ Span Concentration (O2-Messbereichskonzentration bearbeiten):* Der Benutzer gibt die O₂-Messbereichskonzentration ein.
- *Current O*₂ *Concentration (Aktuelle O2-Konzentration):* Schreibgeschützt. Aktueller Messwert für die O₂-Konzentration.
- Current O₂ Span Coefficient (Aktueller O2-Messbereichskoeffizient): Schreibgeschützt. Aktueller Wert für den O₂-Messbereichskoeffizienten.
- Calculated O₂ Span Coefficient (Berechneter O2-Messbereichskoeffizient): Schreibgeschützt. Nachdem der Wert für "Edit O₂ Span Concentration" (O₂-Messbereichskonzentration bearbeiten) eingegeben wurde, wird der neue berechnete O₂-Messbereichskoeffizient angezeigt.

• *Calibrate (Kalibrieren):* Durch Drücken dieser Schaltfläche wird der O₂-Koeffizient aktualisiert, und die 2-Konzentration sollte der Messbereichskonzentration entsprechen.

Advanced Calibration (Erweiterte Kalibrierung)

Der Bildschirm "Advanced Calibration" (Erweiterte Kalibrierung) bietet mehrere weitere Möglichkeiten, das Gerät zu kalibrieren und den Kalibrierungsverlauf aufzurufen. Ausführliche Anweisungen zur Durchführung von Kalibrierungen finden Sie in Kapitel 4, "Kalibrierung".

Die folgenden Bildschirme zeigen die Bildschirme für die erweiterte Kalibrierung im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus. (Der einzige Unterschied zwischen den Bildschirmen sind die Begriffe "High" (Hoch) und "Low" (Niedrig).) Weitere Informationen zu den Bereichsmodi finden Sie unter "Range Mode Selection (Bereichsmodusauswahl)" auf Seite 3-81.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) (Einzelbereichsmodus mit O₂-Option)

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) (dualer oder automatischer Bereichsmodus mit O₂-Option)

Die Bildschirme "Advanced Calibration" (Erweiterte Kalibrierung) enthalten folgende Elemente:

- *Manual Calibration (Manuelle Kalibrierung):* Ermöglicht es dem Benutzer, den Hintergrund- oder Messbereichskoeffizienten manuell anzupassen.
- *Multipoint Calibration (Mehrpunktkalibrierung):* Es können bis zu drei Gaskonzentrationen (Kalibrierungspunkte) kalibriert werden. Drei Kalibrierungspunkte liefern die präzisesten Messwerte über den gesamten Messbereich hinweg.
- *High Range Multipoint Calibration (Mehrpunktkalibrierung für oberen Bereich):* Es können bis zu drei Gaskonzentrationen (Kalibrierungspunkte) für den oberen Bereich kalibriert werden. Drei Kalibrierungspunkte liefern die präzisesten Messwerte über den gesamten Messbereich hinweg.
- Low Range Multipoint Calibration (Mehrpunktkalibrierung für unteren Bereich): Es können bis zu drei Gaskonzentrationen (Kalibrierungspunkte) für den unteren Bereich kalibriert werden. Drei Kalibrierungspunkte liefern die präzisesten Messwerte über den gesamten Messbereich hinweg.
- *Manual O₂ Calibration (Manuelle O₂-Kalibrierung):* Der Benutzer kann den O₂-Messbereichskoeffizienten basierend auf dem aktuellen O₂-Konzentrationswert anpassen.
- 2-Point O₂ Calibration (Zweipunkt-O₂-Kalibrierung): Der Benutzer kann eine manuelle Zweipunkt-Kalibrierung des O₂-Sensors durchführen.
- *Calibration History (Kalibrierungsverlauf):* Listet alle durchgeführten Kalibrierungen und Kalibrierungsprüfungen auf.

Manual Calibration (Manuelle Kalibrierung)

Auf dem Bildschirm "Manual Calibration" (Manuelle Kalibrierung) kann der Null-Hintergrund oder Messbereichskoeffizient basierend auf einem vom Benutzer eingegebenen Wert angepasst werden. Ausführliche Anweisungen zur Durchführung einer manuellen Kalibrierung finden Sie in Kapitel 4, "Kalibrierung".

Die folgenden Bildschirme zeigen die Bildschirme für die manuelle Kalibrierung im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus. Im dualen oder automatischen Bereichsmodus werden die Schaltflächen "High Range" (Oberer Bereich) oder "Low Range" (Unterer Bereich) angezeigt, um die Kalibrierung des Koeffizienten für den oberen oder unteren Bereich anzugeben.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) (Einzelbereichsmodus)

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) (dualer oder automatischer Bereichsmodus)

Das Menü "Manual Calibration" (Manuelle Kalibrierung) enthält folgende Elemente:

- *Adjust Background (Hintergrund anpassen):* Ermöglicht dem Benutzer, den Null-Hintergrund manuell anzupassen.
- Adjust Span Coefficient (Messbereichskoeffizient anpassen): Ermöglicht dem Benutzer im Einzelbereichsmodus, den Messbereichskoeffizienten manuell anzupassen.
- Adjust High Range Span Coefficient (Messbereichskoeffizient für oberen Bereich anpassen): Ermöglicht dem Benutzer im dualen oder automatischen Bereichsmodus, den Messbereichskoeffizienten für den oberen Bereich anzupassen.
- Adjust Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich anpassen): Ermöglicht dem Benutzer im dualen oder automatischen Bereichsmodus, den Messbereichskoeffizienten für den unteren Bereich anzupassen.
- Reset Background to 0.000 and Span Coefficient to 1.000 (Hintergrund auf 0,000 und Messbereichskoeffizienten auf 1,000 zurücksetzen): Setzt alle Hintergründe und Koeffizienten zurück.

Adjust Background (Hintergrund anpassen)

Der Bildschirm "Adjust Background" (Hintergrund anpassen) wird verwendet, um den Null-Hintergrund anzupassen.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) > Adjust Background (Hintergrund anpassen)

Der Bildschirm "Adjust Background" (Hintergrund anpassen) enthält folgende Elemente:

- *Adjust Background (Hintergrund anpassen):* Ermöglicht es dem Benutzer, den Null-Hintergrund manuell anzupassen.
- Adjusted Concentration (Angepasste Konzentration): Schreibgeschützt. Zeigt die angepasste Konzentration basierend auf dem angepassten Null-Hintergrund an.
- *Calibrate (Kalibrieren):* Kalibriert den Null-Hintergrund, indem der neu angepasste Wert für den Null-Hintergrund gespeichert wird.

Adjust Span Coefficient (Messbereichskoeffizient anpassen)

Der Bildschirm "Adjust Span Coefficient" (Messbereichskoeffizient anpassen) wird verwendet, um den Messbereichskoeffizienten manuell anzupassen.

Der folgende Bildschirm wird im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus angezeigt. Im dualen oder automatischen Bereichsmodus wird "High Range" (Oberer Bereich) oder "Low Range" (Unterer Bereich) angezeigt, um die Kalibrierung des Koeffizienten für den oberen oder unteren Bereich anzugeben. Die Bildschirme "Adjust High Range Span Coefficient" (Messbereichskoeffizient für oberen Bereich anpassen) und Adjust Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich anpassen) arbeiten auf dieselbe Weise.

Startbildschirm > Calibration (Kalibrierung) > Advanced (Erweitert) > Manual Calibration (Manuelle Kalibrierung) > Adjust Span Coefficient (Messbereichskoeffizient anpassen) (Einzelbereichsmodus)

Startbildschirm > Calibration (Kalibrierung) > Advanced (Erweitert) > Manual Calibration (Manuelle Kalibrierung) > Adjust High Range Span Coefficient (Messbereichskoeffizient für oberen Bereich anpassen) (Dualer oder automatischer Bereichsmodus)

Das Menü "Adjust Span Coefficient" (Messbereichskoeffizient anpassen) enthält folgende Elemente:

- *Adjust Span Coefficient (Messbereichskoeffizient anpassen):* Ermöglicht es dem Benutzer, im Einzelbereichsmodus den Messbereichskoeffizienten manuell anzupassen.
- Adjust High Range Span Coefficient (Messbereichskoeffizient für oberen Bereich anpassen): Ermöglicht es dem Benutzer, im dualen oder automatischen Bereichsmodus den Messbereichskoeffizienten für den oberen Bereich manuell anzupassen.
- Adjust Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich anpassen): Ermöglicht es dem Benutzer, im dualen oder automatischen Bereichsmodus den Messbereichskoeffizienten für den unteren Bereich manuell anzupassen.
- *Adjusted Concentration (Angepasste Konzentration):* Schreibgeschützt. Zeigt im Einzelbereichsmodus die angepasste Konzentration basierend auf dem angepassten Messbereichskoeffizienten an.
- Adjusted High Range Concentration (Angepasste Konzentration im oberen Bereich): Schreibgeschützt. Zeigt im dualen oder automatischen Bereichsmodus die angepasste Konzentration im oberen Bereich basierend auf dem angepassten Messbereichskoeffizienten für den oberen Bereich an.
- Adjusted Low Range Concentration (Angepasste Konzentration im unteren Bereich): Schreibgeschützt. Zeigt im dualen oder automatischen Bereichsmodus die angepasste Konzentration im unteren Bereich basierend auf dem angepassten Messbereichskoeffizienten für den unteren Bereich an.
- *Calibrate (Kalibrieren):* Kalibriert den Messbereichskoeffizienten, indem der neue angepasste Messbereichskoeffizient gespeichert wird.

Multipoint Calibration (Mehrpunktkalibrierung)

Der Bildschirm "Multipoint Calibration" (Mehrpunktkalibrierung) wird verwendet, um das Gerät mit bis zu drei Gaskonzentrationen (Kalibrierungspunkten) für jeden Bereich zu kalibrieren. Es wird empfohlen, drei Kalibrierungspunkte zu verwenden, da dies die präzisesten Messwerte über den gesamten Messbereich hinweg liefert.

Der folgende Bildschirm wird im Einzelbereichsmodus angezeigt. Im dualen oder automatischen Bereichsmodus wird "High Range" (Oberer Bereich) oder "Low Range" (Unterer Bereich) angezeigt, um die Kalibrierung des Koeffizienten für den oberen oder unteren Bereich anzugeben. Die Bildschirme "High Range Multipoint Calibration" (Mehrpunktkalibrierung für den oberen Bereich) und "Low Range Multipoint Calibration" (Mehrpunktkalibrierung für den unteren Bereich) funktionieren auf dieselbe Weise.

Hinweis Wenn Sie die Schaltfläche "Multipoint Calibration" (Mehrpunktkalibrierung) drücken, wird die Meldung "It is recommended to calibrate all three points" (Es wird empfohlen, alle drei Punkte zu kalibrieren) angezeigt. Diese Meldung muss mit "OK" bestätigt werden. ▲

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Multipoint Calibration (Mehrpunktkalibrierung) (Einzelbereichsmodus)

Der Bildschirm "Multipoint Calibration" (Mehrpunktkalibrierung) enthält folgende Elemente:

- *Point 1 (Punkt 1):* Erster Kalibrierpunkt, der in der kalibrierten polynomischen Mehrpunktkurve verwendet wird.
- *Point 2 (Punkt 2):* Zweiter Kalibrierpunkt, der in der kalibrierten polynomischen Mehrpunktkurve verwendet wird.

- *Point 3 (Punkt 3):* Dritter Kalibrierpunkt, der in der kalibrierten polynomischen Mehrpunktkurve verwendet wird.
- *First Coefficient (Erster Koeffizient):* Schreibgeschützt. Wert des ersten Koeffizienten in der polynomischen Kurve.
- *Second Coefficient (Zweiter Koeffizient):* Schreibgeschützt. Wert des zweiten Koeffizienten in der polynomischen Kurve.
- *Third Coefficient (Dritter Koeffizient):* Schreibgeschützt. Wert des dritten Koeffizienten in der polynomischen Kurve.
- *Reset Points to Default Values (Punkte auf Standardwerte zurücksetzen):* Setzt Mehrpunktkoeffizienten auf die Standardwerte zurück.

Point 1–3 (Punkt 1 bis 3)Der Bildschirm "Point 1" (Punkt 1) ermöglicht es dem Benutzer, den
ausgewählten Kalibrierpunkt anzuzeigen und einzustellen. Die Bildschirme für
Punkt 2 und Punkt 3 funktionieren auf dieselbe Weise. Daher gilt das
folgende Beispiel des Bildschirms für Punkt 1 auch für Punkt 2 und Punkt 3.

Der folgende Bildschirm wird im Einzelbereichsmodus angezeigt. Im dualen oder automatischen Bereichsmodus funktionieren die Bildschirme "High Range Multipoint Calibration" (Mehrpunktkalibrierung für den oberen Bereich) und "Low Range Multipoint Calibration" (Mehrpunktkalibrierung für den unteren Bereich) auf dieselbe Weise.

Die Bereiche werden vom Kunden definiert. Es wird empfohlen, die folgenden Kalibrierpunkte für jeden Bereich festzulegen:

Cal point 1 (Kalibrierpunkt 1): 80 % des Bereichs

Cal point 2 (Kalibrierpunkt 2): 50 % des Bereichs

Cal point 3 (Kalibrierpunkt 3): 20 % des Bereichs

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Multipoint Calibration (Mehrpunktkalibrierung) > Point 1 (Punkt 1)

Der Bildschirm "Point 1" (Punkt 1) enthält folgende Elemente:

- Edit Point 1 Span Concentration (Messbereichskonzentration für Punkt 1 bearbeiten): Der Benutzer gibt die Messbereichskonzentration ein.
- *Point 1 Coefficient (Koeffizient für Punkt 1):* Schreibgeschützt. Nachdem der Wert auf der Schaltfläche "Edit Point 1 Span Concentration" (Messbereichskonzentration für Punkt 1 bearbeiten) ausgewählt und die Schaltfläche "Calibrate" (Kalibrieren) gedrückt wurde, wird der Wert des Koeffizienten für Punkt 1 aktualisiert.
- *Calibrate (Kalibrieren):* Kalibriert den Koeffizienten für Punkt 1.

Manual O₂ Calibration (Manuelle O₂-Kalibrierung) Der Bildschirm "Manual O₂ Calibration" (Manuelle O2-Kalibrierung) ermöglicht, die O₂-Messbereichskoeffizienten manuell zu ändern, während Prüfgas mit einer bekannten Konzentration angesaugt wird. Diese Schaltfläche wird angezeigt, wenn die O₂-Sensor-Option auf dem Konfigurationsbildschirm ausgewählt ist.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) (Einzelbereichsmodus)

Der Bildschirm "Manual O₂ Calibration" (Manuelle O2-Kalibrierung) enthält folgende Elemente:

- Adjust O₂ Span Coefficient (O₂-Messbereichskoeffizient anpassen): Ermöglicht dem Benutzer, den O₂-Messbereichskoeffizienten manuell anzupassen.
- *Reset O*₂ *Coefficient to 1.000 (O*₂*-Koeffizient auf 1,000 zurücksetzen):* Setzt den Koeffizienten zurück.

Adjust O₂ Span Coefficient (O₂-Messbereichskoeffizient anpassen)

Der Bildschirm "Adjust O_2 Span Coefficient" (O2-Messbereichskoeffizient anpassen) wird verwendet, um den O_2 -Messbereichskoeffizienten manuell anzupassen.

Startbildschirm > Calibration (Kalibrierung) > Advanced (Erweitert) > Manual Calibration (Manuelle Kalibrierung) > Adjust O₂ Span Coefficient (O2-Messbereichskoeffizient anpassen)

Das Menü "Adjust O₂ Span Coefficient" (O2-Messbereichskoeffizient anpassen) enthält folgende Elemente:

- Adjust O₂ Span Coefficient (O2-Messbereichskoeffizient anpassen): Ermöglicht dem Benutzer, den Messbereichskoeffizienten manuell anzupassen.
- Adjusted Concentration (Angepasste Konzentration): Schreibgeschützt. Zeigt die angepasste O₂-Konzentration basierend auf dem angepassten O₂-Messbereichskoeffizienten an.
- *Calibrate (Kalibrieren):* Kalibriert den Messbereichskoeffizienten, indem der neu angepasste O₂-Messbereichskoeffizient gespeichert wird.

2-Point O₂ Calibration (Zweipunkt-O₂-Kalibrierung)

Der Bildschirm "2-Point O₂ Calibration" (Zweipunkt-O2-Kalibrierung) wird verwendet, um den O2-Sensor mithilfe von zwei unterschiedlichen Gaskonzentrationen zu kalibrieren. Für eine erfolgreiche Kalibrierung müssen beide Punkte kalibriert werden. Es wird empfohlen, für diese Kalibrierung O₂-Konzentrationen von 0 % und 20,9 % zu verwenden. Diese Schaltfläche wird angezeigt, wenn die O₂-Sensor-Option auf dem Konfigurationsbildschirm ausgewählt ist.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > 2-Point O₂ Calibration (Zweipunkt-O₂-Kalibrierung)

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > 2-Point O₂ Calibration (Zweipunkt-O₂-Kalibrierung) > Mit Zweipunkt-O₂-Kalibrierung fortfahren

Der Bildschirm "2-Point O₂ Calibration" (Zweipunkt-O2-Kalibrierung) enthält folgende Elemente:

- 2-Point O₂ Calibration Point 1 (Punkt 1 für Zweipunkt-O₂-Kalibrierung): Erster Kalibrierpunkt, der für die Zweipunkt-O₂-Kalibrierung verwendet wird. Standardmäßig 0,000 %.
- 2-Point O₂ Calibration Point 2 (Punkt 2 für Zweipunkt-O₂-Kalibrierung): Zweiter Kalibrierpunkt, der für die Zweipunkt-O₂-Kalibrierung verwendet wird. Standardmäßig 20,900 %.

Point 1–2 (Punkt 1 bis 2)Der Bildschirm "Point 1" (Punkt 1) ermöglicht es dem Benutzer, den
ausgewählten Kalibrierpunkt anzuzeigen und einzustellen. Der Bildschirm
für Punkt 2 funktioniert auf dieselbe Weise. Daher gilt das folgende
Beispiel des Bildschirms für Punkt 1 auch für Punkt 2.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > 2-Point O₂ Calibration (Zweipunkt-O2-Kalibrierung) > Mit Zweipunkt-O₂-Kalibrierung fortfahren > 2-Point O₂ Calibration Point 1 (Punkt 1 für Zweipunkt-O2-Kalibrierung)

Der Bildschirm "2-Point O_2 Calibration Point 1" (Punkt 1 für Zweipunkt- O_2 -Kalibrierung) enthält folgende Elemente:

- *Edit O₂ Span Concentration (O2-Messbereichskonzentration bearbeiten):* Der Benutzer gibt die O₂-Messbereichskonzentration ein.
- Current O₂ Concentration (Aktuelle O₂-Konzentration): Schreibgeschützt. Nachdem der Wert auf der Schaltfläche "Edit O₂ Concentration" (O₂-Konzentration bearbeiten) ausgewählt und die Schaltfläche "Calibrate O₂" (O₂ kalibrieren) gedrückt wurde, wird der Konzentrationswert für Punkt 1 aktualisiert.
- *Calibrate O₂ Point 1 (O₂-Punkt 1 kalibrieren):* Kalibriert den Koeffizienten für Punkt 1.

Hinweis Stellen Sie sicher, dass der Sensor das Gas mindestens 1 Minute lang misst, bevor Sie die Schaltfläche "Calibrate O₂ Point 1" (O₂-Punkt 1 kalibrieren) drücken. ▲

Calibration HistoryDer Bildschirm "Calibration History" (Kalibrierungsverlauf) zeigt das(Kalibrierungsverlauf)Protokoll von durchgeführten Kalibrierungen und Kalibrierungsprüfungen.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Calibration History (Kalibrierungsverlauf)

Hinweis Wenn Sie die Schaltfläche "Calibration History" (Kalibrierungsverlauf) drücken, wird die Meldung "Retrieving calibration log data, it may take a few seconds…" (Kalibrierungsprotokoll wird abgerufen, dies kann einige Sekunden dauern…) angezeigt. ▲

Time Stamp	Event	Result	Target	Units	
09/07/2017 16:04:02	Det Gain Entry	182	n/a		. /
08/16/2017 16:18:03	Low Span Check	Fail	21.2508	ppm	
08/16/2017 16:16:03	Bkg Cal	9.18419	0	ppm	8
08/16/2017 15:16:03	Bkg Cal	9.17902	0	ppm	2
08/16/2017 14:18:04	Low Span Check	Fail	21.2508	ppm	
08/16/2017 14:16:03	Bkg Cal	9.18655	0	ppm	e 💋
08/16/2017 14:07:44	Bkg Entry	20	0	ppm	
08/16/2017 13:16:03	Bkg Cal	Fail		ppm	
08/16/2017 12:16:03	Bkg Cal	54.2743	0	ppm	8
08/16/2017 11:18:03	Low Span Check	Fail	127.505	ppm	

Der Bildschirm "Calibration History" (Kalibrierungsverlauf) enthält folgende Elemente:

- *Time Stamp (Zeitstempel):* Datum/Uhrzeit der Kalibrierung oder Kalibrierungsprüfung.
- Event (Ereignis): Zeigt den Typ des Kalibrierungsereignisses an.
- *Result (Ergebnis):* Konzentrationsergebnis.
- *Target (Ziel):* Sollwert für die Konzentration.
- Units (Einheiten): Zeigt Einheiten für jedes Element an.
- *Average Time (Mittelwertzeit):* Die bei der Kalibrierung oder Kalibrierungsprüfung verwendete Mittelungszeit.

Data (Daten)

Der Bildschirm "Data" (Daten) wird verwendet, um Konzentrationen und Gerätedaten anzuzeigen und zu aufzuzeichnen. Benutzer können Daten sowohl in Tabellen- als auch in Diagrammform anzeigen.

Startbildschirm > Data (Daten)

Der Bildschirm "Data" (Daten) enthält die folgenden Elemente:

- *View Data Log (Last Hour) (Datenprotokoll anzeigen (Letzte Stunde)):* Der Benutzer kann die historischen Daten der letzten Stunde anzeigen. In der Tabelle werden die neuesten Daten zuoberst angezeigt.
- View Data Log (Last 24 Hour) (Datenprotokoll anzeigen (Letzte 24 Stunden)): Der Benutzer kann die historischen Daten der letzten 24 Stunden anzeigen. In der Tabelle werden die neuesten Daten zuoberst angezeigt.
- View Data (User Defined Time) (Daten anzeigen (Benutzerdefinierte Zeit)): Der Benutzer kann die Start- und Endzeit für die Datenanzeige wählen. In der Tabelle werden die neuesten Daten zuoberst angezeigt.
- *Advanced Data Setup (Erweiterte Dateneinrichtung):* Ermöglicht dem Benutzer, die Parameter zum Speichern und Streamen der Daten zu konfigurieren.
View Data Log (Last Hour) (Datenprotokoll anzeigen (Letzte Stunde))

Der Bildschirm "View Data Log (Last Hour)" (Datenprotokoll anzeigen (Letzte Stunde)) ermöglicht es dem Benutzer, die Daten der letzten Stunde in Echtzeit anzuzeigen.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Data (Daten) > View Data Log (Last Hour) (Datenprotokoll anzeigen (Letzte Stunde))

Hinweis Wenn Sie die Schaltfläche "View Data Log (Last Hour)" (Datenprotokoll anzeigen (Letzte Stunde)) drücken, wird die Meldung "Retrieving calibration log data, it may take a few seconds…" (Kalibrierungsprotokoll wird abgerufen, dies kann einige Sekunden dauern…) angezeigt. ▲

Time Stamp	Concentration (ppb or ug/m3)	Bench Pressure (mmHg)	High Concentration (ppb or ug/m3)	Instrument Temperature (degC)	Sampl∔ (L/n	
	Graph	Graph	Graph	Graph	Graph	
09/22/2017 08:21:00	241.241	0	0	0	0	-
09/22/2017 08:20:00	237.37	0	0	0	0	
09/22/2017 08:19:00	236.884	0	0	0	0	_
09/22/2017 08:18:00	234.178	0	0	0	0	1
09/22/2017 08:17:00	228.876	0	0	0	0	
09/22/2017 08:16:00	229.929	0	0	0	0	
09/22/2017 08:15:00	231.378	0	0	0	0	
09/22/2017 08:14:00	231.6	0	0	0	0	

Der Bildschirm "View Data Log (Last Hour)" (Datenprotokoll anzeigen (Letzte Stunde)) enthält folgende Optionen:

• *Graph (Diagramm):* Zeigt ein Datendiagramm für die ausgewählte Spalte an. Die Zeitachse des Diagramms wird durch den Datensatz in der Tabelle definiert.

View Data Log (Last 24 Hour) (Datenprotokoll anzeigen (Letzte 24 Stunden)) Der Bildschirm "View Data Log (Last 24 Hour)" (Datenprotokoll anzeigen (Letzte 24 Stunden)) ermöglicht es dem Benutzer, die Daten der letzten 24 Stunden in Echtzeit anzuzeigen.

Verwenden Sie die Schaltflächen \blacktriangle und \bigtriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Data (Daten) > View Data Log (Last 24 Hour) (Datenprotokoll anzeigen (Letzte 24 Stunden))

Hinweis Wenn Sie die Schaltfläche "View Data Log (Last 24 Hours)" (Datenprotokoll anzeigen (Letzte 24 Stunden)) drücken, wird die Meldung "Retrieving calibration log data, it may take a few seconds…" (Kalibrierungsprotokoll wird abgerufen, dies kann einige Sekunden dauern…) angezeigt. ▲

Time Stamp	Concentration (ppb or ug/m3)	Bench Pressure (mmHg)	High Concentration (ppb or ug/m3)	Instrument Temperature (degC)	Sampl i (Un	
	Graph	Graph	Graph	Graph	Graph	
09/22/2017 08:21:00	241.241	0	0	0	0	
09/22/2017 08:20:00	237.37	0	0	0	0	
09/22/2017 08:19:00	236.884	0	0	0	0	
09/22/2017 08:18:00	234.178	0	0	0	0	
09/22/2017 08:17:00	228.876	0	0	0	0	
09/22/2017 08:16:00	229.929	0	0	0	0	
09/22/2017 08:15:00	231.378	0	0	0	0	
09/22/2017 08:14:00	231.6	0	0	0	0	

Der Bildschirm "View Data Log (Last 24 Hours)" (Datenprotokoll anzeigen (Letzte 24 Stunden)) enthält folgende Optionen:

• *Graph (Diagramm):* Zeigt ein Datendiagramm für die ausgewählte Spalte an. Die Zeitachse des Diagramms wird durch den Datensatz in der Tabelle definiert.

View Data Log (User Defined Time) (Datenprotokoll anzeigen (Benutzerdefinierte Zeit))

Der Bildschirm "View Data Log (User Defined Time)" (Datenprotokoll anzeigen (Benutzerdefinierte Zeit)) wird verwendet, um die Start- und Endzeit für die Anzeige der Datenaufzeichnungstabelle festzulegen.

Startbildschirm > Data (Daten) > View Data Log (User Defined Time) (Datenprotokoll anzeigen (Benutzerdefinierte Zeit))

Startbildschirm > Data (Daten) > View Data Log (User Defined Time) (Datenprotokoll anzeigen (Benutzerdefinierte Zeit)) > Save Data Logging Start Time (Startzeit für Datenaufzeichnung speichern)

Der Bildschirm "View Data Log (User Defined Time)" (Datenprotokoll anzeigen (Benutzerdefinierte Zeit)) enthält folgende Elemente:

- *Month (Monat):* Legt den Monat der Startzeit für die Datenaufzeichnung fest.
- *Day (Tag):* Legt den Tag der Startzeit für die Datenaufzeichnung fest.
- Year (Jahr): Legt das Jahr der Startzeit für die Datenaufzeichnung fest.
- *Hours (Stunden):* Legt die Stunden der Startzeit für die Datenaufzeichnung fest.

- *Minutes (Minuten):* Legt die Minuten der Startzeit für die Datenaufzeichnung fest.
- Save Data Logging Start Time (Startzeit für Datenaufzeichnung speichern): Durch Drücken dieser Schaltfläche wird die Startzeit gespeichert und die Anzeige wechselt direkt zur Auswahl der Endzeit für den Datenaufzeichnungsbildschirm.

Der Bildschirm "View Data Log (User Defined Time) End Time" (Datenprotokoll anzeigen (Benutzerdefinierte Zeit) – Endzeit) enthält folgende Elemente:

- *Month (Monat):* Legt den Monat der Endzeit für die Datenaufzeichnung fest.
- Day (Tag): Legt den Tag der Endzeit für die Datenaufzeichnung fest.
- Year (Jahr): Legt das Jahr der Endzeit für die Datenaufzeichnung fest.
- *Hours (Stunden):* Legt die Stunden der Endzeit für die Datenaufzeichnung fest.
- *Minutes (Minuten):* Legt die Minuten der Endzeit für die Datenaufzeichnung fest.
- *Save Data Logging End Time (Endzeit für die Datenaufzeichnung speichern):* Durch Drücken der Schaltfläche "Save Data Logging End Time" (Endzeit für die Datenaufzeichnung speichern) wird die Endzeit gespeichert und die Anzeige wechselt direkt zur Datenaufzeichnungstabelle.

Hinweis Die Endzeit darf nicht später als 1 Jahr nach der Startzeit liegen. 🔺

Hinweis Die Datenaufzeichnungstabelle kann maximal 10.000 Punkte enthalten. ▲

Advanced Data Setup (Erweiterte Dateneinrichtung)

Der Bildschirm "Advanced Data Setup" (Erweiterte Dateneinrichtung) ermöglicht es dem Benutzer, Variablen auszuwählen und Parameter für die Datenaufzeichnung und das Datenstreaming festzulegen.

Startbildschirm > Data (Daten) > Advanced Data Setup (Erweiterte Dateneinrichtung)

Der Bildschirm "Advanced Data Setup" (Erweiterte Dateneinrichtung) enthält folgende Elemente:

- *Data Logging Setup (Einrichtung der Datenaufzeichnung):* Ermöglicht es dem Benutzer, Parameter für die Erfassung von aufgezeichneten Daten auszuwählen.
- *Streaming Data Setup (Einrichtung des Datenstreamings):* Ermöglicht es dem Benutzer, die Parameter für das Datenstreaming an einen Computer in Echtzeit festzulegen.

Data Logging Setup (Einrichtung der Datenaufzeichnung)

Auf dem Bildschirm "Data Logging Setup" (Einrichtung der Datenaufzeichnung) kann der Benutzer auswählen, welche Daten gespeichert und wie sie gespeichert werden sollen.

Startbildschirm > Data (Daten) > Advanced (Erweitert) > Data Logging Setup (Einrichtung der Datenaufzeichnung)

Der Bildschirm "Data Logging Setup" (Einrichtung der Datenaufzeichnung) enthält folgende Elemente:

- Select Data Logging Variables (Variablen für die Datenaufzeichnung wählen): Ermöglicht dem Benutzer, die aufzuzeichnenden Gerätevariablen auszuwählen. Eine Liste der Variablen für die Datenaufzeichnung finden Sie unter "Tabelle 3–1".
- *Period (Zeitraum)*: Ermöglicht dem Benutzer, auszuwählen, wie oft Daten erfasst werden, indem er die Dauer zwischen Datenaufzeichnungen festlegt.
- Data Treatment (Datenverarbeitung): Schaltet zwischen "Average" (Mittelwert), "Current" (Aktuell), "Minimum" (Minimalwert) und "Maximum" (Maximalwert) um. Wenn diese Option auf "Average" (Mittelwert) gesetzt ist, wird der Mittelwert in dem Zeitraum erfasst. Wenn diese Option auf "Current" (Aktuell) gesetzt ist, werden die neuesten Daten erfasst. Wenn diese Option auf "Minimum" (Minimalwert) oder "Maximum" (Maximalwert) gesetzt ist, wird der Minimal- oder Maximalwert in dem Zeitraum erfasst.
- *Erase Data Log Records (Einträge im Datenprotokoll löschen)*: Ermöglicht dem Benutzer, alle Werte im Datenprotokoll zu löschen und aktualisiert die Datenaufzeichnungstabelle.

Select Data Logging Variables (Variablen für die Datenaufzeichnung wählen)

Auf dem Bildschirm "Select Data Logging Variables" (Variablen für die Datenaufzeichnung wählen) kann der Benutzer auswählen, welche Variablen gespeichert werden sollen. Hinweis: Die Variablenlisten für die Datenaufzeichnung und das Streaming sind voneinander **unabhängig**, enthalten jedoch dieselben Auswahlmöglichkeiten für Variablen.

Verwenden Sie die Schaltflächen ▲ und ▼, um durch die Variablen zu blättern. Wählen Sie die aufzuzeichnenden Variablen aus, indem Sie auf die entsprechenden Zellen tippen. Drücken Sie als nächstes die Schaltfläche **Commit Changes** (Änderungen bestätigen), um Ihre Auswahl zu speichern. Gelbe Schaltflächen zeigen an, dass die jeweilige Variable ausgewählt ist.

Startbildschirm > Data (Daten) > Advanced (Erweitert) > Data Logging Setup (Einrichtung der Datenaufzeichnung) > Select Data Logging Variables (Variablen für die Datenaufzeichnung wählen)

Die folgende Tabelle enthält die Variablen, die für die Datenaufzeichnung ausgewählt werden können:

Tabelle 3–1. Variablen für die Datenaufzeichnung

Beschreibung
Concentration (ppb or μ g/m ³) (Konzentration (ppb oder μ g/m ³))
High Concentration (ppb or µg/m³) (Hohe Konzentration (ppb oder µg/m³))
Corrected Concentration (ppb or μ g/m ³) (Korrigierte Konzentration (ppb oder μ g/m ³))
Corrected high Concentration (ppb or µg/m³) (Korrigierte hohe Konzentration (ppb oder µg/m³))
Bench Pressure (mmHg) (Messbankdruck (mmHg))
Instrument Temperature (degC) (Gerätetemperatur (°C))
Sample Flow (L/min) (Probenfluss (I/min))
Averaging Time (sec) (Mittelungszeit (s))
High Averaging Time (sec) (Hohe Mittelungszeit (s))

Concent	ration Alarm (Konzentrationsalarm)
Pressure	e Alarm (Druckalarm)
Flow Ala	arm (Durchflussalarm)
Instrume	ent Temperature Alarm (Alarm für Gerätetemperatur)
Auto Zei	ro Alarm (Autom. Nullpunktalarm)
Auto Sp	an Alarm (Autom. Messbereichsalarm)
S/R (Pro	be/Referenz-Verhältnis)
High S/F	R (Hohes Probe/Referenz-Verhältnis)
Concent (ppb ode	rration Background (ppb or μg/m³) (Konzentrationshintergrund er μg/m³))
General	Alarm (Allgemeiner Alarm)
Alerts (V	Varnungen)
Instrume	ent Error (Gerätefehler)
Low Dyr	namic Filter Status (Status dynamische Filterung unterer Bereich
High Dy	namic Filter Status (Status dynamische Filterung oberer Bereich
Dilution	Ratio (Verdünnungsverhältnis)
Bench T	emperature (degC) (Messbanktemperatur (°C))
Sample	Intensity (Probenintensität)
Referen	ce Intensity (Referenzintensität)
Wheel S	Speed (RPM) (Gasrad-Drehzahl (U/min))
Externer	r Alarm 1
External	Alarm 2 (Externer Alarm 2)
External	Alarm 3 (Externer Alarm 3)
Analog I	Input 1 (Analogeingang 1)
Analog I	Input 2 (Analogeingang 2)
Analog I	Input 3 (Analogeingang 3)
Analog I	Input 4 (Analogeingang 4)
Analog /	Alarms (Analoge Alarme)
PSB Ala	rms (PSB-Alarme)
O ₂ Alarn	ns (O ₂ -Alarme)
02 %	
O ₂ Conc	Alarm (O2-Konzentrationsalarm)
O ₂ Avera	aging Time (sec) (O ₂ -Mittelungszeit (s))
O2 Temp	perature (O ₂ -Temperatur)

Streaming Data Setup (Einrichtung des Datenstreamings)

Über das Menü "Streaming Data Setup" (Einrichtung des Datenstreamings) kann der Benutzer Daten an einen Computer übertragen.

Startbildschirm > Data (Daten) > Advanced Data Setup (Erweiterte Dateneinrichtung) > Streaming Data Setup (Einrichtung des Datenstreamings)

Der Bildschirm "Streaming Data Setup" (Einrichtung des Datenstreamings) enthält folgende Elemente:

- *Select Streaming Variables (Streaming-Variablen auswählen)*: Ermöglicht dem Benutzer, auszuwählen, welche Variablen gestreamt werden sollen. Eine Liste der Variablen für das Streaming finden Sie unter "Tabelle 3–2".
- Period (Zeitraum): Legt das Intervall zwischen Datenstreams fest.
- *Show Labels (Bezeichnungen)*: Aktiviert bzw. deaktiviert die Funktion. Wenn die Option aktiviert ist, werden die Variablenbezeichnungen links neben den Variablenwerten angezeigt.
- *Show Timestamp (Zeitstempel anzeigen)*: Aktiviert bzw. deaktiviert die Funktion. Wenn diese Option aktiviert ist, wird am Anfang jeder Datenzeile ein Zeitstempel angezeigt.

Select Streaming Variables (Streaming-Variablen auswählen)

Auf dem Bildschirm "Select Streaming Variables" (Streaming-Variablen auswählen) kann der Benutzer auswählen, welche Variablen nachverfolgt werden sollen. Hinweis: Die Variablenlisten für die Datenaufzeichnung und das Streaming sind voneinander **unabhängig**, enthalten jedoch dieselben Auswahlmöglichkeiten für Variablen.

Verwenden Sie die Schaltflächen ▲ und ▼, um durch die Variablen zu blättern. Wählen Sie die aufzuzeichnenden Variablen aus, indem Sie auf die entsprechenden Zellen tippen. Drücken Sie als nächstes die Schaltfläche **Commit Changes** (Änderungen bestätigen), um Ihre Auswahl zu speichern. Gelbe Schaltflächen zeigen an, dass die jeweilige Variable ausgewählt ist.

Startbildschirm > Data (Daten) > Advanced Data Setup (Erweiterte Dateneinrichtung) > Streaming Data Setup (Einrichtung des Datenstreamings) > Select Streaming Variables (Streaming-Variablen auswählen)

Die folgende Tabelle enthält die Variablen, die für das Datenstreaming ausgewählt werden können:

Tabelle 3–2. Variablen für das Datenstreaming

Beschreibung
Concentration (ppb or μ g/m ³) (Konzentration (ppb oder μ g/m ³))
High Concentration (ppb or µg/m³) (Hohe Konzentration (ppb oder µg/m³))
Corrected Concentration (ppb or $\mu g/m^3$) (Korrigierte Konzentration (ppb oder $\mu g/m^3$))
Corrected high Concentration (ppb or µg/m³) (Korrigierte hohe Konzentration (ppb oder µg/m³))
Bench Pressure (mmHg) (Messbankdruck (mmHg))
Instrument Temperature (degC) (Gerätetemperatur (°C))
Sample Flow (L/min) (Probenfluss (I/min))
Averaging Time (sec) (Mittelungszeit (s))

High Averaging Time (see)	(Hoho Mittolungszoit (s))
Concentration Alarm (Ken:	(none witteningszen (s))
Pressure Alarm (Druckalar	m)
Flow Alarm (Durchflussala	rm)
Instrument Temperature A	larm (Alarm für Gerätetemperatur)
Auto Zero Alarm (Autom. I	Nullpunktalarm)
Auto Span Alarm (Autom.	Messbereichsalarm)
S/R (Probe/Referenz-Verha	ältnis)
High S/R (Hohes Probe/Re	ferenz-Verhältnis)
Concentration Background (ppb oder µg/m ³))	(ppb or μ g/m ³) (Konzentrationshintergrund
General Alarm (Allgemein	er Alarm)
Alerts (Warnungen)	
Instrument Error (Gerätefe	hler)
Low Dynamic Filter Status	(Status dynamische Filterung unterer Bereich
High Dynamic Filter Status	s (Status dynamische Filterung oberer Bereich)
Dilution Ratio (Verdünnung	jsverhältnis)
Bench Temperature (degC) (Messbanktemperatur (°C))
Sample Intensity (Probenir	itensität)
Reference Intensity (Refer	enzintensität)
Wheel Speed (RPM) (Gasr	ad-Drehzahl (U/min))
Externer Alarm 1	
External Alarm 2 (Externer	Alarm 2)
External Alarm 3 (Externer	Alarm 3)
Analog Input 1 (Analogein	gang 1)
Analog Input 2 (Analogein	gang 2)
Analog Input 3 (Analogein	gang 3)
Analog Input 4 (Analogein	gang 4)
Analog Alarms (Analoge A	larme)
PSB Alarms (PSB-Alarme)	
O ₂ Alarms (O ₂ -Alarme)	
02 %	
O ₂ Conc Alarm (O ₂ -Konzen	trationsalarm)
O ₂ Averaging Time (sec) (C) ₂ -Mittelungszeit (s))
02 Temperature (02-Temperature	 eratur)

Settings (Einstellungen)

Das Menü "Settings" (Einstellungen) ermöglicht es dem Benutzer, die Gerätealarme anzuzeigen, Benutzereinstellungen festzulegen, mit externen Geräten und Computern zu kommunizieren, Dateien über USB herunterzuladen und ein Sicherheitsprotokoll festzulegen.

Startbildschirm > Settings (Einstellungen)

Der Bildschirm "Settings" (Einstellungen) enthält folgende Elemente:

- *Health Check (Zustandsprüfung):* Anzeigen von Gerätestatus und Alarmen, vorausschauende Diagnose, Erinnerungen für die vorbeugende Wartung, Wartungsverlauf, Versendung von Zustandsprüfungsberichten per E-Mail und Kontaktaufnahme mit dem technischen Support von Thermo Fisher Scientific.
- *Measurement Settings (Messungseinstellungen):* Ermöglicht dem Benutzer, Benutzereinstellungen für Konzentrationsmesswerte festzulegen.
- *Communications (Kommunikation):* Ermöglicht dem Benutzer, mit externen Geräten zu kommunizieren.
- *Instrument Setting (Geräteeinstellung):* Mit dieser Option kann der Benutzer Alarmsollwerte und Benutzereinstellungen festlegen.
- *Configuration (Konfiguration):* Ermöglicht dem Benutzer, zu wählen, welche Optionen aktiviert werden sollen.
- Security Access Levels (Zugriffssicherheitsstufen): Ermöglicht dem Benutzer, ein Sicherheitsprotokoll auszuwählen. Der Benutzer kann auch Sicherheitspasswörter ändern.
- *USB Drive (USB-Laufwerk):* Ermöglicht dem Benutzer, die Geräte-Firmware zu aktualisieren, Daten herunterzuladen und das USB-Passwort zu ändern.
- *User Contact Information (Benutzer-Kontaktdaten):* Über diese Option richtet der Benutzer seine Kontaktinformationen ein.
- *Update Bootloader (Bootloader aktualisieren):* Wird verwendet, um den Bootloader zu aktualisieren, wenn ein Update dafür verfügbar ist.

Health Check (Zustandsprüfung)

Der Bildschirm "Health Check" (Zustandsprüfung) bietet folgende Funktionalitäten: Anzeigen von Gerätestatus und Alarmen, vorausschauende Diagnosen, Pläne für die vorbeugende Wartung, Wartungsverlauf, Versenden von Dateien mit Informationen zum Zustand/Status des Geräts und Anzeigen der Firmwareversion des Geräts.

Hinweis ⚠️ Dieses Symbol gibt an, dass ein aktiver Alarm in dem Modul vorliegt. ▲

Hinweis I Dieses Symbol gibt an, dass eine aktive wartungsbezogene Warnung in dem Modul vorliegt. ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung)

Der Bildschirm "Health Check" (Zustandsprüfung) enthält folgende Elemente:

- *Status and Alarms (Status und Alarme):* Ermöglicht dem Benutzer, die Status- und Alarmmenüs anzuzeigen. Die Menüs sind nach Modulen gegliedert, in denen der Benutzer Gerätemesswerte, Sollwerte und Alarme anzeigen kann.
- *Predictive Diagnostics (Vorausschauende Diagnose):* Intelligente Moduldiagnose, die mögliche zukünftige Probleme aufzeigt.
- *Maintenance History (Wartungsverlauf):* Ermöglicht dem Benutzer, einen Wartungsplan einzurichten und den Wartungsverlauf zu verfolgen.
- *File Sharing and Support (Dateifreigabe und Support):* Versendung von Dateien per E-Mail. Unterstützung durch den technischen Support von Thermo Fisher Scientific.
- *Firmware Version (Firmwareversion):* Zeigt die Firmwareversion des Geräts an.

Status and Alarms (Status und Alarme)

Der Bildschirm "Status and Alarms" (Status und Alarme) bietet Informationen im Hinblick auf Modulalarme. Auf jedem Bildschirm werden Gerätemesswerte, Sollwerte und obere/untere Alarmgrenzwerte angezeigt. Gegebenenfalls können Sollwerte und Alarme auch über den Bildschirm "Settings" (Einstellungen) > "Instrument Settings" (Instrumenteneinstellungen) eingestellt werden.

Hinweis ⚠️ Dieses Symbol gibt an, dass ein aktiver Alarm in dem Modul vorliegt. ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme)

Das Menü "Status and Alarms" (Status und Alarme) enthält folgende Elemente:

- *Concentration (Konzentration):* Zeigt CO-Konzentrationen und Alarme an.
- *NDIR Bench (NDIR-Messbank):* Zeigt Alarme und Störungen bezüglich des Messbankmoduls an.
- *O*₂ *Sensor (O2-Sensor):* Zeigt O₂-Konzentrationen, Sensoralarme und störungen an (falls aktiviert).
- *Flow and Pressure (Durchfluss und Druck):* Zeigt Alarme und Störungen bezüglich Durchfluss und Druck an.
- *Peripherals Support (Peripheriemodul):* Zeigt Alarme und Störungen bezüglich des Peripheriemoduls an.
- *Valve and Pump Resets (Ventile und Pumpe zurücksetzen):* Der Benutzer kann Ventile und Pumpen zurücksetzen.

- Analog Input/Output (Analoger Ein-/Ausgang): Zeigt Alarme und Störungen bezüglich der Analogein- und -ausgänge an.
- *Digital Input/Output (Digitaler Ein-/Ausgang):* Zeigt Alarme und Störungen bezüglich der Digitalein- und -ausgänge an.
- *Serial Numbers (Seriennummern):* Zeigt alle Seriennummern für das Gerät an.

ConcentrationAuf dem Bildschirm "Concentration" (Konzentration) werden der Status
und Alarme für die CO-Konzentration, Hintergrundkalibrierungen/-
prüfungen und Messbereichskalibrierungen/-prüfungen angezeigt. Wenn
ein überwachtes Element den oberen oder unteren Alarmgrenzwert über-
bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Concentration (Konzentration)

Der Bildschirm "Concentration" (Konzentration) enthält folgende Elemente:

- Horizontal:
 - *Concentration (Konzentration):* In dieser Spalte werden Elemente angezeigt, die sich auf das CO und Konzentrationen beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - *Span Conc (Messbereichskonzentration):* Messbereichskonzentration, die für die Kalibrierung oder Überprüfung des Messbereichs verwendet wird.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:

- *CO:* CO-Konzentration.
- *Bkg Check Offset (Offset Hintergrundprüfung):* Zeigt die Konzentration basierend auf der letzten versuchten Hintergrundkalibrierung an. Der obere Alarmgrenzwert gibt den benutzerdefinierten Grenzwert für eine zulässige Verschiebung gemäß der Hintergrundprüfung an.
- Span Check Offset (Offset Messbereichsprüfung): Zeigt die Konzentration basierend auf der letzten versuchten Messbereichskalibrierung an. Der obere Alarmgrenzwert gibt den benutzerdefinierten Grenzwert für eine zulässige Verschiebung gemäß der Messbereichsprüfung an (im Vergleich zum Wert für die Messbereichskonzentration). Die Messbereichskonzentration gibt den Sollwert für den Messbereich an.

Hinweis Wenn der obere und untere Alarmgrenzwert beide auf Null gesetzt sind, wird kein Alarm angezeigt. ▲

NDIR Bench (NDIR-Messbank)

Der Bildschirm "NDIR Bench" (NDIR-Messbank) zeigt Statuswerte und Alarme bezüglich des Messbankmoduls an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > NDIR Bench (NDIR-Messbank)

NDIR Bench	Value	Low Alarm	High Alarm	Units	
S/R	1.15278				
Sample Intensity	217363			Hz	
Reference Intensity	188537			Hz	
Bench Pressure	752.559			mmHg	
Flow	1,195			L/min	
Instrument Temperature	36.8			•C	

Der Bildschirm "NDIR Bench" (NDIR-Messbank) enthält folgende Elemente:

- Horizontal:
 - *NDIR Bench (NDIR-Messbank):* In dieser Spalte werden Elemente angezeigt, die sich auf das NDIR-Messbankmodul beziehen.
 - *Value (Wert):* Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - *S/R (Probe/Referenz-Verhältnis):* Zeigt den aktuellen Messwert für das Probe/Referenz-Verhältnis an.

- *Sample Intensity (Probenintensität):* Zeigt den aktuellen Messwert für die Probenintensität an.
- *Reference Intensity (Referenzintensität):* Zeigt den aktuellen Messwert für die Referenzintensität an.
- *Bench Pressure (Messbankdruck):* Zeigt den aktuellen Messwert für den Messbankdruck an.
- *Flow (Durchfluss):* Zeigt den aktuellen Messwert für den Probendurchfluss an.
- *Instrument Temperature (Gerätetemperatur):* Zeigt den aktuellen Messwert für die Gerätetemperatur an.
- *Bench Temperature (Messbanktemperatur):* Zeigt den aktuellen Messwert für die Messbanktemperatur an. Der Benutzer kann den oberen und unteren Alarmgrenzwert anpassen.
- *Bench Temperature too Low (Messbanktemperatur zu niedrig):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu niedrige Messbanktemperatur an.
- Bench Temperature too High (Messbanktemperatur zu hoch): Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu hohe Messbanktemperatur an.
- *Motor Speed too Low (Motordrehzahl zu niedrig):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu niedrige Motordrehzahl an.
- *Motor Speed too High (Motordrehzahl zu hoch):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu hohe Motordrehzahl an.
- *IR Source Current too Low (IR-Quellenstrom zu niedrig):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu niedrigen IR-Quellenstrom an.
- *IR Source Current too High (IR-Quellenstrom zu hoch):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu hohen IR-Quellenstrom an.
- *IR Detector Bias too Low (IR-Detektorleerwert zu niedrig):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu niedrigen IR-Detektorleerwert an.
- *IR Detector Bias too High (IR-Detektorleerwert zu hoch):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu hohen IR-Detektorleerwert an.
- Bench Thermistor Open (Stromkreisunterbrechung Messbankthermistor): Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Stromkreisunterbrechung des Messbankthermistors an.

- Bench Thermistor Short (Kurzschluss Messbankthermistor): Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Kurzschluss am Messbankthermistor an.
- *Module Thermistor Open (Stromkreisunterbrechung Modulthermistor):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Stromkreisunterbrechung des Modulthermistors an.
- *Module Thermistor Short (Kurzschluss Modulthermistor):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Kurzschluss am Modulthermistor an.
- Board Communication (Karten-Kommunikation): Zeigt "OK"/"Fail" (Fehler) für den Status der Karten-Kommunikation an.
- Power Supply (Spannungsversorgung): Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Diagnostic (5,0 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *15V Diagnostic (15 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 24V Diagnostic (24 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *-15V Diagnostic (-15 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *Bias Voltage (Leerwertspannung):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.

O₂ Sensor (O₂-Sensor) Der Bildschirm "O₂ Sensor" (O₂-Sensor) zeigt Statuswerte und Alarme bezüglich des O₂-Sensors an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > O₂ Sensor (O₂-Sensor)

O ₂ Sensor	Value	Low Alarm	High Alarm	Units	
Concentration	0.000	3.000	25.000	%	
Temperature	0.0			°C	
Temperature Open	ок				
Temperature Short	OK				
Sensor Element Function	ок				
Outside Operational Spec.	ок				

Der Bildschirm "O₂ Sensor" (O2-Sensor) enthält folgende Elemente:

- Horizontal:
 - *O*₂ *Sensor (O2-Sensor):* In dieser Spalte werden Elemente angezeigt, die sich auf den O₂-Sensor beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - *Concentration (Konzentration):* Zeigt den aktuellen Messwert des Sensors für die O₂-Konzentration an. Der Benutzer kann den oberen und unteren Alarmgrenzwert anpassen.
 - *Temperatur:* Zeigt den aktuellen Messwert für die Modultemperatur an.

- *Temperature Open (Stromkreisunterbrechung Temperatur):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Stromkreisunterbrechung des Temperatursensors an.
- *Temperature Short (Kurzschluss Temperatur):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Kurzschluss am Temperatursensor an.
- Sensor Element Function (Sensorelementfunktion): Zeigt "OK"/"Fail" (Fehler) für die Prüfung der Sensorelementfunktion an.
- *Outside Operational Spec. (Außerhalb der Betriebsspezifikationen):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf Einhaltung der Betriebsspezifikationen an.
- *Photodiode Current Too Low (Fotodiodenstrom zu gering):* Zeigt "OK"/"Fail" (Fehler) für die Prüfung auf zu geringen Fotodiodenstrom an.
- *Sensor Detected (Sensor erkannt):* Zeigt "OK"/"Fail" (Fehler) für die Sensorerkennung an.
- Sensor Communication (Sensorkommunikation): Zeigt "OK"/"Fail" (Fehler) für die Sensorkommunikation an.
- *Valid Calibration (Gültige Kalibrierung):* Zeigt "OK"/"Fail" (Fehler) für die Gültigkeit der Kalibrierung an.
- *Board Communication (Karten-Kommunikation):* Zeigt "OK"/"Fail" (Fehler) für den Status der Karten-Kommunikation an.
- *Power Supply (Spannungsversorgung):* Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - 2.5V Diagnostic (2,5 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Diagnostic (5,0 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 24V Diagnostic (24 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.

Flow and Pressure (Durchfluss und Druck)

Der Bildschirm "Flow and Pressure" (Durchfluss und Druck) zeigt Statuswerte und Alarme bezüglich des Durchfluss- und Druckmoduls an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Flow and Pressure (Durchfluss und Druck)

Flow and Pressure	Value	Low Alarm	High Alarm	Units	
Flow	1.192	0.350	1.500	L/min	
Bench Pressure	751.319	600.000	800.000	mmHg	
Pump Pressure	333.37			mmHg	
Instrument Temperature	36.5	8.0	47.0	٥C	
Board Communication	ОК				
Power Suppy	OK				

Die Bildschirme "Flow and Pressure" (Durchfluss und Druck) enthalten folgende Elemente:

- Horizontal:
 - *Flow and Pressure (Durchfluss und Druck):* In dieser Spalte werden Elemente angezeigt, die sich auf das Durchfluss- und Druckmodul beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - *Flow (Durchfluss):* Zeigt den aktuellen Messwert für den Probendurchfluss an. Der Benutzer kann den oberen und unteren Alarmgrenzwert anpassen.

- *Bench Pressure (Messbankdruck):* Zeigt den aktuellen Messwert für den Messbankdruck an. Der Benutzer kann den oberen und unteren Alarmgrenzwert anpassen.
- *Pump Pressure (Pumpendruck):* Zeigt den aktuellen Messwert für den Pumpendruck an.
- *Instrument Temperature (Gerätetemperatur):* Zeigt den aktuellen Messwert für die Gerätetemperatur an. Der Benutzer kann den oberen und unteren Alarmgrenzwert anpassen.
- *Board Communication (Karten-Kommunikation):* Zeigt "OK"/"Fail" (Fehler) für den Status der Karten-Kommunikation an.
- *Power Supply (Spannungsversorgung):* Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - 2.5V Diagnostic (2,5 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Diagnostic (5,0 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 24V Diagnostic (24 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.

Peripherals SupportDer Bild(Peripheriemodul)und Alar

Der Bildschirm "Peripherals Support" (Peripheriemodul) zeigt Statuswerte und Alarme bezüglich des Peripheriemoduls an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \bigtriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Peripherals Support (Peripheriemodul)

Peripherals Support	Value	Low Alarm	High Alarm	Units	
Module Temperature	36.7			٥C	
Sample Valve	0.000			mA	
Zero Valve	1.289			mA	
Span Valve	0.000			mA	
Instrument Error	ок				
Board Communication	ок				

Der Bildschirm "Peripherals Support" (Peripheriemodul) enthält folgende Elemente:

- Horizontal:
 - *Peripherals Support (Peripheriemodul):* In dieser Spalte werden Elemente angezeigt, die sich auf das Peripheriemodul beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - *Module Temperature (Modultemperatur):* Zeigt die aktuelle Temperatur des Moduls an.

- *Sample Valve (Probennahmeventil):* Zeigt an, ob das Probennahmeventil aktiviert ist.
- Zero Valve (Nullluftventil): Zeigt an, ob das Nullluftventil aktiviert ist.
- Span Valve (Prüfgasventil): Zeigt an, ob das Prüfgasventil aktiviert ist.
- *Instrument Error (Gerätefehler):* Zeigt "OK"/"Fail" (Fehler) für das PCP-, Datenaufzeichnungs-, Streaming-, serielle Server- und Modbus-Protokoll an.
- *Board Communication (Karten-Kommunikation):* Zeigt "OK"/"Fail" (Fehler) für den Status der Karten-Kommunikation an.
- Power Supply (Spannungsversorgung): Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - 2.5V Diagnostic (2,5 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Diagnostic (5,0 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 24V Diagnostic (24 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Step Board (5,0 V-STEP-Platine): Zeigt "OK"/"Fail" (Fehler) an.
 - 24V Step Board (24 V-STEP-Platine): Zeigt "OK"/"Fail" (Fehler) an.

Valve and Pump Resets (Ventile und Pumpe zurücksetzen)

Auf dem Bildschirm "Valve and Pump Resets" (Ventile und Pumpe zurücksetzen) kann der Benutzer ein Ventil oder eine Pumpe nach einer Störung aufgrund übermäßiger Leistungsaufnahme zurücksetzen.

Hinweis ⚠️ Dieses Symbol gibt an, dass das Gerät zurückgesetzt werden muss. ▲

Hinweis Durch das Zurücksetzen eines Ventils werden alle Ventile zurückgesetzt. ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Valve and Pump Resets (Ventile und Pumpe zurücksetzen)

Der Bildschirm "Valve and Pump Resets" (Ventile und Pumpe zurücksetzen) enthält folgende Elemente:

- *Sample Valve Reset (Probennahmeventil zurücksetzen):* Setzt das Probennahmeventil zurück.
- *Zero Valve Reset (Nullluftventil zurücksetzen):* Setzt das Nullluftventil zurück.
- *Span Valve Reset (Prüfgasventil zurücksetzen):* Setzt das Prüfgasventil zurück.
- Pump Reset (Pumpe zurücksetzen): Setzt die Pumpe zurück.

Analog I/O (Analoge E/A) Der Bildschirm "Analog I/O" (Analoge E/A) zeigt Statuswerte und Alarme bezüglich des analogen Ein-/Ausgangsmoduls an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen ▲ und ▼, um nach oben und nach unten zu blättern, und die Schaltflächen ◀ und ▶, um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Analog I/O (Analoge E/A)

Analog IO	Value	Low Alarm	High Alarm	Units	
Voltage Output Channel 1	ок				
Voltage Output Channel 2	ок				
Voltage Output Channel 3	ок				
Voltage Output Channel 4	ок				
Voltage Output Channel 5	ок				
Voltage Output Channel 6	ок				

Der Bildschirm "Analog I/O" (Analoge E/A) enthält folgende Elemente:

- Horizontal:
 - *Analog IO (Analoge E/A):* In dieser Spalte werden Elemente angezeigt, die sich auf den analogen Ein-/Ausgang beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - Voltage Output Channel 1–6 (Spannungsausgang Kanal 1–6): Zeigt den Spannungsausgang in Echtzeit für jeden Kanal an.
 - *Current Output Channel 1–6 (Stromausgang Kanal 1 6):* Zeigt den Stromausgang in Echtzeit f
 ür jeden Kanal an.

- *Chip Temperatures (Chip-Temperaturen):* Zeigt "OK"/"Fail" (Fehler) für die Chip-Temperaturen an.
- Chip 1–3 Communication (Kommunikation Chip 1 3): Zeigt "OK"/"Fail" (Fehler) für jede Chip-Kommunikation an.
- *Test Mode (Testmodus):* Zeigt an, ob der Testmodus ein- oder ausgeschaltet ist.
- *Board Communication (Karten-Kommunikation):* Zeigt "OK"/"Fail" (Fehler) für den Status der Karten-Kommunikation an.
- *Power Supply (Spannungsversorgung):* Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Diagnostic (5,0 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 5.0V Ref Diagnostic (5,0 V-Referenzdiagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *15V Diagnostic (15 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - -15V Diagnostic (-15 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.

Digital I/O (Digitale E/A) Der Bildschirm "Digital I/O" (Digitale E/A) zeigt Statuswerte und Alarme bezüglich des digitalen Ein-/Ausgangsmoduls an. Wenn ein überwachtes Element den oberen oder unteren Alarmgrenzwert über- bzw. unterschreitet, wird ein Alarm ausgegeben.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Digital I/O (Digitale E/A)

Digital IO	Value	Reset	Low Alarm	High Alarm	Units	
Solenoid 1	0.0	Reset	ОК	OK	mA	
Solenoid 2	0.0	Reset	ок	ок	mA	
Solenoid 3	0.0	Reset	ОК	ок	mA	
Solenoid 4	0.0	Reset	OK	OK	mA	
Solenoid 5	0.0	Reset	OK	OK	mA	
Solenoid 6	0.0	Reset	OK	OK	mA	

Der Bildschirm "Digital I/O" (Digitale E/A) enthält folgende Elemente:

- Horizontal:
 - *Digital I/O (Digitale E/A):* In dieser Spalte werden Elemente angezeigt, die sich auf den digitalen Ein-/Ausgang beziehen.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - *Reset (Zurücksetzen):* Setzt das jeweilige Element zurück.
 - Low Alarm (Unterer Alarmgrenzwert): Zeigt den Status für den unteren Alarmgrenzwert für jedes Element an.
 - *High Alarm (Oberer Alarmgrenzwert):* Zeigt den Status für den oberen Alarmgrenzwert für jedes Element an.
 - Units (Einheiten): Zeigt Einheiten für jedes Element an.
- Vertikal:
 - Solenoid 1–8 (Magnetventil 1 8): Zeigt an, ob das Magnetventil aktiviert ist, indem der Strom in mA angezeigt wird.

- *External Alarm 1–3 (Externer Alarm 1 3):* Zeigt "OK"/"Fail" (Fehler) für externe Alarme an.
- *Relay Test Mode (Relaistestmodus):* Zeigt an, ob der Relaistestmodus ein- oder ausgeschaltet ist.
- *Solenoid Test Mode (Magnetventil-Testmodus):* Zeigt an, ob der Magnetventil-Testmodus ein- oder ausgeschaltet ist.
- *Board Communication (Karten-Kommunikation):* Zeigt "OK"/"Fail" (Fehler) für den Kommunikationsstatus an.
- *Power Supply (Spannungsversorgung):* Zeigt "OK"/"Fail" (Fehler) für die Spannungsversorgungen an. Das Feld "Power Supply" (Spannungsversorgung) wird rot, wenn Spannungen außerhalb der Grenzwerte liegen. Die Spannungszeilen selbst werden nicht hervorgehoben.
 - *3.3V Diagnostic (3,3 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - *5.0V Diagnostic (5,0 V-Diagnose):* Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.
 - 24V Diagnostic (24 V-Diagnose): Zeigt aktuelle Spannungsmesswerte an. Die Alarmgrenzwerte können nicht geändert werden.

Serial Numbers Auf dem Bildschirm "Serial Numbers" (Seriennummern) wird die Seriennummer für jedes Modul angezeigt.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Status and Alarms (Status und Alarme) > Serial Numbers (Seriennummern)

Der Bildschirm "Serial Numbers" (Seriennummern) enthält folgende Elemente:

- Instrument (Gerät): Seriennummer des Geräts.
- NDIR Bench (NDIR-Messbank): Seriennummer der NDIR-Messbank.
- *O*₂ Sensor Board (O2-Sensorkarte): Seriennummer der O₂-Sensorkarte.
- *O*₂ *Sensor (O2-Sensor):* Seriennummer des O₂-Sensors.
- *Flow and Pressure (Durchfluss und Druck):* Seriennummer des Durchfluss- und Druckmoduls.
- *Peripherals Support (Peripheriemodul):* Seriennummer des PSB.
- *Analog I/O (Analoge E/A):* Seriennummer der analogen E/A-Karte.
- *Digital I/O (Digitale E/A):* Seriennummer der digitalen E/A-Karte.

Predictive Diagnostics (Vorausschauende Diagnose)

Der Bildschirm "Predictive Diagnostics" (Vorausschauende Diagnose) ermöglicht es, für Messgeräte den Wartungsbedarf vorauszusagen, Ausfallzeiten zu reduzieren und den Zeitaufwand für die Fehlerbehebung zu minimieren. Wenn die Schaltfläche abgeblendet ist, ist keine Wartung erforderlich. Wenn die Schaltfläche blau ist, wird eine Wartung empfohlen.

Hinweis ♥ Dieses Symbol gibt an, dass eine aktive wartungsbezogene Warnung in dem Modul vorliegt. ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Predictive Diagnostics (Vorausschauende Diagnose)

Der Bildschirm "Predictive Diagnostics" (Vorausschauende Diagnose) enthält folgende Elemente:

- Filter Wheel (Filterrad)
- Sample Pump (Probennahmepumpe)
- Capillary (Kapillare)
- Flow Path (Durchflussweg)
- IR Source (IR-Quelle)
- Sample Valve (Probennahmeventil)
- Zero Valve (Nullluftventil)
- Span Valve (Prüfgasventil)

Maintenance (Wartung) Der Bildschirm "Maintenance" (Wartung) erinnert den Benutzer daran, wann bestimmte Gerätekomponenten gewartet/ersetzt werden müssen.

Hinweis **₩** Dieses Symbol gibt an, dass ein aktiver Wartungsalarm in dem Modul vorliegt. ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Maintenance (Wartung)

Der Bildschirm "Maintenance" (Wartung) enthält folgende Elemente:

- *Preventive Maintenance (Vorbeugende Wartung):* Zeigt das vorgeschlagene Wartungsintervall und die verbleibende Zeit bis zum Austausch von Komponenten an.
- *Change Part (Teil wechseln):* Hier kann der Benutzer die Wartung von Komponenten erfassen.
- *Maintenance History (Wartungsverlauf):* Zeigt das Protokoll aller erfassten Wartungsvorgänge für Komponenten an.
- *Advanced Maintenance (Erweiterte Wartung):* Setzt alle Einträge für die vorbeugende Wartung zurück.

Preventive Maintenance (Vorbeugende Wartung)

Der Bildschirm "Preventive Maintenance" (Vorbeugende Wartung) erinnert den Benutzer daran, wann bestimmte Gerätekomponenten gewartet/ersetzt werden müssen. Wenn der Wert für "Months Left" (Verbleibende Monate) sich auf 1 reduziert hat, wird die Zeile gelb hervorgehoben. Wenn der Wert für "Months Left" (Verbleibende Monate) 0 oder weniger ist, wird die Zeile rot hervorgehoben und das Wartungssymbol (Zahnräder) wird in der Statusleiste am unteren Bildschirmrand angezeigt.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Maintenance (Wartung) > Preventive Maintenance (Vorbeugende Wartung)

Component	Interval in Months	Months Left	Reset	Alert.	
Optical Bench Module	48	47	Reset	Enabled	
IR Source	12	11	Reset	Enabled	
Filter Wheel	48	47	Reset	Enabled	
Detector	48	47	Reset	Enabled	
Chopper Motor	48	47	Reset	Enabled	
Optical Switch	48	47	Reset	Enabled	

Der Bildschirm "Preventive Maintenance" (Vorbeugende Wartung) enthält folgende Elemente:

- Horizontal:
 - *Component (Komponente):* Gerät, das routinemäßig gewartet oder ausgetauscht werden muss.
 - *Interval in Months (Intervall in Monaten):* Erwarteter Zeitraum, bevor eine Komponente überprüft und/oder gewartet werden muss. Vom Benutzer einstellbar.
 - *Months Left (Verbleibende Monate):* Countdown-Timer in Monaten. Verbleibende Zeit seit dem Beginn des Wartungsintervalls. Wenn der Wert 1 oder weniger ist, wird die Zeile hervorgehoben und es wird empfohlen, die Komponente zu überprüfen und/oder zu warten.
- *Reset (Zurücksetzen):* Nachdem die Komponente gewartet/ersetzt wurde, drückt der Benutzer die Schaltfläche "Reset" (Zurücksetzen) und der Wert für "Months Left" (Verbleibende Monate) wird auf den Wert für "Service Interval in Months" (Wartungsintervall in Monaten) zurückgesetzt.
- *Alert (Warnung):* Ermöglicht dem Benutzer, die Ausgabe von Warnungen für die vorbeugende Wartung zu deaktivieren. Zeigt für jede Komponente "Enabled" (Aktiviert)/"Disabled" (Deaktiviert) an.
- Vertikal:
 - Optical Bench Module (Optisches Messbankmodul): Wartungsintervall für Komponenten des optischen Messbankmoduls.
 - IR Source (IR-Quelle): Wartungsintervall für die IR-Quelle.
 - Filter Wheel (Filterrad): Wartungsintervall für das Filterrad.
 - *Detector (Detektor):* Wartungsintervall für den Detektor.
 - *Chopper Motor (Chopper-Motor):* Wartungsintervall für den Chopper-Motor.
 - *Optical Switch (Optischer Schalter):* Wartungsintervall für den optischen Schalter.
 - *Flow System (Durchflusssystem):* Wartungsintervall für die Komponenten des Durchflusssystems.
 - Capillaries (Kapillaren): Wartungsintervall für Kapillaren.
 - Pump (Pumpe): Wartungsintervall für die Pumpe.
 - *DC Power Supply (Gleichstromversorgung):* Wartungsintervall für die Gleichstromversorgung.
 - Fan Filter (Lüfterfilter): Wartungsintervall für den Lüfterfilter.
 - *System Components (Systemkomponenten):* Wartungsintervall für die Systemkomponenten.
 - Purafil: Wartungsintervall für Purafil.
 - Charcoal (Aktivkohle): Wartungsintervall für Aktivkohle.
 - Dri-Rite: Wartungsintervall für Dri-Rite.

Change Part (Teil wechseln)

Der Bildschirm "Change Part" (Teil wechseln) ermöglicht es dem Benutzer, die Komponente, die gewartet wird, und die Wartungsmaßnahme einzugeben. Durch Drücken der Schaltfläche "Commit" (Bestätigen) wird die Tabelle für die vorbeugende Wartung und gegebenenfalls der Bildschirm "Predictive Diagnostics" (Vorausschauende Diagnose) aktualisiert.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Maintenance (Wartung) > Change Part (Teil wechseln)

Der Bildschirm "Change Part" (Teil wechseln) enthält folgende Elemente:

- *Select Part (Teil auswählen):* Hier kann der Benutzer das zu wartende Teil aus der Wartungstabelle auswählen.
- *Fix (Wartungsmaßnahme):* Der Benutzer kann zwischen "New" (Erneuert), "Rebuilt" (Aufgearbeitet), "Cleaned" (Gereinigt) und "Unknown" (Unbekannt) wählen.
- *Comment (Kommentar):* Der Benutzer kann einen kurzen Kommentar verfassen, der in der Tabelle für den Verlauf der vorbeugenden Wartung erfasst wird.
- *Commit (Bestätigen):* Mit dieser Option kann der Benutzer die ausgewählte Wartungsmaßnahme bestätigen und speichern.

Maintenance History
(Wartungsverlauf)Auf dem Bildschirm "Maintenance History" (Wartungsverlauf) kann der
Benutzer sehen, wann Teile ersetzt, aufgearbeitet oder gereinigt wurden.
Wenn ein Benutzer ein Teil auf dem Bildschirm "Change Part" (Teil
wechseln) wechselt, wird in der Wartungsverlauftabelle automatisch
zuoberst eine neue Zeile angelegt.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Maintenance (Wartung) > Maintenance History (Wartungsverlauf)

Hinweis Wenn Sie die Schaltfläche "Maintenance History" (Wartungsverlauf) drücken, wird die Meldung "Retrieving maintenance history data, it may take a few seconds…" (Wartungsverlauf wird abgerufen, dies kann einige Sekunden dauern…) angezeigt. ▲

Part	Fix	Date	Service Months	Comments	
All	Unknown	09/07/2017	0	Reset All	
All	Unknown	08/05/2017	1	Reset All	
IR Source	New	08/05/2017	1	ABC	
All	Unknown	07/31/2017	0	Reset All	
IR Source	Rebuilt	07/31/2017	0		-
Optical Switch	Rebuilt	07/31/2017	1		
Chopper Motor	Rebuilt	07/31/2017			
Detector	Rebuilt	07/31/2017	1		
Filter Wheel	Rebuilt	07/31/2017	1		
IR Source	Rebuilt	07/31/2017	0		

Der Bildschirm "Maintenance History" (Wartungsverlauf) enthält folgende Elemente:

- Part (Teil): Die Komponente, die gewartet wurde.
- Fix (Wartungsmaßnahme): Die Art der Wartung.
- *Date (Datum):* Zeigt das Datum/die Uhrzeit an, zu denen die Wartung erfasst wurde.
- *Service Months (Monate seit letzter Wartung):* Die Zeitspanne seit der letzten Wartung in Monaten.
- *Comments (Kommentare):* Zeigt Kommentare an, die zum Zeitpunkt der Wartungsmaßnahme eingegeben wurden.

Advanced Maintenance (Erweiterte Wartung)

Der Bildschirm "Advanced Maintenance" (Erweiterte Wartung) setzt alle Einträge für die vorbeugende Wartung zurück.

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > Maintenance (Wartung) > Advanced Maintenance (Erweiterte Wartung)

File Sharing and Support (Dateifreigabe und Support)

Der Bildschirm "File Sharing and Support" (Dateifreigabe und Support) ermöglicht es dem Benutzer, Zustandsprüfungsberichte herunterzuladen, Dateien mit Zustandsprüfungsberichten per E-Mail an den technischen Suppport von Thermo Fisher Scientific oder vom Benutzer festgelegte E-Mail-Adressen zu versenden, die Funktion iQ360 zu aktivieren und einen Vor-Ort-Serviceeinsatz anzufordern. Die Datei "Health Check Report" (Zustandsprüfungsbericht) enthält: Statuswerte und Alarme, Warnungen für die vorbeugende Wartung, das Aktivitätsprotokoll, die Service-Datenbank, den Kalibrierungsverlauf und das Datenprotokoll (letzte 24 Stunden).

Hinweis Um eine Liste von E-Mail-Adressen zu erstellen, gehen Sie zu "Settings > User Contact Information" (Einstellungen > Benutzerkontaktdaten). Um die E-Mail-Funktionalität zu konfigurieren, gehen Sie zu "Settings > Communications > Email Server (SMTP)" (Einstellungen > Kommunikation > E-Mail-Server (SMTP)). ▲

Startbildschirm > Settings (Einstellungen) > Health Check (Zustandsprüfung) > File Sharing and Support (Dateifreigabe und Support)

Der Bildschirm "File Sharing and Support" (Dateifreigabe und Support) enthält folgende Elemente:

- Download Health Check Report to USB Drive (Zustandsprüfungsbericht auf USB-Laufwerk exportieren): Sendet den Zustandsprüfungsbericht an ein USB-Laufwerk.
- Email Health Check Report File to Technical Support (Zustandsprüfungsbericht per E-Mail an technischen Support senden): Sendet die Datei mit dem Zustandsprüfungsbericht per E-Mail an den technischen Support und die E-Mail-Adressen des Kunden.

- Email Health Check Report to Personal Account (Zustandsprüfungsbericht per E-Mail an persönliches Konto senden): Sendet die Datei mit dem Zustandsprüfungsbericht per E-Mail an ein persönliches Konto.
- *iQ360:* Die Funktion "iQ360" ist ein bezahltes Abonnement und ermöglicht, bei Ausgabe eines Alarms oder einer Warnung automatisch E-Mails an den technischen Support zu senden. Die Funktion kann aktiviert oder deaktiviert werden.
- *Request a Field Service Visit (Vor-Ort-Serviceeinsatz anfordern):* Sendet eine Anforderung für einen Vor-Ort-Serviceeinsatz an den technischen Support.

Measurement Settings (Messungseinstellungen)

Das Menü "Measurement Settings" (Messungseinstellungen) enthält eine Reihe von Untermenüs, in denen Geräteparameter und -einstellungen angezeigt und bearbeitet werden können.

Die folgenden Bildschirme zeigen die Messungseinstellungen im Einzelbereichsmodus und im dualen oder automatischen Bereichsmodus. Im dualen oder automatischen Bereichsmodus sind die Schaltflächen "High Range" (Oberer Bereich) und "Low Range" (Unterer Bereich) verfügbar.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) (Einzelbereichsmodus)

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) (Dualer oder automatischer Bereichsmodus)

Das Menü "Measurement Settings" (Messungseinstellungen) enthält folgende Elemente:

• Averaging Time (Mittelungszeit): Legt die Mittelungszeit für die CO-Probenmessung und O₂-Probenmessung fest (wenn die Option aktiviert ist).

- *Range Mode Selection (Bereichsmodusauswahl):* Der Benutzer kann zwischen den verschiedenen Bereichsmodi wählen: "Single" (Einzelbereichsmodus), "Dual" (Dualer Bereichsmodus) und "Auto" (Automatischer Bereichsmodus). Weitere Informationen finden Sie unter "Range Mode Selection (Bereichsmodusauswahl)" auf Seite 3-81.
- *Range Setting (Bereichseinstellung):* Stellt im Einzelbereichsmodus den Konzentrationsbereich für die Analogausgänge ein.
- *High Range Setting (Obere Bereichseinstellung):* Stellt im dualen oder automatischen Bereichsmodus den Konzentrationsbereich für den oberen Bereich für den Analogausgang ein.
- *Low Range Setting (Untere Bereichseinstellung):* Stellt im dualen oder automatischen Bereichsmodus die Konzentration für den unteren Bereich für den Analogausgang ein.
- *Gas Mode (Gasmodus):* Der Benutzer kann manuell zwischen den Modi "Sample" (Probe), "Zero" (Nullluft) und "Span" (Prüfgas) wählen.
- *Gas Units (Gaseinheiten):* Legt die Einheiten fest, in denen der Messwert für die CO-Konzentration ausgedrückt wird.
- *Dilution Ratio (Verdünnungsverhältnis):* Dient als Multiplikator, wenn Verdünnungsgas verwendet wird.
- Advanced Measurement Settings (Erweiterte Messungseinstellungen): Erweiterte Einstellungen, die sich auf CO-Messwerte auswirken.

Averaging TimeAuf dem Bildschirm "Averaging Time" (Mittelungszeit) kann der Benutzer
die dynamische Filterung oder eine manuell festgelegte (statische)
Mittelungszeit auswählen.

Die Mittelungszeit legt den Zeitraum (1 bis 300 Sekunden) fest, in dem CO-Messungen durchgeführt werden. Die durchschnittliche Konzentration der Messwerte wird für diesen Zeitraum berechnet. Das Frontblenden-Display und die Analogausgänge werden jede Sekunde aktualisiert, wenn die Mittelungszeit größer als 1 Sekunde ist. Eine Mittelungszeit von 10 Sekunden bedeutet z. B., dass bei jeder Aktualisierung die mittlere Konzentration der letzten 10 Sekunden angezeigt wird. Eine Mittelungszeit von 300 Sekunden bedeutet, dass bei jeder Aktualisierung der gleitende Mittelwert der Konzentration für die letzten 300 Sekunden ausgegeben wird. Je kürzer die Mittelungszeit ist, desto schneller reagieren also das Frontblenden-Display und die Analogausgänge auf Veränderungen der Konzentration. Längere Mittelungszeiten werden in der Regel verwendet, um die Ausgangsdaten zu glätten.

Die dynamische Filterung ermöglicht, Daten zu glätten, ohne die Ansprechzeit zu beeinträchtigen. Sie ändert automatisch die Mittelungszeit, um dem Benutzer ein besseres Ansprechverhalten bei sich schnell verändernden Bedingungen zu bieten. Sie sorgt zudem für gleichmäßigere und stabilere Messwerte, wenn die Bedingungen sich nicht schnell verändern, und kann außerdem Spitzen besser verarbeiten, um ihre Auswirkungen auf die Daten zu minimieren. Gleichzeitig bleiben die gefilterten Daten für die gemessenen Bedingungen repräsentativ.

Hinweis Wenn die Funktion "Dynamic Filtering" (Dynamische Filterung) ausgewählt ist, wird die Schaltfläche "Averaging Time" (Mittelungszeit) deaktiviert. ▲

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Averaging Time (Mittelungszeit) (Einzelbereichsmodus und O₂-Option)

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Averaging Time (Mittelungszeit) (Dualer oder automatischer Bereichsmodus und O₂-Option)

Der Bildschirm "Averaging Time" (Mittelungszeit) enthält folgende Elemente:

- *Dynamic Filtering (Dynamische Filterung):* Aktiviert/deaktiviert die dynamische Filterung im Einzelbereichsmodus.
- *High Range Dynamic Filtering (Dynamische Filterung oberer Bereich):* Aktiviert/deaktiviert die dynamische Filterung für den oberen Bereich im dualen oder automatischen Bereichsmodus.
- Low Range Dynamic Filtering (Dynamische Filterung unterer Bereich): Aktiviert/deaktiviert die dynamische Filterung für den unteren Bereich im dualen oder automatischen Bereichsmodus.
- Averaging Time (Mittelungszeit): Legt im Einzelbereichsmodus bei deaktivierter dynamischer Filterung die Mittelungszeit fest.
- *High Range Averaging Time (Mittelungszeit oberer Bereich):* Legt im dualen oder automatischen Bereichsmodus bei deaktivierter dynamischer Filterung die Mittelungszeit für den oberen Bereich fest.
- Low Range Averaging Time (Mittelungszeit unterer Bereich): Legt im dualen oder automatischen Bereichsmodus bei deaktivierter dynamischer Filterung die Mittelungszeit für den unteren Bereich fest.
- *O₂ Averaging Time (O₂-Mittelungszeit):* Legt die O₂-Mittelungszeit fest, wenn der O₂-Sensor aktiviert ist.

Range Mode Selection (Bereichsmodusauswahl)

Der Bildschirm "Range Mode Selection" (Bereichsmodusauswahl) wird verwendet, um zwischen den verschiedenen Bereichsmodi umzuschalten: Bereich "Single" (Einfach), "Dual" (Zweifach) und "Auto".

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Range Mode Selection (Bereichsmodusauswahl)

Der Bildschirm "Range Mode Selection" (Bereichsmodusauswahl) enthält folgende Elemente:

- *Single (Einfach):* Im Einzelbereichsmodus gibt es einen Bereich, eine Mittelungszeit und einen Messbereichskoeffizienten.
- *Dual (Zweifach):* Im dualen Bereichsmodus gibt es zwei unabhängige Analogausgänge. Diese werden einfach als "High Range" (Oberer Bereich) und "Low Range" (Unterer Bereich) bezeichnet. Jeder Kanal hat eine eigene Einstellung für den Analogausgangsbereich und Mittelungszeit sowie einen eigenen Messbereichskoeffizienten.

Dies ermöglicht, den Messwert für die Probenkonzentration für zwei unterschiedliche Bereiche an die Analogausgänge zu übertragen. Zum Beispiel kann der Analogausgang für niedrige CO-Werte so konfiguriert werden, dass er Konzentrationen von 0 bis 50 ppm ausgibt, während der Analogausgang für hohe CO-Werte für die Ausgabe von Konzentrationen von 0 bis 100 ppm konfiguriert wird.

Außerdem hat im dualen oder automatischen Bereichsmodus jeder CO-Analogausgang zwei Messbereichskoeffizienten, sodass jeder Bereich separat kalibriert werden kann. Dies ist insbesondere nötig, wenn die beiden Bereiche nicht nahe aneinanderliegen. Der untere CO-Bereich ist zum Beispiel auf 0 bis 50 ppm eingestellt und der obere CO-Bereich auf 0 bis 10.000 ppm. • *Auto (Automatisch):* Im Bereichsmodus "Auto" (Automatisch) werden die Analogausgänge für CO je nach der Konzentration zwischen den Einstellungen für den oberen und für den unteren Bereich umgeschaltet. Der obere und der untere Bereich werden im Menü "Range Settings" (Bereichseinstellungen) definiert.

Der untere Bereich ist zum Beispiel auf 50 ppm eingestellt, der obere Bereich auf 100 ppm. Probenkonzentrationen unter 50 ppm werden basierend auf der Auswahl für den unteren Bereich und Konzentrationen über 50 ppm basierend auf der Auswahl für den oberen Bereich ausgegeben. Wenn der untere Bereich aktiv ist, liegt der Ausgang für den Bereichsmodusauswahl-Status bei 0 Volt. Wenn der obere Bereich aktiv ist, liegt der Ausgang für den Bereichsmodusauswahl-Status bei der Hälfte des Skalenendwerts.

Wenn der obere Bereich aktiv ist, muss die CO-Konzentration auf 95 % des unteren CO-Bereichs fallen, damit der untere Bereich aktiv wird.

Außerdem hat jeder CO-Bereich und Analogausgang zwei Messbereichskoeffizienten, sodass jeder Bereich separat kalibriert werden kann. Dies ist insbesondere nötig, wenn die beiden Bereiche nicht nahe aneinanderliegen. Der untere CO-Bereich ist zum Beispiel auf 0 bis 50 ppm eingestellt und der obere CO-Bereich auf 0 bis 10.000 ppm.

Hinweis Bei Verwendung des automatischen Bereichsmodus dürfen der obere und der untere Bereich nicht um mehr als 1 Größenordnung variieren. Wenn der untere Bereich zum Beispiel auf 20 ppm eingestellt ist, darf der obere Bereich nicht auf mehr als 200 ppm eingestellt werden. Der Grund dafür ist, dass die Konzentrationsmessung nicht linear ist und die Möglichkeit besteht, dass die Messwerte im unteren Bereich oberhalb der Spitze des unteren Bereichs unvorhersagbar werden, was beim Umschalten zwischen den Bereichen zu einem sprunghaften Anstieg der Konzentrationswerte führen würde.

Eine mögliche Lösung für dieses Problem ist, die Mehrpunktkalibrierung (Dreipunkt-Kalibrierung) für beide Bereiche durchzuführen und sicherzustellen, dass der höchste Punkt des unteren Bereichs größer oder gleich dem untersten Punkt des oberen Bereichs ist. Dadurch wird sichergestellt, dass die Konzentrationskurven für den oberen und den unteren Bereich sich überlappen. Wenn beide Methoden aufgrund lokaler Vorschriften nicht zulässig sind, sollte der duale Bereichsmodus verwendet werden, sodass die Bereichsauswahl vom Benutzer auf Übereinstimmung mit den Vorschriften geprüft werden kann. ▲

Range Setting (Bereichseinstellung)

Mit der Schaltfläche "Range Setting" (Bereichseinstellung) wird der Konzentrationsbereich für die Analogausgänge definiert. Ein CO-Bereich von 0 bis 50 ppm beschränkt den Analogausgang zum Beispiel auf Konzentrationen zwischen 0 und 50 ppm.

Die Schaltfläche "Range Setting" (Bereichseinstellung) zeigt den aktuellen CO-Bereich an. Die Schaltfläche "Range Setting" (Bereichseinstellung) ist für die Bereichsmodi "Single" (Einzelbereich), "Dual" (Zwei Bereiche) und "Auto" (Automatisch) ähnlich. Der einzige Unterschied ist, dass mit dem Begriff "High" (Hoch) oder "Low" (Niedrig) angegeben wird, welcher Bereich angezeigt wird. Weitere Informationen zu den Bereichsmodi "Dual" (Zwei Bereiche) und "Auto" (Automatisch) finden Sie unter "Range Mode Selection (Bereichsmodusauswahl)" auf Seite 3-81. Durch Drücken der Schaltflächen "Range Setting" (Bereichseinstellung), "High Range Setting" (Einstellung oberer Bereich) und "Low Range Setting" (Einstellung unterer Bereich) wird eine numerische Tastatur angezeigt, mit der der Benutzer einen Bereich auswählen kann.

Die einstellbaren Bereiche gemäß der ausgewählten Einheit umfassen:

ррЬ	50 – 10.000.000 ppb
ppm	1 – 10.000 ppm
%	5e-6 – 1 %
µg/m³	50 – 10.000.000 μg/m ³
mg/m ³	$1 - 10.000 \text{ mg/m}^3$
g/m ³	0,001 – 10 g/m ³

Gas Mode (Gasmodus) Auf dem Bildschirm "Gas Mode" (Gasmodus) wird der Gasmodus für das Gerät festgelegt.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Gas Mode (Gasmodus)

Der Bildschirm "Gas Mode" (Gasmodus) enthält folgende Elemente:

- Sample (Probe): Stellt das Gerät für die Messung von Probengas ein.
- *Zero (Nullluft):* Wird zur Kalibrierung des Hintergrunds des Geräts verwendet. Durch Drücken dieser Schaltfläche wird das Gerät in den Nullluft-Modus geschaltet.
- *Span (Prüfgas):* Wird zur Kalibrierung des Messbereichskoeffizienten verwendet. Durch Drücken dieser Schaltfläche wird das Gerät in den Messbereichs-Modus geschaltet.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Gas Units (Gaseinheiten)

Der Bildschirm "Gas Units" (Gaseinheiten) enthält folgende Elemente:

- *ppb:* Teile pro Milliarde
- *ppm:* Teile pro Million
- %: Prozent
- µg/m³: Mikrogramm pro Kubikmeter.
- *mg/m³*: Milligramm pro Kubikmeter.
- *g/m³:* Gramm pro Kubikmeter.

Advanced Measurement Settings (Erweiterte Messungseinstellungen) Der Bildschirm "Advanced Measurement Settings" (Erweiterte Messungseinstellungen) ermöglicht dem Benutzer, die optische Messbank zu kalibrieren und weitere erweiterte Einstellungen festzulegen.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen)

Das Menü "Advanced Measurement Settings" (Erweiterte Messungseinstellungen) enthält folgende Elemente:

- Optical Bench Settings (Einstellungen für optische Messbank): Hier legt der Benutzer die Detektorverstärkung und den Anfangswert für das Probe/Referenz-Verhältnis fest. Dies kann manuell oder automatisch erfolgen.
- *Compensation (Kompensation):* Ermöglicht dem Benutzer den Ausgleich der Auswirkungen von Änderungen der Temperatur, des Drucks und der Sauerstoffkonzentration (falls aktiviert).
- Pressure Calibration (Druckkalibrierung): Kalibriert den Druck.

Optical Bench Settings (Einstellungen für optische Messbank)

Auf dem Bildschirm "Optical Bench Settings" (Einstellungen für optische Messbank) kann der Benutzer die Detektorverstärkung und den Anfangswert für das Probe/Referenz-Verhältnis (P/R) festlegen. Der P/R-Wert sollte vor anderen Kalibrierungen des Geräts kalibriert werden. Weitere Informationen finden Sie in Kapitel 4, "Kalibrierung".

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank)

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank) > Mit "Detector Gain Calibration" (Kalibrierung der Detektorverstärkung) fortfahren

Description	Detector Gain	Current Sample Int. (Hz)	Current Reference Int. (Hz)	
Manual Entry	180	165508	143807	
Auto Cal	Start			
End Cal	Stop			
Default Values	Default Gain			

Der Bildschirm "Detector Gain Calibration" (Kalibrierung der Detektorverstärkung) enthält folgende Elemente:

- Horizontal:
 - *Description (Beschreibung):* Legt die Aktionen fest, die der Benutzer ausführen kann.
 - *Detector gain (Detektorverstärkung):* Der Benutzer kann die Detektorverstärkung manuell einstellen oder kalibrieren.
 - *Current Sample Int. (Hz) (Aktuelle Probenintensität (Hz)):* Zeigt die aktuelle Probenintensität in Hz an.
 - *Current Reference Int. (Hz) (Aktuelle Referenzintensität (Hz)):* Zeigt die aktuelle Referenzintensität in Hz an.
- Vertikal:
 - *Manual Entry (Manuelle Eingabe):* Zeigt die aktuellen Werte an. Wenn die Schaltfläche "Detector gain" (Detektorverstärkung) gedrückt wird, kann der Benutzer die Detektorverstärkung manuell einstellen.
 - Auto Cal (Autom. Kalibrierung): Durch Drücken der Schaltfläche "Start" wird die automatische Kalibrierung gestartet. Es kann bis zu 5 Minuten dauern, bis die Kalibrierung abgeschlossen ist. Der Benutzer kann die Kalibrierung stoppen, indem er die Schaltfläche "Stop" (Stopp) drückt.
 - *End Cal (Kalibrierung beenden):* Wenn "Stop" (Stopp) gedrückt wird, unterbricht das Gerät die automatische Kalibrierung und der Wert wird nicht geändert.
 - *Default Values (Standardwerte):* Durch Drücken dieser Schaltfläche wird der Standardwert für die Verstärkung gespeichert.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank) > Mit "Initial S/R Calibration" (Anfängliche P/R-Kalibrierung) fortfahren

Der Bildschirm "Initial S/R Calibration" (Anfängliche P/R-Kalibrierung) enthält folgende Elemente:

- Horizontal:
 - *Description (Beschreibung):* Legt die Aktionen fest, die der Benutzer ausführen kann.
 - *Initial S/R (Anfänglicher P/R-Wert):* Zeigt den anfänglichen P/R-Wert an.
 - Current S/R (Aktueller P/R-Wert): Zeigt den aktuellen P/R-Wert an.
- Vertikal:
 - *Manual Entry (Manuelle Eingabe):* Zeigt den aktuellen Wert an. Wenn die Schaltfläche "Initial S/R" (Anfänglicher P/R-Wert) gedrückt wird, kann der Benutzer den anfänglichen P/R-Wert manuell einstellen. Beim Ändern des P/R-Werts sollte das Gerät Nullluft ansaugen.
 - Auto Cal (Autom. Kalibrierung): Durch Drücken der Schaltfläche "Start" wird die automatische Kalibrierung gestartet. Es kann bis zu 5 Minuten dauern, bis die Kalibrierung abgeschlossen ist. Der Benutzer kann die Kalibrierung stoppen, indem er die Schaltfläche "Stop" (Stopp) drückt.
 - *End Cal (Kalibrierung beenden):* Durch Drücken dieser Schaltfläche wird die automatische Kalibrierung unterbrochen und der Wert wird nicht geändert.
 - *Default Values (Standardwerte):* Durch Drücken dieser Schaltfläche wird der Standard-P/R-Wert gespeichert.

CompensationDer Bildschirm "Compensation" (Kompensation) ermöglicht den(Kompensation)Ausgleich von Veränderungen des Ausgangssignals des Geräts aufgrund von
Schwankungen der internen Gerätetemperatur, des Drucks und des
Sauerstoffgehalts (wenn der O2-Sensor installiert ist).

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Compensation (Kompensation)

Der Bildschirm "Compensation" (Kompensation) enthält folgende Elemente:

- *Temp Compensation (Temperaturkompensation):* Aktiviert bzw. deaktiviert die Temperaturkompensation und ermöglicht den Ausgleich von Veränderungen des Ausgangssignals des Geräts aufgrund von Schwankungen der internen Gerätetemperatur. Die Auswirkungen der Veränderungen der internen Gerätetemperatur auf die Untersysteme und den Ausgang des Analysators wurden empirisch bestimmt. Diese empirischen Daten werden verwendet, um Veränderungen der Temperatur zu kompensieren.
- *Pressure Compensation (Druckkompensation):* Aktiviert bzw. deaktiviert die Druckkompensation und ermöglicht den Ausgleich von Veränderungen des Ausgangssignals des Geräts aufgrund von Schwankungen des Messbankdrucks. Die Auswirkungen der Veränderungen des Messbankdrucks auf die Untersysteme und den Ausgang des Analysators wurden empirisch bestimmt. Diese empirischen Daten werden verwendet, um Veränderungen des Messbankdrucks zu kompensieren.
- *O*₂ *Correction (O*₂*-Korrektur):* Ermöglicht die Korrektur der CO-Konzentration basierend auf O₂*-Messwerten.*

O2 Correction Wenn die O2-Korrektur aktiviert ist, wird die folgende Gleichung auf den Konzentrationswert angewendet, um einen korrigierten Wert zu berechnen. Der korrigierte Wert kann über die Analogausgänge ausgegeben, im Protokollierungsspeicher erfasst oder per Streaming übertragen werden. Die korrigierten Werte werden nicht auf dem Startbildschirm an der Frontblende angezeigt, sondern nur die unkorrigierten Werte.

$$C_{comp} @ O2_{corr} = C * \left(\frac{20.9 - O2_{corr}}{20.9 - O2_{meas}} \right)$$

Abkürzungen: "C" ist die gemessene Konzentration, "O2_{corr}" ist die Sauerstoffkonzentration, auf die "C" korrigiert wird (dieser Wert wird vom Benutzer auf dem Bildschirm "Source O₂ Concentration Setpoint" (Konzentrationssollwert O2-Quelle) festgelegt und beträgt standardmäßig 15 %). "O2_{meas}" ist die gemessene O₂-Konzentration, die auf 20,8 % festgelegt ist, um Fehler aufgrund einer Division durch null zu vermeiden. "C_{comp}" ist die korrigierte Konzentration, die für Analogausgänge oder die Datenprotokollierung verwendet werden kann.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Compensation (Kompensation) > O₂ Correction (O₂-Korrektur) (Einzelbereichsmodus)

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Compensation (Kompensation) > O₂ Correction (O₂-Korrektur) (Dualer oder automatischer Bereichsmodus)

Der Bildschirm "Compensation" (Kompensation) enthält folgende Elemente:

- Source O₂ Concentration Setpoint (Konzentrationssollwert O₂-Quelle): Der Benutzer gibt die erwartete O₂-Konzentration ein.
- *Current O*₂ *Concentration (Aktuelle O2-Konzentration):* Schreibgeschützt. Zeigt den aktuellen O₂-Messwert an.
- Corrected CO Concentration (Korrigierte CO-Konzentration): Schreibgeschützt. Zeigt im Einzelbereichsmodus die korrigierte CO-Konzentration an.
- Corrected High Range CO Concentration (Korrigierte CO-Konzentration für oberen Bereich): Schreibgeschützt. Zeigt im dualen oder automatischen Bereichsmodus die korrigierte Konzentration für den oberen Bereich an.
- Corrected Low Range CO Concentration (Korrigierte CO-Konzentration für unteren Bereich): Schreibgeschützt. Zeigt im dualen oder automatischen Bereichsmodus die korrigierte Konzentration für den unteren Bereich an.

Pressure Calibration D (Druckkalibrierung) v

Der Bildschirm "Pressure Calibration" (Druckkalibrierung) wird verwendet, um den Drucksensor auf Nullluft-, Prüfgas- oder Werks-Standardwerte zu kalibrieren.

Verwenden Sie die Schaltflächen \blacktriangle und \bigtriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Pressure Calibration (Druckkalibrierung)

Der Bildschirm "Pressure Calibration" (Druckkalibrierung) enthält folgende Elemente:

- Horizontal:
 - Description (Beschreibung): Listet die Elemente in der Tabelle auf.
 - Reading (Messwert): Zeigt den Messwert für jeden Drucksensor an.
 - *Calibration (Kalibrierung):* Startet die Kalibrierung oder setzt Standardwerte zurück.
- Vertikal:
 - Sensor 1–3 Reading (Messwert Sensor 1 3): In der Spalte mit der Überschrift "Reading" (Messwert) der aktuelle Messwert jedes Drucksensors.
 - Atmospheric Sensor 1–3 (Atmosphärischer Druck Sensor 1–3): In der Spalte mit der Überschrift "Reading" (Messwert) gibt der Benutzer den aktuellen atmosphärischen Druck in mmHg ein. In der Spalte mit der Überschrift "Calibration" (Kalibrierung) drückt der Benutzer die Schaltfläche "Start", um den Hochpunkt des Sensors zu kalibrieren.

- Zero Sensor 1–3 (Nullpunktsensor 1 3): Der Benutzer muss ein starkes Vakuum auf den Sensor anwenden. In der Spalte mit der Überschrift "Reading" (Messwert) gibt der Benutzer den Druck in mmHg ein. In der Spalte mit der Überschrift "Calibration" (Kalibrierung) drückt der Benutzer die Schaltfläche "Start", um den Tiefpunkt des Sensors zu kalibrieren.
- *Reset all values (Alle Werte zurücksetzen):* Setzt alle Werte auf die Standardeinstellungen zurück.

Communications (Kommunikation)

Auf dem Bildschirm "Communications" (Kommunikation) kann der Benutzer TCP/DHCP-Parameter, serielle Einstellungen, analoge E/A und digitale E/A, den E-Mail-Server und die Geräte-ID festlegen. Schaltflächen, die unter "Settings" (Einstellungen) > **Configuration** (Konfiguration) nicht ausgewählt sind, sind abgeblendet.

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation)

Der Bildschirm "Communications" (Kommunikation) enthält folgende Elemente:

- *Wired TCP/DHCP (Kabel-TCP/DHCP):* Einstellungen für die Kommunikation mit dem Gerät über ein Ethernetkabel.
- Serial RS-232/485 (Serielles RS-232/485): Einstellungen für die Kommunikation mit dem Gerät über das RS-232/485-Protokoll. Diese Option ist nur sichtbar, wenn unter "Settings" (Einstellungen) > "Configuration" (Konfiguration) > Communications Board (Kommunikationsbaugruppe) ausgewählt wurde.
- *Analog I/O (Analoge E/A):* Einstellungen für die Kommunikation mit dem Gerät über analoge Ein-/Ausgänge. Diese Option ist nur sichtbar, wenn unter "Settings" (Einstellungen) > "Configuration" (Konfiguration) > Analog I/O (Analoge E/A) ausgewählt wurde.
- *Digital I/O (Digitale E/A):* Einstellungen für die Kommunikation mit dem Gerät über digitale Ein-/Ausgänge. Diese Option ist nur sichtbar, wenn unter "Settings" (Einstellungen) > "Configuration" (Konfiguration) > Digital I/O (Digitale E/A) ausgewählt wurde.
- *Email Server (SMTP) (E-Mail-Server (SMTP)):* Einstellungen für die Kommunikation per E-Mail.
- *Instrument ID (Geräte-ID):* Diese Option ermöglicht dem Benutzer, die Geräte-Identifikationsnummer (ID) zu bearbeiten. Die ID wird verwendet, um das Gerät bei Verwendung von Protokollen zur Steuerung des Geräts oder Erfassung von Daten zu identifizieren. Es kann erforderlich sein, die ID zu bearbeiten, wenn zwei oder mehr Geräte desselben Modells mit einem Computer verbunden sind. Gültige Nummern für Geräte-IDs sind 0 bis 127. Der 48iQ hat standardmäßig die Geräte-ID 1.

Wired TCP/DHCP (Kabel-TCP/DHCP)

Der Bildschirm "Wired TCP/DHCP" (Kabel-TCP/DHCP) ermöglicht es dem Benutzer, mit dem Gerät über Kabel-TCP/IP-Einstellungen zu kommunizieren.

Hinweis Wenn DHCP aktiviert ist, wird die dynamische IP-Adresse verwendet. Wenn DHCP deaktiviert ist, wird die statische IP-Adresse verwendet. ▲

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Wired TCP/DHCP (Kabel-TCP/DHCP) (mit aktiviertem DHCP)

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Wired TCP/DHCP (Kabel-TCP/DHCP) (mit deaktiviertem DHCP)

Der Bildschirm "Wired TCP/DHCP" (Kabel-TCP/DHCP) enthält folgende Elemente:

• *DHCP:* Schaltet DHCP zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) um.

- Dynamic IP Address (Dynamische IP-Adresse): Dynamische IP-Adresse des Geräts.
- *Dynamic Netmask (Dynamische Netzmaske):* Dynamische Netzmaske des Geräts.
- *Dynamic Gateway (Dynamischer Gateway):* Dynamischer Gateway des Geräts.
- *Static IP Address (Statische IP-Adresse):* Statische IP-Adresse des Geräts. Dieser Parameter kann eingestellt werden, wenn DHCP deaktiviert ist.
- *Static Netmask (Statische Netzmaske):* Statische Netzmaske des Geräts. Dieser Parameter kann eingestellt werden, wenn DHCP deaktiviert ist.
- *Static Gateway (Statischer Gateway):* Statischer Gateway des Geräts. Dieser Parameter kann eingestellt werden, wenn DHCP deaktiviert ist.
- DNS Server Address (DNS-Server-Adresse): DNS-IP-Adresse des Geräts. Dieser Parameter kann eingestellt werden, wenn DHCP deaktiviert ist.
- Wired MAC Address (Kabel-MAC-Adresse): MAC-Adresse des Geräts.
- Host Name (Hostname): Hostname des Geräts.

Serial RS-232/485 (Serielles RS-232/485) Auf dem Bildschirm "Serial RS-232/485" (Serielles RS-232/485) kann der Benutzer die serielle Kommunikation einrichten. Diese Option ist nur sichtbar, wenn unter "Settings" (Einstellungen) > "Configuration" (Konfiguration) > **Communications Board** (Kommunikationsbaugruppe) ausgewählt wurde.

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Serial RS-232/485 (Serielles RS-232/485)

Der Bildschirm "Serial RS-232/485" (Serielles RS-232/485) enthält folgende Elemente:

- *Protocol (Protokoll):* Der Benutzer kann zwischen "Modbus" und "Streaming" wählen.
- *Baud Rate (Baudrate):* Der Benutzer kann eine Baudrate von 1200 bis 115.200 wählen.
- Bits: Der Benutzer kann zwischen 7 und 8 wählen.
- *Parity (Parität):* Der Benutzer kann zwischen "None" (Keine), "Even" (Gerade) und "Odd" (Ungerade) wählen.
- Stop Bits (Stoppbits): Der Benutzer kann zwischen 1 und 2 wählen.
- RS 232/485: Der Benutzer kann zwischen RS-232 und RS-485 wählen.

Analoge E/A Der Bildschirm "Analog I/O" (Analoge E/A) ermöglicht die Konfiguration der Analogeingänge/-ausgänge. Diese Option ist nur sichtbar, wenn unter "Settings" (Einstellungen) > "Configuration" (Konfiguration) > Analog I/O (Analoge E/A) ausgewählt wurde.

> Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Analog I/O (Analoge E/A)

Der Bildschirm "Analog I/O" (Analoge E/A) enthält folgende Elemente:

- *Analog In (Analogeingang):* Ermöglicht dem Benutzer, Spannungseingänge von externen Geräten anzuzeigen und zu kalibrieren.
- *Analog Out (Voltage) (Analogausgang (Spannung)):* Ermöglicht dem Benutzer, Spannungsausgänge anzuzeigen.
- Analog Out (Current) (Analogausgang (Strom)): Ermöglicht dem Benutzer, Stromausgänge (mA) anzuzeigen.
- Analog Out Under/Over Range Enabled/Disabled (Analogausgang unter/über Bereich aktiviert/deaktiviert): Ermöglicht dem Benutzer, zu wählen, ob die Analogausgänge den ausgewählten Ausgangsbereich überschreiten dürfen.

Digital I/O (Digitale E/A)Der Bildschirm "Digital I/O (Digitale E/A)" ermöglicht die Konfiguration
der Digitaleingänge/-ausgänge. Diese Option ist nur sichtbar, wenn unter
"Settings" (Einstellungen) > "Configuration" (Konfiguration) > Digital
I/O (Digitale E/A) ausgewählt wurde.

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Digital I/O (Digitale E/A)

Der Bildschirm "Digital I/O" (Digitale E/A) enthält folgende Elemente:

- *Digital In (Digitaleingang):* Ermöglicht dem Benutzer, Digitaleingänge von externen Geräten anzuzeigen.
- *Digital Out (Relays) (Digitalausgang (Relais)):* Ermöglicht dem Benutzer, Relaisausgänge anzuzeigen.
- *Digital Out (Solenoids) (Digitalausgang (Magnetventile)):* Ermöglicht dem Benutzer, Magnetventilausgänge anzuzeigen.
- *Advanced Digital I/O (Erweiterte digitale E/A)* Ermöglicht dem Benutzer, Digitalausgangsrelais und -magnetventile anzuzeigen.

Email Server (SMTP) (E-Mail-Server (SMTP))

Auf dem Bildschirm "Email Server (SMTP)" (E-Mail-Server (SMTP)) kann der Benutzer seine E-Mail-Voreinstellungen konfigurieren.

Startbildschirm > Settings (Einstellungen) > Communications (Kommunikation) > Email Server (SMTP) (E-Mail-Server (SMTP))

Der Bildschirm "Email Server (SMTP)" (E-Mail-Server (SMTP)) enthält folgende Elemente:

- *SMTP Server Address (SMTP-Serveradresse):* Adresse des E-Mail-Servers des Benutzers.
- From Email Address (Absender-E-Mail-Adresse): Die E-Mail-Adresse, die in E-Mails in das Feld "From" (Von) eingetragen wird.
- *SMTP Server Port (SMTP-Serverport):* Der Serverport des E-Mail-Servers des Benutzers.
- Email Password (E-Mail-Passwort): Das Passwort für den SMTP-Server.
- *Email UserName (E-Mail-Benutzername):* Der Benutzername, der zur Versendung von E-Mail über den SMTP-Server berechtigt ist.

Instrument Settings (Geräteeinstellungen)

Auf dem Bildschirm "Instrument Settings" (Geräteeinstellungen) kann der Benutzer verschiedene Geräteeinstellungen konfigurieren.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen)

Der Bildschirm "Instrument Settings" (Geräteeinstellungen) enthält folgende Elemente:

- *Display Setup (Einrichtung der Anzeige):* Zum Festlegen von Einstellungen für das Touchscreen-Display.
- *Alarm Setpoints (Alarmsollwerte):* Anzeigen und Festlegen aller verfügbaren Alarmsollwerte.
- Language (Sprache): Schreibgeschützt.
- *Clock (Uhr):* Einstellung von Datum und Uhrzeit.
- *Pump Power (Pumpe ein/aus):* Zum manuellen Aktivieren/Deaktivieren der Pumpe.

Display Setup (Einrichtung der Anzeige)

Mit der Option "Display Setup" (Einrichtung der Anzeige) kann der Benutzer die Helligkeit der Anzeige ändern und eine Energiesparoption auswählen.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Display Setup (Einrichtung der Anzeige)

Der Bildschirm "Display Setup" (Einrichtung der Anzeige) enthält folgende Elemente:

- *Power Save (Energiesparen):* Minuten, bevor der Bildschirm abgeschaltet wird. Schaltet zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) um.
- *Power Save Setting (Einstellung für Energiesparen):* Mit dieser Option kann der Benutzer festlegen, dass nach einer bestimmten Inaktivitätszeit ein schwarzer Bildschirm angezeigt wird.
- Brightness (Helligkeit): Stellt die Helligkeit des Displays ein.

Alarm Set PointsDer Bildschirm "Alarm Setpoints" (Alarmsollwerte) ermöglicht es dem(Alarmsollwerte)Benutzer, alle einstellbaren Minimal- und Maximalwerte für Alarme
anzuzeigen und einzustellen. Alarmsollwerte können auch unter "Settings"
(Einstellungen) > "Health Check" (Zustandsprüfung) auf dem Bildschirm
"Status and Alarms" (Status und Alarme) festgelegt werden.

Hinweis Der Benutzer kann keine Alarmgrenzwerte außerhalb des zulässigen Bereichs festlegen. Die Minimal- und Maximalwerte für Alarme können auch unter "Settings" (Einstellungen) > "Health Check" (Zustandsprüfung) auf dem Bildschirm "Status and Alarms" (Status und Alarme) durch Drücken der entsprechenden Schaltflächen festgelegt werden. Siehe "Status and Alarms (Status und Alarme)" auf Seite 3-49. ▲

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern, und die Schaltflächen \blacktriangleleft und \triangleright , um nach links und nach rechts zu blättern.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Alarm Setpoints (Alarmsollwerte)

ltem	Value	Low Alarm	High Alarm	Units	
со	0.016	0.0	0.0	ppm	
Bkg Check Offset	0.000	-	10.0	ppm	
Span Check Offset	0.000		10.0	ppm	
Instrument Temperature	36.6	8.0	47.0	°C	
Bench Pressure	754.819	600.000	800.000	mmHg	
Flow	1.197	0.350	1.500	L/min	

Der Bildschirm "Alarm Setpoints" (Alarmsollwerte) enthält folgende Elemente:

- Horizontal:
 - *Item (Element):* Listet die Elemente auf, die einstellbare Alarmgrenzwerte haben.
 - Value (Wert): Zeigt den aktuellen Wert für jedes Element an.
 - Low Alarm (Unterer Alarmgrenzwert): Ermöglicht dem Benutzer, einen unteren Alarmgrenzwert für ein Element festzulegen.

- *High Alarm (Oberer Alarmgrenzwert):* Ermöglicht dem Benutzer, einen oberen Alarmgrenzwert für ein Element festzulegen.
- Units (Einheiten): Einheiten für jedes Element (nicht einstellbar).
- Vertikal:
 - *CO:* CO-Konzentrationsalarm.
 - *Bkg Check Offset (Offset Hintergrundprüfung):* Der Benutzer kann den maximal zulässigen Offset des Hintergrundmesswerts für Kalibrierungen und Kalibrierungsprüfungen festlegen. Dies wird nur für den oberen Alarm eingestellt.
 - Span Check Offset (Offset Messbereichsprüfung): Der Benutzer kann den maximal zulässigen Offset der Messung des Messbereichs für Kalibrierungen und Kalibrierungsprüfungen festlegen. Dies wird nur für den oberen Alarm eingestellt.
 - *Instrument Temperature (Gerätetemperatur):* Alarm für Gerätetemperatur.
 - Bench Pressure (Messbankdruck): Alarm für Messbanktemperatur.
 - *Flow (Durchfluss):* Alarm für Durchflussdruck.
 - *O*₂ *Concentration (O2-Konzentration):* O₂-Konzentrationsalarm (falls aktiviert).
Clock (Uhr) Auf dem Bildschirm "Clock" (Uhr) kann der Benutzer das Datum und die Uhrzeit des Geräts einstellen sowie das Datums- und Uhrzeitformat, die Zeitzone und den Zeitserver auswählen.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Clock (Uhr)

Der Bildschirm "Clock" (Uhr) enthält folgende Elemente:

- Month (Monat)
- Day (Tag)
- Year (Jahr)
- Hours (Tag)
- Minutes (Minuten)
- Seconds (Sekunden)
- *Date / Time Parameters (Datums-/Uhrzeitparameter):* Der Benutzer kann die Zeitzone, den Zeitserver und das Datumsformat festlegen.
- *Commit (Bestätigen):* Durch Drücken dieser Schaltfläche werden das Datum und die Uhrzeit gespeichert.

Date / Time Parameters (Datums-/Uhrzeitparameter)

Auf dem Bildschirm "Date / Time Parameters" (Datums-/Uhrzeitparameter) kann der Benutzer die Zeitzone, den Zeitserver und das Datumsformat festlegen.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Clock (Uhr) > Date / Time Parameters (Datums-/Uhrzeitparameter)

Der Bildschirm "Date / Time Parameters" (Datums-/Uhrzeitparameter) enthält folgende Elemente:

- *Time Zone (Zeitzone):* Der Benutzer kann die Zeitzone aus der Tabelle auswählen.
- *Time Server Enabled/Disabled (Zeitserver aktiviert/deaktiviert):* Der Benutzer kann die regelmäßige Aktualisierung der Uhrzeit über den Zeitserver aktivieren bzw. deaktivieren.
- *Date Format (Datumsformat):* Der Benutzer kann das Datumsformat wählen.

Time Zone (Zeitzone)Auf dem Bildschirm "Time Zone" (Zeitzone) kann der Benutzer die
Zeitzone für den NTP-Server (Network Time Protocol) festlegen. Dies
sollte stets die Zeitzone sein, in der sich das Gerät befindet.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Clock (Uhr) > Date / Time Parameters (Datums-/Uhrzeitparameter) > Time Zone (Zeitzone)

Der Bildschirm "Time Zone" (Zeitzone) enthält folgende Elemente:

- Date Line West (UTC-12)
- Samoa Time Zone (UTC-11)
- Aleutian Time Zone (UTC-10)
- Alaskan Time Zone (UTC-9)
- Pacific Time Zone (UTC-8)
- Pacific Daylight Savings (UTC-7)
- Mountain Time Zone (UTC-7)
- Mountain Daylight Savings (UTC-6)
- Central Time Zone (UTC-6)
- Central Daylight Savings ((UTC-5)
- Eastern Time Zone (UTC-5)
- Eastern Daylight Savings (UTC-4)
- Atlantic Time Zone (UTC-4)
- Mid-Atlantic (UTC-3)

- South Georgia (UTC-2)
- Cape Verde Time (UTC-1)
- Coordinated Universal Time (UTC-0)
- Central European Time (UTC+1)
- Eastern European Time (UTC+2)
- Further-Eastern European Time (UTC+3)
- Gulf Standard Time (UTC+4)
- Yekaterinburg Time (UTC+5
- Omsk Time (UTC+6)
- Indochina Time (UTC+7)
- ASEAN Common Time (UTC+8)
- Japan Standard Time (UTC+9)
- Chamorro Time Zone (UTC+10)
- Sredmnekolymsk Time (UTC+11)
- New Zealand Standard Time (UTC+12)

Time Server (Zeitserver) Auf dem Bildschirm "Time Server" (Zeitserver) kann der Benutzer die regelmäßige Aktualisierung der Uhrzeit über den Zeitserver aktivieren bzw. deaktivieren.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Clock (Uhr) > Date / Time Parameters (Datums-/Uhrzeitparameter) > Time Server (Zeitserver)

Der Bildschirm "Time Server" (Zeitserver) enthält folgende Elemente:

- *Time Server (Zeitserver):* Aktiviert/deaktiviert regelmäßige Aktualisierungen der Uhrzeit von einer NTP-Quelle (Network Time Protocol).
- Set Time Server (Zeitserver festlegen): Der Benutzer kann einen spezifischen Zeitserver auswählen.
- *Set Default (Standardeinstellung):* Durch Drücken dieser Schaltfläche wird der Standard-Zeitserver verwendet.

Date FormatAuf dem Bildschirm "Date Format" (Datumsformat) kann der Benutzer(Datumsformat)zwischen folgenden Formaten wählen: "mm/dd/yyyy" (MM/TT/JJJJJ) oder
"dd/mm/yyyy" (TT/MM/JJJJJ).

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um nach oben und nach unten zu blättern.

Startbildschirm > Settings (Einstellungen) > Instrument Settings (Geräteeinstellungen) > Clock (Uhr) > Date / Time Parameters (Datums-/Uhrzeitparameter) > Date Format (Datumsformat)

U.S. Format mm/dd/yyyy	European Format dd/mm/yyyy	ISO 8601 yyyy-mm-dd	

Der Bildschirm "Date Format" (Datumsformat) enthält folgende Elemente:

- U.S. Format mm/dd/yyyy (US-Format MM/TT/JJJJ)
- European Format dd/mm/yyyy (Europäisches Format TT/MM/JJJJ)
- ISO 8601 yyyy-mm-dd (ISO 8601 JJJJ-MM-TT)

Configuration (Konfiguration)

Auf dem Bildschirm "Configuration" (Konfiguration) kann der Benutzer optionale Funktionen aktivieren. Wenn eine Option deaktiviert ist, sind die entsprechenden Schaltflächen abgeblendet und die zugehörigen Bildschirme nicht verfügbar.

Verwenden Sie die Schaltflächen \blacktriangle und \blacktriangledown , um die Variablen auszuwählen. Drücken Sie als nächstes die Schaltfläche **Commit Changes** (Änderungen bestätigen), um Ihre Auswahl zu speichern. Gelbe Schaltflächen zeigen an, dass die jeweilige Variable ausgewählt ist. Es können mehrere ausgewählt werden.

Startbildschirm > Settings (Einstellungen) > Configuration (Konfiguration)

Der Bildschirm "Configuration" (Konfiguration) enthält folgende Elemente:

- Zero/Span Assembly (Nullluft-/Prüfgas-Baugruppe): Aktiviert die Nullluft/Prüfgas-Option.
- Oxygen Sensor (Sauerstoffsensor): Aktiviert die O2-Sensoroption.
- *Predictive Diagnostics (Vorausschauende Diagnose):* Aktiviert die Option für vorbeugende Diagnose.
- *Communications Board (Kommunikationsbaugruppe):* Aktiviert die optionale RS-232- oder RS-485-Kommunikationsbaugruppe.
- Analog I/O (Analoge E/A): Aktiviert die Option für analoge E/A.
- *Digital I/O (Digitale E/A):* Aktiviert die Option für digitale E/A.

Security Access Levels (Zugriffssicherheitsstufen)

Der Bildschirm "Access Levels" (Zugriffsstufen) bietet dem Benutzer die Möglichkeit, das Gerät auf "View Only" (Schreibgeschützt) oder "Full Access" (Vollzugriff) einzustellen. Mit "Full Access" (Vollzugriff) hat der Benutzer Zugriff auf alle Bildschirme. Wenn "View Only" (Schreibgeschützt) eingestellt ist, kann der Benutzer keine Werte ändern.

Startbildschirm > Settings (Einstellungen) > Security Access Levels (Full Access) (Zugriffssicherheitsstufen (Vollzugriff))

Startbildschirm > Settings (Einstellungen) > Security Access Levels (View Only Access) (Zugriffssicherheitsstufen (Schreibgeschützt))

Der Bildschirm "Security Access Levels" (Zugriffssicherheitsstufen) enthält folgende Elemente:

- Current Security Access Full Access (Aktuelle Zugriffssicherheitsstufe Vollzugriff): Vollzugriff. Der Benutzer kann alle Werte ändern. Für den Vollzugriff wird ein Passwort benötigt.
- *Current Security Access View Only (Aktuelle Zugriffssicherheitsstufe Schreibgeschützt):* Schreibgeschützt. Der Benutzer kann keine Werte ändern. Für den schreibgeschützten Zugriff ist kein Passwort erforderlich.

- Change Security Access to View Only Access (Zugriffssicherheitsstufe zu Schreibgeschützt ändern): Der Benutzer kann in den schreibgeschützten Modus umschalten. Um den schreibgeschützten Zugriff zu aktivieren, wird kein Passwort benötigt.
- Change Security Access to Full Access (Zugriffssicherheitsstufe zu Vollzugriff ändern): Der Benutzer kann in den Vollzugriffsmodus umschalten. Um den Vollzugriff zu aktivieren, wird ein Passwort benötigt.
- Change Full Access Security Password (Sicherheitspasswort für Vollzugriff ändern): Das Passwort für den Vollzugriff kann leer oder ein benutzerdefiniertes Passwort sein.

Change Security Access to View Only Access (Zugriffssicherheitsstufe zu schreibgeschütztem Zugriff ändern) Der Bildschirm "Change Security Access to View Only Access" (Zugriffssicherheitsstufe zu schreibgeschütztem Zugriff ändern) ermöglicht es dem Benutzer, das Gerät in den schreibgeschützten Modus zu versetzen.

Startbildschirm > Settings (Einstellungen) > Security Access Levels (View Only Access) (Zugriffssicherheitsstufen > Change Security Access to View Only Access (Zugriffssicherheitsstufe zu Schreibgeschützt ändern)

Der Bildschirm "Change Security Access to View Only Access" (Zugriffssicherheitsstufe zu schreibgeschütztem Zugriff ändern) enthält folgende Elemente:

- Set Access Level to View Only (Zugriffsstufe auf schreibgeschützt einstellen): Programmiert das Gerät für den schreibgeschützten Zugriff, bei dem der Benutzer keine Werte ändern kann.
- Cancel (Abbrechen): Bildschirm verlassen.

Hinweis Um die Zugriffssicherheitsstufe von schreibgeschützt auf Vollzugriff zu ändern, wird eine Tastatur angezeigt, mit der der Benutzer das Passwort für den Vollzugriff eingeben kann. ▲ Change Full Access Security Password (Sicherheitspasswort für Vollzugriff ändern) Auf dem Bildschirm "Change Full Access Security Password" (Sicherheitspasswort für Vollzugriff ändern) kann der Benutzer ein neues Passwort für die Gewährung des Vollzugriffs festlegen.

Startbildschirm > Settings (Einstellungen) > Security Access Levels (Zugriffssicherheitsstufen) > Change Full Access Security Password (Sicherheitspasswort für Vollzugriff ändern)

Startbildschirm > Settings (Einstellungen) > Security Access Levels (Zugriffssicherheitsstufen) > Change Full Access Security Password (Sicherheitspasswort für Vollzugriff ändern) > Continue (Weiter)

Der Bildschirm "Change Full Access Security Password" (Sicherheitspasswort für Vollzugriff ändern) enthält folgende Elemente:

- Enter Current Security Password (Aktuelles Sicherheitspasswort eingeben): Hier muss der Benutzer das aktuelle Sicherheitspasswort eingeben. Das Standardpasswort ist leer (keine Eingabe).
- Continue (Weiter): Wechselt zum nächsten Bildschirm.
- Enter New Security Access Password (Neues Sicherheitspasswort eingeben): Hier muss der Benutzer das neue Sicherheitspasswort eingeben.
- Confirm New Security Access Password (Neues Sicherheitspasswort bestätigen): Hier muss der Benutzer das neue Sicherheitspasswort erneut eingeben, um die Eingabe zu bestätigen.
- Confirm New Security Access Password (Änderung des Sicherheitspassworts bestätigen): Bestätigt das neue Sicherheitspasswort.
- *Cancel and Return to the Home Screen (Abbrechen und zum Startbildschirm zurückkehren):* Schließt den Bildschirm und kehrt zum Startbildschirm zurück, ohne das Passwort zu ändern.

USB Drive (USB-Laufwerk)

Der Bildschirm "USB Drive" (USB-Laufwerk) ermöglicht es dem Benutzer, Firmware zu aktualisieren, Informationen herunterzuladen/hochzuladen und das USB-Passwort zu ändern.

Hinweis Der Bildschirm "USB Drive" (USB-Laufwerk) ist nur aktiv, wenn ein USB-Laufwerk an den USB-Anschluss angeschlossen ist. Wenn ein USB-Laufwerk angeschlossen wird, fordert das System den Benutzer auf, das Passwort einzugeben (wenn ein Passwort festgelegt wurde). ▲

Startbildschirm > Settings (Einstellungen) > USB Drive (USB-Laufwerk)

Der Bildschirm "USB Drive" (USB-Laufwerk) enthält folgende Elemente:

- *Firmware Update Via USB Drive (Firmware-Aktualisierung über USB-Laufwerk):* Wenn ein USB-Laufwerk angeschlossen ist, kann der Benutzer die Geräte-Firmware aktualisieren.
- *Download Data to USB Drive (Daten auf USB-Laufwerk exportieren):* Wenn ein USB-Laufwerk angeschlossen ist, kann der Benutzer Daten herunterladen/hochladen.
- *Change USB Password (USB-Passwort ändern):* Der Benutzer kann das USB-Passwort ändern.

Firmware Update Via USB Drive (Firmware-Aktualisierung über USB-Laufwerk) Der Bildschirm "Firmware Update Via USB Drive" (Firmware-Aktualisierung über USB-Laufwerk) ermöglicht es dem Benutzer, die Geräte-Firmware über ein USB-Laufwerk zu aktualisieren.

Startbildschirm > Settings (Einstellungen) > USB Drive (USB-Laufwerk) > Firmware Update Via USB Drive (Firmware-Aktualisierung über USB-Laufwerk)

Der Bildschirm "Firmware Update Via USB Drive" (Firmware-Aktualisierung über USB-Laufwerk) enthält folgende Elemente:

- *Update Firmware (Firmware aktualisieren):* Der Benutzer wählt die Firmware-Datei auf dem USB-Laufwerk aus und aktualisiert die Geräte-Firmware. Das Instrument wird neu gestartet, wenn die Aktualisierung abgeschlossen ist.
- *Exit (Beenden):* Mit dieser Option kann der Benutzer den Vorgang beenden, ohne die Firmware zu aktualisieren.

Download Data to USB Drive (Daten auf USB-Laufwerk exportieren)

Der Bildschirm "Download Data to USB Drive" (Daten auf USB-Laufwerk exportieren) ermöglicht es dem Benutzer, Daten auf ein USB-Laufwerk herunterzuladen oder davon hochzuladen.

Startbildschirm > Settings (Einstellungen) > USB Drive (USB-Laufwerk) > Download Data to USB Drive (Daten auf USB-Laufwerk exportieren)

Der Bildschirm "Download Data to USB Drive" (Daten auf USB-Laufwerk exportieren) enthält folgende Elemente:

- Download Health Check Report (Zustandsprüfungsbericht exportieren) Umfasst Statuswerte und Alarme, die vorbeugende Wartung und den Wartungsverlauf.
- *Download Entire Data Log (Gesamtes Datenprotokoll exportieren):* Umfasst das gesamte Datenprotokoll (für die Datenaufzeichnung).
- *Download Service Log (Service-Protokoll exportieren):* Beinhaltet eine vollständige Liste von Daten für alle Variablen. Diese Liste wird im Werk konfiguriert.
- *Download System Log (Systemprotokoll exportieren):* Besteht aus Systemprotokoll-Textdateien, die eine Liste von Systemfehlern enthalten.
- Download Calibration History (Kalibrierungsverlauf exportieren): Beinhaltet die Daten auf dem Bildschirm "Calibration History" (Kalibrierungsverlauf).
- Download Configuration Data Backup to USB (Sicherung der Konfigurationsdaten nach USB exportieren): Ermöglicht dem Benutzer, Konfigurationsdatei vom Gerät auf ein USB-Laufwerk zu exportieren.
- *Restore (Wiederherstellen):* Ermöglicht dem Benutzer, die Konfigurationsdateien vom USB-Laufwerk auf das Gerät hochzuladen.
- *Download All Data (Alle Daten exportieren):* Exportiert alle Berichte, Protokolle, Verläufe und Sicherungsinformationen.

Verwenden Sie das folgende Verfahren, um Daten über die USB-Verbindung zu exportieren.

1. Schließen Sie einen USB-Stick an den USB-Anschluss an der Vorderseite des Geräts an. Wenn ein USB-Passwort festgelegt wurde, werden Sie aufgefordert, dieses einzugeben, um fortzufahren. Drücken Sie die **Eingabetaste**, um fortzufahren.

2. Um fortzufahren, drücken Sie die Schaltfläche OK.

3. Das USB-Laufwerk wird angezeigt. Wählen Sie **Download Data to USB Drive** (Daten auf USB-Laufwerk exportieren) aus.

4. Der Bildschirm "Download Data to USB Drive" (Daten auf USB-Laufwerk exportieren) wird angezeigt. Wählen Sie aus verschiedenen Optionen für den Export.

5. Das Gerät zeigt die Meldung "downloading data" (Daten werden exportiert) an und beginnt mit der Datenübertragung an das USB-Laufwerk.

Hinweis Trennen Sie das USB-Laufwerk während der Datenübertragung nicht vom Gerät. ▲

6. Wenn der Datenexport abgeschlossen ist, zeigt das Gerät die Meldung "Success!" (Erfolgreich!) und den Dateinamen an, wie er auf dem USB-Flashlaufwerk gespeichert wurde. (Das Format für den Dateinamen ist die Seriennummer des Geräts und der Name des Downloads gefolgt von einem Datums-/Zeitstempel.) Entfernen Sie den USB-Stick und drücken Sie die Schaltfläche "OK", um fortzufahren.

Change USB Password (USB-Passwort ändern)

Auf dem Bildschirm "Change USB Password" (USB-Passwort ändern) kann der Benutzer ein neues Passwort für den Zugriff auf USB festlegen.

Startbildschirm > Settings (Einstellungen) > USB Drive (USB-Laufwerk) > Change USB Password (USB-Passwort ändern)

Startbildschirm > Settings (Einstellungen) > Security Access Levels (Zugriffssicherheitsstufen) > Change Standard Access Password (Standardpasswort für Zugriff ändern) > Continue (Fortfahren)

Der Bildschirm "Change USB Password" (USB-Passwort ändern) enthält folgende Elemente:

- Enter Current USB Password (Aktuelles USB-Passwort eingeben): Der Benutzer gibt das aktuelle USB-Passwort ein. Das Standardpasswort ist leer (keine Eingabe).
- Continue (Weiter): Wechselt zum nächsten Bildschirm.
- Enter New USB Password (Neues USB-Passwort eingeben): Der Benutzer gibt das neue USB-Passwort ein.
- Confirm New Security Access Password (Neues Sicherheitspasswort bestätigen): Hier muss der Benutzer das neue Sicherheitspasswort erneut eingeben, um die Eingabe zu bestätigen.
- Commit New USB Password Change (Änderung des USB-Passworts bestätigen): Der Benutzer bestätigt die Änderung des USB-Passworts.
- *Cancel and Return to the Home Screen (Abbrechen und zum Startbildschirm zurückkehren):* Schließt den Bildschirm und kehrt zum Startbildschirm zurück, ohne das Passwort zu ändern.

User Contact Information (Benutzer-Kontaktdaten)

Auf dem Bildschirm "User Contact Information" (Benutzer-Kontaktdaten) kann der Benutzer seine Kontaktdaten eingeben. Dies ist nützlich, wenn Sie den technischen Support per E-Mail kontaktieren (über "Health Check" (Zustandsprüfung) > "File Sharing and Support" (Dateifreigabe und Support)).

Startbildschirm > Settings (Einstellungen) > User Contact Information (Benutzer-Kontaktdaten)

Description	User Information	
Business Name		
User Name		
Alternate User Name		
User ID		
Business Address		
Business Shipping Address		

Der Bildschirm "User Contact Information" (Benutzer-Kontaktdaten) enthält folgende Elemente:

- Business Name (Firmenname)
- User Name (Benutzername)
- Alternate User Name (Alternativer Benutzername)
- User ID (Benutzer-ID)
- Business Address (Firmenadresse)
- Business Shipping Address (Lieferanschrift der Firma)
- To (An): User Email Address (E-Mail-Adresse des Benutzers)
- CC: User Email Address 1–10 (E-Mail-Adresse des Benutzers 1–10)
- User Phone Number (Telefonnummer des Benutzers)
- Alternate User Phone Number (Alternative Telefonnummer des Benutzers)
- Shelter / Lab Phone Number (Telefonnummer des Lagers/Labors)

Update Bootloader (Bootloader aktualisieren)

Auf dem Bildschirm "Update Bootloader" (Bootloader aktualisieren) kann der Benutzer den Bootloader aktualisieren und das Gerät neu starten. Wenn die Schaltfläche blau ist, ist ein Update für den Bootloader verfügbar. Wenn die Schaltfläche abgeblendet ist, ist keine Aktualisierung erforderlich.

Startbildschirm > Settings (Einstellungen) > Update Bootloader (Bootloader aktualisieren)

Der Bildschirm "Update Bootloader" (Bootloader aktualisieren) enthält folgende Elemente:

- *Reboot and Update (Neu starten und aktualisieren):* Bootloader aktualisieren und Gerät neu starten.
- *Exit (Beenden):* Bildschirm verlassen.

Kapitel 4 Kalibrierung In diesem Kapitel werden die Verfahren beschrieben, um eine Standard-Nullpunkt-/Messbereichskalibrierung und eine Mehrpunktkalibrierung des 48iQ durchzuführen. Die hier angegebenen Informationen ermöglichen die Durchführung der Kalibrierung. Ausführliche Angaben finden Sie im Quality Assurance Handbook for Air Pollution Measurement Systems¹. In den folgenden Abschnitten werden das Verfahren für die Kalibrierung des Geräts und die dafür benötigte Ausrüstung beschrieben. Erforderliche Geräte Zur Kalibrierung des Geräte wird folgende Ausrüstung benötigt: CO-Konzentrationsstandard Es wird ein mit CO und Luft gefüllter Zylinder benötigt, der eine für den ausgewählten Betriebsbereich des zu kalibrierenden Analysators geeignete CO-Konzentration enthält. Der Assay im Zylinder muss auf ein CO in Luft-Standard-Referenzmaterial (SRM) des National Institute of Standards and Technology (NIST) oder ein zertifiziertes Referenzmaterial (CRM) eines von der NIST/EPA zugelassenen Gasherstellers rückführbar sein. Ein für die Zertifizierung von CO-Gaszylindern anhand von CO, SRM oder CRM empfohlenes Protokoll finden Sie im Quality Assurance Handbook¹. Der CO-Gaszylinder sollte regelmäßig wie durch das lokale Qualitätssicherungsprogramm vorgegeben neu zertifiziert werden. Nullluftgenerator Für die Kalibrierung wird Nullluft benötigt, die keinerlei Verschmutzungen enthalten darf, da diese zu einer nachweisbaren Reaktion auf dem CO-Analysator führen würden. Die Nullluft sollte < 0,01 ppm CO enthalten. Da der 48iQ nahezu störungsfrei ist, müssen Sie lediglich sicherstellen, dass das CO entfernt wurde. Bitte beachten Sie, dass die von kommerziellen Anbietern in Zylindern gelieferte Nullluft üblicherweise CO-Konzentrationen im Bereich von 0,1 -0,3 ppm aufweist. Vor Verwendung der aus Zylindern stammenden Nullluft im 48i sollten die CO-Rückstände als Verdünnungsgas oder Nullstandard entfernt werden. Als Nullluftquelle kann auch Raumluft verwendet werden, aus der die CO-Rückstände entfernt wurden.

	SO ₂ , NO, NO ₂ , CO ₂ , Wasserdampf oder Kohlenwasserstoffe brauchen nicht entfernt zu werden, da der 48iQ auf diese Moleküle nicht anspricht. Wenn Wasserdampf in der Nullluft belassen wird, kann bei der Berechnung des Verdünnungsverhältnisses der Messbereichs-CO-Referenz eine Korrektur der Messdaten notwendig sein.	
	Ein bei 250 °C betriebener Platin-Aluminium Katalysator hat sich als geeignetes Oxidierungsmittel erwiesen, um CO in CO2 umzuwandeln.	
Externe Durchflussmesser und -regler	Um bei der für die Kalibrierung eingesetzten Verdünnungsmethode ein exaktes Verdünnungsverhältnis zu erhalten, müssen die Durchflussraten auf 1 % genau geregelt und mit einer Genauigkeit von mindestens 2 % gemessen werden. Der Durchflussmesser und der Durchflussregler können zwei separate Geräte oder in einem Gerät kombiniert sein. Informationen bezüglich der Kalibrierung entnehmen Sie bitte der Betriebsanleitung des Durchflussmessers.	
	Weitere Informationen zur Kalibrierung von Durchflussgeräten finden Sie im <i>Quality Assurance Handbook</i> ¹ . Bitte beachten Sie, dass alle Durchflussraten auf 25 °C und 760 mmHg korrigiert werden müssen und bei der Korrektur des Wasserdampfgehalts sorgfältig vorzugehen ist.	
Vorkalibrierung	Vergewissern Sie sich vor der Kalibrierung, dass das Gerät ordnungsgemäß funktioniert. Schalten Sie das Gerät ein und warten Sie eine Stunde, bis es sich stabilisiert hat. Wählen Sie den Betriebsbereich und die Mittelungszeit des 48iQ aus.	
	• Die Mittelungszeit sollte geringer als die Nulldauer und die Messbereichsdauer sein.	
	• Die Zeitspannen für die Kalibrierung und Kalibrierungsprüfung sollten lang genug sein, um den Übergangsprozess (Spülung) durchzuführen, wenn von einer Probe auf Nullluft und von Nullluft auf Prüfgas umgeschaltet wird. Diese Übergangszeit ist die Zeit, die zum Ausspülen der vorhandenen Luft benötigt wird.	
	• Je nach der Leitungskonfiguration und dem Gerät sollten die Daten der ca. ersten Minute einer Nullluftkalibrierung oder -prüfung wegen der Restprobenluft verworfen werden. Die Daten der ca. ersten Minute einer Messbereichskalibrierung oder -prüfung sollten ebenfalls verworfen werden, da sich das Prüfgas mit der Restnullluft vermischt.	
	• Wenn ein optionaler Probenleitungsfilter verwendet wird, muss die Kalibrierung durch diesen Filter durchgeführt werden. Stellen Sie sicher, dass die Durchflussrate zum Ausgangsverteiler größer als der vom Analysator und jeglichem anderen an den Verteiler angeschlossenen Verbraucher benötigte Gesamtdurchfluss ist.	

Kalibrierung

Verwenden Sie für die Kalibrierung das folgende Verfahren.

Anschließen des Geräts

Schließen Sie das Gerät und die Kalibrierausrüstung wie in Abbildung 4–1 gezeigt an.

Abbildung 4–1. Flussdiagramm für die Kalibrierung

Detektorverstärkung

Die Detektorverstärkung wird im Werk festgelegt und sollte nur von einem qualifizierten Techniker eingestellt werden. Die Detektorverstärkung muss nur eingestellt werden, wenn Änderungen an Bauteilen vorgenommen wurden, die sich auf den Lichtweg oder die Detektion auswirken. Zur Kalibrierung der Detektorverstärkung gibt es zwei Möglichkeiten: Über Startbildschirm > Settings (Einstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank) > **Mit "Detector Gain Calibration" (Kalibrierung der Detektorverstärkung) fortfahren**. Der Benutzer kann die Detektorverstärkung manuell ändern, indem er auf die erste Zelle unterhalb der Beschreibung der Detektorverstärkung klickt. Daraufhin wird ein Bildschirm mit einer Tastatur angezeigt, mit der ein neuer Wert eingegeben werden kann.

Es wird jedoch empfohlen, für die Detektorverstärkung eine automatische Kalibrierung durchzuführen. Drücken Sie dazu auf die Schaltfläche "Start" in der Spalte "Detector Gain" (Detektorverstärkung). Die Kalibrierung der Detektorverstärkung kann bis zu 5 Minuten dauern. Der Benutzer kann die Kalibrierung durch Drücken der Schaltfläche "Stop" (Stopp) in der Spalte "Detector Gain" (Detektorverstärkung) jederzeit stoppen.

Der Benutzer kann die Detektorverstärkung auf die Werkseinstellung zurücksetzen, indem er die Schaltfläche "Default Gain" (Standardverstärkung) in der Spalte "Detector Gain" (Detektorverstärkung) drückt.

Startbildschirm > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank) > Mit "Detector Gain Calibration" (Kalibrierung der Detektorverstärkung) fortfahren

Initial S/R (Anfänglicher P/R-Wert)

Der anfängliche P/R-Wert (Probe/Referenzverhältnis) wird im Werk festgelegt und sollte nur von einem qualifizierten Techniker eingestellt werden. Der anfängliche P/R-Wert wird verwendet, um leichte Schwankungen von einem Korrelationsrad zum anderen zu korrigieren. Der anfängliche P/R-Wert muss nur geändert werden, nachdem das Korrelationsrad ausgetauscht wurde. Während der Kalibrierung des anfänglichen P/R-Werts muss Nullluft angesaugt werden. Zur Kalibrierung des anfänglichen P/R-Werts gibt es zwei Möglichkeiten. Der Benutzer kann den anfänglichen P/R-Wert manuell ändern, indem er auf die erste Zelle unterhalb der Beschreibung des P/R-Werts klickt. Daraufhin wird ein Bildschirm mit einer Tastatur angezeigt, mit der ein neuer Wert eingegeben werden kann.

Es wird jedoch empfohlen, für den anfänglichen P/R-Wert eine automatische Kalibrierung durchzuführen. Drücken Sie dazu auf die Schaltfläche "Start" in der Spalte "Initial S/R" (Anfänglicher P/R-Wert). Die Kalibrierung des anfänglichen P/R-Werts kann bis zu 5 Minuten dauern. Der Benutzer kann die Kalibrierung durch Drücken der Schaltfläche "Stop" (Stopp) in der Spalte "Initial S/R" (Anfänglicher P/R-Wert) jederzeit stoppen.

Der Benutzer kann den anfänglichen P/R-Wert auf die Werkseinstellung zurücksetzen, indem er die Schaltfläche "Default S/R" (Standard-P/R-Wert) in der Spalte "Initial S/R" (Anfänglicher P/R-Wert) drückt.

Startbildschirm > Settings (Einstellungen) > Measurement Settings (Messungseinstellungen) > Advanced Measurement Settings (Erweiterte Messungseinstellungen) > Optical Bench Settings (Einstellungen für optische Messbank) > Mit "Initial S/R Calibration" (Anfängliche P/R-Kalibrierung) fortfahren

Mehrpunktkalibrierung

Die Mehrpunktkalibrierung muss bei Erhalt des Geräts durchgeführt werden. Der Benutzer kann wählen, ob er die Kalibrierung mit einem, zwei oder drei Punkten durchführt. Es wird empfohlen, eine Dreipunkt-Kalibrierung durchzuführen. Die Mehrpunktkalibrierung ist in drei Kalibrierpunkte unterteilt. Der Bereich kann vom Benutzer festgelegt werden, wobei für den benutzerdefinierten Bereich folgende Kalibrierpunkte empfohlen werden:

- Punkt 1: 80 % des Bereichs
- Punkt 2: 50 % des Bereichs
- Punkt 3: 20 % des Bereichs

Hinweis Wenn Sie eine Mehrpunktkalibrierung nach einer mangelhaften Kalibrierung oder der Änderung von Messbereichen durchführen, wird empfohlen, für die Kalibierpunkt-Koeffizienten mit den Standardwerten zu beginnen. ▲

Um Standardwerte festzulegen, wählen Sie auf dem Startbildschirm "Calibration > Advanced Calibration > **Multipoint Calibration**" (Kalibrierung > Erweiterte Kalibrierung > Mehrpunktkalibrierung). Wählen Sie unter "Multipoint Calibration" (Mehrpunktkalibrierung) die Option **Reset Points to Default Values** (Punkte auf Standardwerte zurücksetzen). Das Gerät setzt die Werte automatisch auf die Standardeinstellungen zurück.

Verwenden Sie das folgende Verfahren, um die Punkte 1, 2 und 3 zu kalibrieren:

 Justieren Sie den Nullluft-Durchfluss und den CO-Durchfluss vom Standard-CO-Zylinder, um eine verdünnte CO-Konzentration von ca. 80 % des oberen Bereichsgrenzwerts des Geräts zu erzeugen. Der Gesamt-Luftdurchfluss muss den Gesamtbedarf des an den Ausgangsverteiler angeschlossenen Analysators übersteigen, um sicherzustellen, dass keine Umgebungsluft in die Verteilerentlüftung angesaugt wird. Die exakte CO-Konzentration wird mit der folgenden Formel berechnet:

$$[CO]_{OUT} = \frac{([CO]_{STD} \times F_{CO})}{(F_{D} + F_{CO})}$$

Wobei gilt:

[CO]_{OUT} = Verdünnte CO-Konzentration am Ausgangsverteiler, ppm

[CO]_{STD} = Konzentration des unverdünnten CO-Standards, ppm

 $F_{\rm CO}$ = Durchflussrate des CO-Standards in l/min, auf 25 °C und 760 mmHg korrigiert

 $F_{\rm D}$ = Durchflussrate der Verdünnungsluft in l/min, auf 25 °C und 760 mmHg korrigiert

- 2. Lassen Sie das Gerät die CO-Konzentration messen, bis sich die Messwerte stabilisieren.
- Drücken Sie auf dem Startbildschirm "Calibration > Advanced Calibration > Multipoint Calibration > Point 1" (Kalibrierung > Erweiterte Kalibrierung > Mehrpunktkalibrierung > Punkt 1).

	4. Geben Sie die Messbereichskonzentration ein, die dem Gerät zugeführt wird. Drücken Sie Calibrate (Kalibrieren).
	Das Gerät führt eine Reihe von Berechnungen durch und speichert die neuen Parameter.
	5. Drücken Sie die Schaltfläche "Zurück", um im Menü für die Mehrpunktkalibrierung einen Schritt zurückzugehen.
	6. Leiten Sie eine CO-Konzentration von 50 % des oberen Bereichsgrenzwerts ein.
	7. Wählen Sie Point 2 (Punkt 2) aus.
	8. Geben Sie die Messbereichskonzentration ein, die dem Gerät zugeführt wird. Drücken Sie Calibrate (Kalibrieren).
	Das Gerät führt eine Reihe von Berechnungen durch und speichert die neuen Parameter.
	9. Drücken Sie die Schaltfläche "Zurück", um im Menü für die Mehrpunktkalibrierung einen Schritt zurückzugehen.
	10. Leiten Sie eine CO-Konzentration von 20 % des oberen Bereichsgrenzwerts ein.
	11. Wählen Sie Point 3 (Punkt 3) aus.
	12. Geben Sie die Messbereichskonzentration ein, die dem Gerät zugeführt wird. Drücken Sie Calibrate (Kalibrieren).
	Das Gerät führt eine Reihe von Berechnungen durch und speichert die neuen Parameter.
Mehrpunktkalibrierung für den oberen und den unteren Bereich	Das Gerät kann auch mit einer dualen Dreipunkt-Kalibrierung kalibriert werden. Die Kalibrierpunkte sind in einen oberen und einen unteren Bereich unterteilt, die jeweils aus drei Kalibrierpunkten bestehen. Siehe "Mehrpunktkalibrierung" auf Seite 4-6.
Häufigkeit der Kalibrierung	Um die Zuverlässigkeit der Daten zu gewährleisten, wird empfohlen, eine Mehrpunktkalibrierung durchzuführen:
· · ·	• alle drei Monate
	• nach jeder wesentlichen Demontage von Komponenten

Hintergrund kalibrieren

Verwenden Sie das folgende Verfahren, um den CO-Messwert auf Null einzustellen.

- 1. Warten Sie, bis sich das Gerät aufgewärmt und stabilisiert hat.
- 2. Passen Sie das in Abbildung 4–1 gezeigte Verdünnungssystem so an, dass sich ausschließlich Nullluft im Verteiler befindet.

Da nicht alle Durchflussregler über ein positives Absperrventil verfügen, kann es erforderlich sein, die CO-Einlassleitung abzutrennen und zu verschließen.

- 3. Lassen Sie das Gerät Nullluft messen, bis sich der Messwert stabilisiert.
- Drücken Sie auf dem Startbildschirm "Calibration > Calibrate Background" (Kalibrierung > Hintergrund kalibrieren).

Die Schaltfläche "Target Concentration" (Ziel-Konzentration) zeigt 0,000 an. Die Schaltfläche "Calculated Background" (Berechneter Hintergrund) zeigt den erforderlichen Hintergrund an, um die aktuelle CO-Konzentration auf Null zu bringen.

5. Drücken Sie **Calibrate** (Kalibrieren), um den CO-Messwert auf Null zu setzen und den neuen Hintergrund zu speichern.

Messbereichskoeffizient kalibrieren

Verwenden Sie das folgende Verfahren, um den Messbereich zu justieren.

 Justieren Sie den Nullluft-Durchfluss und den CO-Durchfluss vom Standard-CO-Zylinder, um eine verdünnte CO-Konzentration von ca. 80 % des oberen Bereichsgrenzwerts des Geräts zu erzeugen. Der Gesamt-Luftdurchfluss muss den Gesamtbedarf des an den Ausgangsverteiler angeschlossenen Analysators übersteigen, um sicherzustellen, dass keine Umgebungsluft in die Verteilerentlüftung angesaugt wird. Die exakte CO-Konzentration wird mit der folgenden Formel berechnet:

$$[CO]_{OUT} = \frac{([CO]_{STD} \times F_{CO})}{(F_D + F_{CO})}$$

Wobei gilt:

[CO]_{OUT} = Verdünnte CO-Konzentration am Ausgangsverteiler, ppm

[CO]_{STD} = Konzentration des unverdünnten CO-Standards, ppm

 $F_{\rm CO}$ = Durchflussrate des CO-Standards in l/min, auf 25 °C und 760 mmHg korrigiert

 $F_{\rm D}$ = Durchflussrate der Verdünnungsluft in l/min, auf 25 °C und 760 mmHg korrigiert

- 2. Lassen Sie das Gerät diesen CO-Konzentrationsstandard messen, bis sich der Messwert stabilisiert.
- Wählen Sie auf dem Startbildschirm "Calibrate > Calibrate Span Coefficient" (Kalibrieren > Messbereichskoeffizient kalibrieren) aus.

Der Benutzer stellt die Messbereichskonzentration ein, indem er die Schaltfläche "Edit NO Concentration" (Messbereichskonzentration bearbeiten) drückt. Die Schaltfläche "Calculated Span Coefficient" (Berechneter Messbereichskoeffizient) zeigt an, auf welchen Wert der Messbereichskoeffizient eingestellt wird, wenn die Schaltfläche "Calibrate" (Kalibrieren) gedrückt wird. Durch Drücken der Schaltfläche "Calibrate" (Kalibrieren) wird der neue Koeffizient gespeichert und das Gerät kalibriert.

4. Geben Sie die CO-Kalibriergaskonzentration mit den entsprechenden Schaltflächen ein und drücken Sie **Calibrate** (Kalibrieren), um dem CO-Messwert auf das CO-Kalibriergas zu kalibrieren.

- Edit Span Concentration 0.000 ppm Calibrate Calibrate
- 5. Notieren Sie sich die CO-Konzentration und die Reaktion des Geräts.

Regelmäßige Nullpunkt- und Messbereichsprüfungen

Um die Zuverlässigkeit der Daten zu gewährleisten, wird empfohlen, regelmäßige Nullpunkt- und Messbereichsprüfungen durchzuführen. Diese Prüfungen können wie folgt durchgeführt werden:

1. Periodische Beaufschlagung des Geräts mit Nullluft. Die Abgabeleistung der Nullluftversorgung muss größer als der Durchflussbedarf des Geräts sein. Zusätzlich sollte eine atmosphärische Abblasleitung verwendet werden, um sicherzustellen, dass die Nullluftzufuhr mit atmosphärischem Druck erfolgt.

Erfassen Sie die Reaktion in Prozent des Skalenendwerts als A₀. Berechnen Sie die Nulldrift anhand der folgenden Gleichung:

Zero Drift
$$\% = A_0 - Z$$

Wobei gilt:

Z ist die Reaktion des Aufzeichnungsgeräts, die bei der letzten Kalibrierung für die Nullluft, % des Skalenendwerts erzielt wurde

2. Periodische Beaufschlagung des Messgeräts mit einem CO-Gehalt von ca. 80 % des oberen Bereichsgrenzwerts. Dieser CO-Gehalt lässt sich durch Verdünnung einer höheren CO-Konzentration mithilfe eines ähnlichen Systems wie in Abbildung 4–1 gezeigt erzielen. Alternativ kann ein Zylinder verwendet werden, der ein schwach konzentriertes Gemisch aus CO in Luft mit einer CO-Konzentration von 80 % des oberen Bereichsgrenzwerts enthält. In beiden Fällen sollte der CO-Zylinder gegen ein SRM oder CRM geprüft werden. Dies gilt auch für einen Zylinder mit schwach konzentriertem CO.

Eine Beschreibung des Prüfverfahrens für Zylinder finden Sie im *Quality Assurance Handbook*¹.

Berechnen Sie den Messbereichsfehler anhand der folgenden Gleichung:

 Reported CO Concentration
 – Actual CO Concentration

 Actual CO Concentration
 •100

3. Welche Null- und Messbereichsfehler zulässig sind, entnehmen Sie bitte der aktuellen Ausgabe des *Quality Assurance Handbook for Air Pollution Measurement Systems*¹.

Ausführliche Anweisungen zur Erstellung eines Qualitätssicherungsprogramms entnehmen Sie bitte dem *Code of Federal Regulations und dem EPA Handbook on Quality Assurance.*

Manuelle Kalibrierung

Das Menü "Manual Calibration" (Manuelle Kalibrierung) ermöglicht dem Benutzer, den Null-Hintergrund und den Messbereichskoeffizienten anzuzeigen und manuell anzupassen. Diese Parameter werden verwendet, um die vom Gerät auf Basis seiner internen Kalibrierungsdaten erzeugten CO-Messwerte zu korrigieren.

Normalerweise werden der Null-Hintergrund und der Messbereichskoeffizient mit den weiter oben in diesem Kapitel beschriebenen Funktionen "Calibrate Background" (Hintergrund kalibrieren) und "Calibrate Span Coefficient" (Messbereichskoeffizient) automatisch berechnet. Die Kalibrierungsfaktoren können mit den nachfolgend beschriebenen Funktionen jedoch auch manuell festgelegt werden.

Der folgende Bildschirm wird im Einzelbereichsmodus angezeigt. Im dualen oder automatischen Bereichsmodus wird die Schaltfläche "High Range" (Oberer Bereich) oder "Low Range" (Unterer Bereich) angezeigt, um die Kalibrierung des Koeffizienten für den oberen oder unteren Bereich anzugeben. Die Bildschirme "Adjust High Range Span Coefficient" (Messbereichskoeffizient für oberen Bereich anpassen) und Adjust Low Range Span Coefficient (Messbereichskoeffizient für unteren Bereich anpassen) arbeiten auf dieselbe Weise.

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) (Einzelbereichsmodus)

Der CO-Hintergrund ist der Wert für das Signal, der vom Analysator beim Ansaugen von Nullluft gemessen wird.

Der Bildschirm "Adjust Background" (Hintergrund anpassen) wird verwendet, um eine manuelle Null-Hintergrundkalibrierung des Geräts durchzuführen. Daher sollte das Gerät Nullluft ansaugen, bis stabile Messwerte angezeigt werden. Die Schaltfläche mit der Beschriftung "Adjust Background" (Hintergrund anpassen) ermöglicht es dem Benutzer, den Null-Hintergrund zu ändern. Die zweite Schaltfläche mit der Beschriftung "Adjusted Concentration" (Angepasste Konzentration) zeigt die neue CO-Konzentration, die sich aus dem angepassten Null-Hintergrund ergeben würde. Drücken die Schaltfläche "Calibrate" (Kalibrieren), um den angepassten Wert für den Null-Hintergrund zu speichern.

Adjust Background (Hintergrund anpassen)

Startbildschirm > Calibration (Kalibrierung) > Advanced Calibration (Erweiterte Kalibrierung) > Manual Calibration (Manuelle Kalibrierung) > Adjust Background (Hintergrund anpassen)

Die Messbereichskoeffizienten werden verwendet, um die CO-Messwerte zu korrigieren. Sie haben in der Regel einen Wert nahe 1,000 mit einem unteren Grenzwert von 0,500 und einem oberen Grenzwert von 2,000.

Der Benutzer kann den Messbereichskoeffizienten manuell ändern, indem er einen Wert für die Schaltfläche "Adjust Span Coefficient" (Messbereichskoeffizient anpassen) eingibt. Die zweite Schaltfläche mit der Beschriftung "Adjusted Concentration" (Angepasste Konzentration) zeigt die neue CO-Konzentration, die sich aus dem angepassten Messbereichskoeffizienten ergeben würde. Drücken die Schaltfläche "Calibrate" (Kalibrieren), um den angepassten Wert für den Messbereichskoeffizienten zu speichern.

Startbildschirm > Calibration (Kalibrierung) > Advanced (Erweitert) > Manual Calibration (Manuelle Kalibrierung) > Adjust Span Coefficient (Messbereichskoeffizient anpassen) (Einzelbereichsmodus)

Reset Bkg to 0.000 and Span Coef to 1.000 (Hintergrund auf 0,000 und Messbereichskoeffizienten auf 1,000 zurücksetzen):

Der Bildschirm "Reset Bkg to 0.000 and Span Coef to 1.000" (Hintergrund auf 0,000 und Messbereichskoeffizienten auf 1,000 zurücksetzen) ermöglicht es dem Benutzer, die Kalibrierungswerte auf die Werkseinstellungen zurückzusetzen.

Adjust Span Coefficient (Messbereichskoeffizient anpassen)

Zero/Span Schedule (Geplante Nullpunkt-/ Messbereichskalibrierung)

Der Bildschirm "Zero/Span Schedule" (Geplante Nullpunkt-/Messbereichskalibrierung) ist nur verfügbar, wenn die Option für Nullpunkt-/Messbereichsventile installiert und unter "Settings > Configuration" eingeschaltet ist. Dieser Bildschirm wird verwendet, um das Gerät für die Durchführung von vollautomatischen Nullpunkt- und Messbereichskalibrierungen oder Kalibrierungsprüfungen zu programmieren.

Startbildschirm > Calibration (Kalibrierung) > Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung)

Startbildschirm > Calibration (Kalibrierung) > Zero/Span Schedule (Geplante Nullpunkt-/Messbereichskalibrierung) > More (Mehr)

Next Time (Nächster Zeitpunkt)	Die Schaltfläche "Next Time" (Nächster Zeitpunkt) wird verwendet, um den Startzeitpunkt (Datum und Uhrzeit im 24-Stunden-Format) der geplanten Nullpunkt-/Messbereichskalibrierung anzuzeigen und festzulegen. Sobald die Nullpunkt-/Messbereichskalibrierung beginnt, wird das Datum für die nächste Ausführung der geplanten Nullpunkt-/ Messbereichskalibrierung berechnet und angezeigt.
Zeitraum	Die Schaltfläche "Period" (Zeitraum) legt die Zeitspanne oder das Intervall zwischen Ausführungen der geplanten Nullpunkt-/Messbereichskalibrierung fest. Es sind Zeiträume von 0 bis 999 Stunden zulässig.
Nullluft-/Prüfgas-/ Spüldauer in Minuten	Die Schaltfläche "Zero Duration" (Nullluftdauer) legt fest, wie lange Nullluft von dem Gerät angesaugt wird. Der Aufbau und die Funktionsweise der Schaltflächen "Span Duration" (Prüfgasdauer) und "Purge Duration" (Spüldauer) entsprechen der Schaltfläche für die Nullluftdauer. Über die Schaltfläche "Span Duration" (Prüfgasdauer) wird festgelegt, wie lange Prüfgas von dem Gerät angesaugt wird. Mit der Schaltfläche "Span Duration" (Spüldauer) wird festgelegt, wie lange das System nach einer Nullpunkt- oder Messbereichskalibrierung gespült wird. Dies verschafft dem Gerät Zeit, die Nullluft und das Prüfgas auszuspülen, bevor Probendaten genommen werden. Die aufgezeichneten Daten werden als während einer Spülung erfasst gekennzeichnet, um anzugeben, dass die Daten suspekt sind. Es sind Dauern zwischen 0 und 99 Minuten zulässig. Wenn eine geplante Nullpunkt-/Messbereichskalibrierung durchgeführt wird, erfolgt die Nullpunktkalibrierung immer vor der Messbereichskalibrierung. Um nur eine Nullpunktkalibrierung durchzuführen, stellen Sie die Prüfgasdauer auf 0 (Aus). Dasselbe gilt, wenn Sie nur eine Messbereichskalibrierung durchführen möchten.
--	---
Schedule Averaging Time (Plan-Mittelungszeit)	Die Schaltfläche "Schedule Averaging Time (Plan-Mittelungszeit) ermöglicht es dem Benutzer, die Mittelungszeit des Plans festzulegen. Diese Zeit wird nur zur Ausführung der geplanten Nullpunkt-/Messbereichskalibrierung verwendet. Für alle anderen Funktionen wird die Mittelungszeit des Analysators verwendet. Der Bereich beträgt 1–300 Sekunden.
Hintergrund- und Messbereichskalibrierung	Die Schaltflächen "Background Calibration" (Hintergrundkalibrierung) und "Span Calibration" (Messbereichskalibrierung) sind Umschalttasten, die zwischen "Enabled" (Aktiviert) und "Disabled" (Deaktiviert) umschalten. Wenn die Hintergrundkalibrierung aktiviert ist, wird eine Nullpunkteinstellung durchgeführt. Wenn die Messbereichskalibrierung aktiviert ist, wird eine Messbereichseinstellung durchgeführt. (Auf diese Weise kann eine geplante, wiederkehrende automatische Kalibrierung eingerichtet werden.)
Nullpunkt- und Messbereichskalibrierung	Die Schaltflächen "Zero Calibration Commit" (Nullpunktkalibrierung bestätigen) und "Span Calibration Commit" (Messbereichskalibrierung bestätigen) sind Umschalttasten, die zwischen "Yes" (Ja) und "No" (Nein) umschalten. Wenn die Schaltfläche "Zero Calibration Commit" (Nullpunktkalibrierung bestätigen) auf "Yes" (Ja) gesetzt ist, wird eine Nullpunkteinstellung durchgeführt. Wenn die Schaltfläche "Span Calibration Commit" (Messbereichskalibrierung bestätigen) auf "Yes" (Ja) gesetzt ist, wird eine

Messbereichseinstellung durchgeführt. (Auf diese Weise kann eine geplante, wiederkehrende automatische Kalibrierung eingerichtet werden.)

Nullpunkt/Messbereich-Verhältnis Die Schaltfläche "Zero/Span Ratio" (Nullpunkt/Messbereich-Verhältnis) wird verwendet, um das Verhältnis von Nullpunktprüfungen oder - anpassungen zu Messbereichsprüfungen oder -anpassungen festzulegen. Wenn dieser Wert z. B. auf 1 eingestellt ist, folgt eine Prüfgasdauer auf jede Nullluftdauer. Wenn dieser Wert auf 3 eingestellt ist, erfolgen zwischen Messbereichsprüfungen immer zwei Nullpunktprüfungen. Dieser Wert kann von 1 bis 99 eingestellt werden, der Standardwert ist 1. Referenzen 1. Kapitel 12 des EPA Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, verfügbar unter www.epa.gov.

Kapitel 12 bietet auch Informationen zur Kalibrierung von primären und sekundären Standards für Durchflussmessungen.

Spezifische Informationen zur Zertifizierung von Konzentrationsstandards finden Sie im EPA *Traceability Protocol for Assay and Certification of Gaseous Calibration Standards*, verfügbar unter www.epa.gov.

Kapitel 5 Wartung

In diesem Kapitel werden die Verfahren beschrieben, die in regelmäßigen Abständen durchgeführt werden sollten, um einen ordnungsgemäßen Betrieb des Geräts sicherzustellen. Da die Häufigkeit des Gebrauchs und die Umgebungsbedingungen stark schwanken bzw. abweichen können, sollten Sie die Komponenten häufig kontrollieren, bis ein entsprechender Wartungsplan festgelegt wurde.

Sicherheitsvorkehrungen

Machen Sie sich mit den Sicherheitsvorkehrungen vertraut, bevor Sie in diesem Kapitel beschriebene Verfahren ausführen.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe Mengen statischer Elektrizität beschädigt werden. Beim Arbeiten an internen Komponenten ist ein korrekt geerdetes Antistatik-Armband zu tragen. Weitere Informationen zu Sicherheitsvorkehrungen finden Sie im Kapitel "Instandhaltung". ▲

Inspektion und Reinigung des Lüfterfilters

Verwenden Sie das folgende Verfahren, um den Luftfilter zu inspizieren und zu ersetzen.

- 1. Entfernen Sie die Lüfterabdeckung vom Lüfter und bauen Sie den Lüfter aus.
- 2. Spülen Sie den Filter mit warmem Wasser aus und lassen Sie ihn trocknen (mit sauberer, ölfreier Druckluft können Sie den Trocknungsprozess beschleunigen) oder blasen Sie den Filter mit Druckluft aus.
- 3. Bauen Sie den Luftfilter und die Lüfterabdeckung wieder ein.

Überholung der Pumpe

Verwenden Sie das folgende Verfahren, um die Pumpe zu überholen.

Erforderliche Ausrüstung:

Pumpen-Überholungskit (Menge: 1)

Kreuzschlitzschraubendreher Nr. 1 oder TORX-Schraubendreher T10 (je nach Pumpenausführung)

Bleistift oder Marker

Abbildung 5–1. Einstufige Pumpe

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung.
- 2. Markieren Sie die Position der Köpfe zueinander, indem Sie mit einem Bleistift eine Linie ziehen. Dies hilft, beim Wiederzusammenbau Fehler zu vermeiden.
- 3. Lösen Sie die vier Schrauben in dem Kopf.
- 4. Heben Sie die Kopfplatte und die Zwischenplatte aus dem Gehäuse.

- 5. Halten Sie die Pumpe mit einer Hand so fest, dass die Membran nach unten weist. Heben Sie die Membran an den gegenüberliegenden Rändern an, greifen Sie sie mit den Fingern und lösen Sie sie, indem Sie sie gegen den Uhrzeigersinn drehen.
- 6. Entfernen Sie die Führungsstangenscheibe und die Membran-Distanzstücke vom Gewindestift der Membran.
- 7. Schieben Sie die Führungsstangenscheibe und die Membran-Distanzstücke in dieser Reihenfolge auf den Gewindestift der neuen Membran.
- 8. Schieben Sie die Führungsstange an den oberen Punkt.
- 9. Schrauben Sie die neue Membran mit der Führungsstangenscheibe und den Distanzstücken im Uhrzeigersinn auf die Führungsstange und ziehen Sie sie handfest an.
- 10. Platzieren Sie die Zwischenplatte auf dem Gehäuse in der Position, die durch die zuvor angezeichnete Linie angegeben wird.
- 11. Platzieren Sie die neue Ventilplatte auf der Zwischenplatte.
- 12. Platzieren Sie die Kopfplatte auf der Zwischenplatte in der Position, die durch die zuvor angezeichnete Linie angegeben wird. Ziehen Sie die vier Schrauben gleichmäßig und diagonal leicht an (wenn Sie einen Drehmomentschlüssel verwenden: auf ca. 0,30 Nm).
- 13. Lassen Sie die Pumpe laufen.

Abbildung 5–2. Überholung der Pumpe

Dichtigkeitsprüfung

Verwenden Sie das folgende Verfahren, um eine Dichtigkeitsprüfung durchzuführen.

Erforderliche Ausrüstung:

Kappe

Vakuumprüfer mit Manometer (mit einer Auflösung von 0,5 in Hg oder besser)

- 1. Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- 2. Verschließen Sie den Schottanschluss SAMPLE an der Rückwand mit einer dicht schließenden Kappe.
- 3. Schließen Sie den Vakuumprüfer an den Schottanschluss EXHAUST an der Rückwand an.
- 4. Betätigen Sie den Prüfer, bis das Manometer 10 in Hg anzeigt.
- 5. Beobachten Sie das Manometer 5 Minuten lang. Wenn der Messwert bei 10 in Hg bleibt, ist kein Leck vorhanden.

Hinweis Die akzeptable Leckagerate beträgt 0,5 in Hg über 10 Minuten. ▲

Reinigen der Optik

Beste Messergebnisse werden erreicht, wenn die optischen Komponenten vor der Kalibrierung gereinigt werden. Die Sauberkeit der Spiegel sollte auf jeden Fall überprüft werden, wenn die Intensität unter 200.000 Hz liegt, da eine der Hauptursachen für eine schwache Ausgangsleistung die Abschwächung von Licht infolge von Schmutz auf den Spiegeln ist.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe Mengen statischer Elektrizität beschädigt werden. Beim Arbeiten an internen Komponenten ist ein korrekt geerdetes Antistatik-Armband zu tragen. Weitere Informationen zu Sicherheitsvorkehrungen finden Sie im Kapitel "Instandhaltung". ▲

Verwenden Sie das folgende Verfahren, um die Spiegel zu säubern.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 9/64"

- 1. Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- 2. Bauen Sie den Feldspiegel aus, indem Sie mit einem 9/64"-Innensechskantschlüssel die vier #8-32"-Innensechskantschrauben entfernen, mit denen er auf der Hauptmessbank fixiert wird.

Abbildung 5–3. Entfernen des Feldspiegels

- 3. Reinigen Sie jeden Spiegel vorsichtig mit einem Wattestäbchen und Methanol. Spülen Sie die Spiegel mit destilliertem oder entionisiertem Wasser ab. Trocknen Sie die Spiegel, indem Sie sie mit trockener Luft abblasen.
- 4. Bauen Sie die Spiegel wieder ein, indem Sie das zuvor beschriebene Verfahren in umgekehrter Reihenfolge durchführen. Eine Neujustierung der Spiegel nach der Reinigung ist nicht erforderlich.
- 5. Kalibrieren Sie das Messgerät. Siehe Kapitel "Kalibrierung" in diesem Handbuch.

Austausch der IR-Quelle

Das Steuerungssystem der IR-Quelle wurde so konzipiert, dass die IR-Quelle mit Drahtwiderstand konservativ betrieben werden kann, um die Lebensdauer der Komponente zu erhöhen. Die Lebensdauer der Komponente ist jedoch endlich. Da die IR-Quelle in der Anschaffung relativ kostengünstig ist und leicht ausgetauscht werden kann, wird ein Austausch nach einem Jahr (kontinuierlicher Betrieb) empfohlen. Somit wird ein Datenverlust durch eine Störung oder einen Ausfall der IR-Quelle vermieden. Wenn die IR-Quelle nach Bedarf ausgetauscht werden soll, ist sie in folgenden Situationen zu ersetzen:

- Wenn kein Licht emittiert wird
- Wenn nach dem Reinigen der Optik die IR-Lichtstärke unter 100.000 Hz bleibt

Weitere Informationen zum Austausch der IR-Quelle finden Sie unter "Austausch der IR-Quelle" auf Seite 7-46.

Hinweis Eine Nachkalibrierung des 48iQ nach dem Austausch der IR-Lichtquelle ist nicht erforderlich, da der 48iQ mit Verhältniswerten arbeitet und der Austausch der IR-Lichtquelle die Kalibrierung nicht beeinflusst. ▲

Kapitel 6 Fehlersuche und -behebung

Dieses Kapitel enthält Leitlinien für die Diagnose von Störungen des Analysators und Fehlerabgrenzung und gibt Empfehlungen, wie der ordnungsgemäße Betrieb wiederhergestellt werden kann.

Sicherheitsvorkehrungen

Anleitung zur Fehlersuche und behebung

Lesen Sie sich die Sicherheitsvorkehrungen in Anhang A, "Sicherheit" durch, bevor Sie in diesem Kapitel aufgeführte Maßnahmen durchführen.

Tabelle 6–1 bietet allgemeine Informationen zur Fehlersuche und behebung für die gemeinsame Plattform und gibt an, welche Prüfungen Sie durchführen sollten, wenn an dem Gerät ein Problem auftritt. Sie enthält auch spezifische Informationen zur Fehlersuche und -behebung für den 48iQ sowie Alarmmeldungen, die auf dem Grafikdisplay angezeigt werden können, mit Empfehlungen zur Beseitigung des Alarmzustands.

Tabelle 6–1. Anleitung zur Fehlersuche und -behebung für den 48iQ

Problem	Mögliche Ursache	Maßnahme
Gerät schaltet sich nicht ein (LEDs an der Frontblende leuchten nicht oder Anzeige ist leer)	Kein Strom	Sicherstellen, dass das Netzkabel eingesteckt ist und Strom mit der geeigneten Spannung und Frequenz für das Gerät anliegt.
	Sicherung ist durchgebrannt oder fehlt	Stromversorgung trennen und Sicherungen mit einem Voltmeter prüfen.
	Schalter oder Verbindung mit Schalter defekt	Auf 24 V an J9 an der Rückwand prüfen (mittlere Stifte). Alle Kabelanschlüsse prüfen.
Frontblenden-Display schaltet sich nicht ein (LEDs an der Frontblende sind aus)	Flachkabel abgezogen	Ausschalten und Anschlüsse des Display-Flachkabels überprüfen.
Frontblenden-Display schaltet sich nicht ein (LEDs an der Frontblende leuchten)	Display defekt	Verbindung mit dem Gerät über ePort herstellen. "Remote Interface" (Remote-Schnittstelle) auswählen. Wenn die normale Bedienoberfläche angezeigt wird, ist das Display defekt.

Problem	Mögliche Ursache	Maßnahme
Frontblenden-Display bleibt nach dem Einschalten weiß (LEDs an der Frontblende leuchten)	Nicht richtig eingesteckte oder fehlende microSD- Karte	Ausschalten und microSD-Karte richtig einsetzen oder, falls fehlend, einsetzen.
	Programmierung der microSD-Karte	Wenn die microSD-Karte soeben ersetzt wurde, die alte wieder einsetzen. Wenn das Problem sich dadurch beheben lässt, eine neue microSD-Karte anfordern.
Magnetventil-Strom außerhalb des gültigen Bereichs (Option)	Magnetventil blockiert oder beschädigt	Magnetventil über "Settings>Health Check>Status and Alarms>Valve and Pump Resets" (Einstellungen > Zustandsprüfung > Status und Alarme > Ventile und Pumpe zurücksetzen) zurücksetzen. Falls beschädigt, Magnetventilblock ersetzen.
Pumpenstrom außerhalb des gültigen Bereichs	Pumpe beschädigt oder verschmutzt	Pumpe über "Settings>Health Check>Status and Alarms>Valve and Pump Resets" (Einstellungen > Zustandsprüfung > Status und Alarme > Ventile und Pumpe zurücksetzen) zurücksetzen. Pumpe überprüfen und überholen. Wenn der Pumpenmotor beschädigt ist, die Pumpe ersetzen.
Kein Ausgangssignal (oder sehr niedriger Ausgang)	Es gelangt kein Probengas zum Analysator	Probeneingangsfluss überprüfen.
	Pumpenmembran gerissen	Pumpenkopf überholen.
	Blockierte Probenkapillare	Netzkabel abziehen. Kapillare reinigen oder ersetzen.
Drift bei Kalibrierung	Spannungsschwankungen im Netz	Prüfen, ob die Netzspannung den Spezifikationen entspricht.
	Pumpe defekt	Pumpe überholen.
	Verstopfte Kapillaren	Netzkabel abziehen. Kapillare reinigen oder ersetzen.
	Verstopfter Probenluftfilter	Filterelement austauschen.
Nicht lineare Reaktion	Fehlerhafte Kalibrierungsquelle	Genauigkeit des Quellgases für die Mehrpunktkalibrierung prüfen.
	Leck in Probennahmeleitung	Auf variable Verdünnung prüfen.

Fehlersuche und -behebung Anleitung zur Fehlersuche und -behebung

Problem	Mögliche Ursache	Maßnahme
Übermäßige Ansprechzeit	Teilweise blockierte Probenkapillare	Netzkabel abziehen. Kapillare reinigen oder ersetzen.
	Verstopfung/Blockierung in Probenfilter	Element wechseln.
	Netzspannung zu gering	Prüfen, ob die Netzspannung den Spezifikationen entspricht.
Alarm — Internal Temperature (Interne Temperatur)	Lüfterstörung	Lüfter ersetzen, wenn er nicht richtig funktioniert.
	Lüfterfilter verschmutzt	Filter reinigen oder ersetzen.
	Überhitzte Leiterplatte	Defekte Leiterplatte, die die Störung meldet, lokalisieren und bei Bedarf ersetzen.
Alarm – Bench Temperature (Messbanktemperatur)	Messbank-Heizelement defekt	10 Kiloohm-Thermistor überprüfen und bei Bedarf austauschen.
Alarm – Pressure (Druck)	Zu hoher Messbankdruck wird angezeigt	Pumpe auf Riss in der Membran prüfen; bei Bedarf mit Pumpenreparatursatz ersetzen. Siehe Kapitel "Wartung" in diesem Handbuch.
		Prüfen, dass die Kapillaren ordnungsgemäß installiert und die O-Ringe in gutem Zustand sind. Gegebenenfalls austauschen.
		Durchflusssystem auf undichte Stellen prüfen.
Alarm — Flow (Durchfluss)	Geringer Durchfluss	Probenkapillare auf Blockierung prüfen. Bei Bedarf ersetzen.
		Bei Verwendung eines Proben- Partikelfilters sicherstellen, dass er nicht verstopft ist. Proben- Partikelfilter aus dem Proben- Schottanschluss entfernen. Wenn der Durchfluss ansteigt, den Filter ersetzen. Dichtigkeitsprüfung wie auf
		Seite 5-5 beschrieben durchführen.
	Hoher Durchfluss	Zur Einleitung von Nullluft oder Gas in das Gerät eine Abblasleitung verwenden.
	Durchfluss = 0 l/min	Prüfen, dass auf STEP POL-Karte 1 beide DIP-Schalter auf "SW2 aus" gestellt sind (beide müssen zur Rückseite des Geräts weisen). Sicherstellen, dass die Pumpe an

Problem	Mögliche Ursache	Maßnahme
		die STEP POL-Karte angeschlossen ist.
	Abgenutzte Membran	Pumpe alle 12 Monate oder nach Bedarf überholen.
Alarm — Board Communication (Karten- Kommunikation)	Kabelverbindung	Prüfen, ob das DMC-Kabel richtig angeschlossen ist. Bei Bedarf neu anschließen.
	DMC-Leiterplatte defekt	DMC-Platine austauschen.
Alarm – Power Supply (Spannungsversorgung)	Kabelverbindung	Prüfen, ob das DMC-Kabel richtig angeschlossen ist. Bei Bedarf neu anschließen.
	Komponente defekt	Auf andere Alarme prüfen, da möglicherweise eine andere Komponente dieser DMC zu viel Strom zieht.
	DMC-Leiterplatte defekt	DMC-Platine austauschen.
Alarm — Module Temperature (Modultemperatur)	Kabelverbindung	Prüfen, ob das DMC-Kabel richtig angeschlossen ist. Bei Bedarf neu anschließen.
	Sonstiger Alarm	Sicherstellen, dass die Gerätetemperatur nicht zu hoch ist und kein Temperaturalarm vorliegt.
	DMC-Leiterplatte defekt	DMC-Platine austauschen.
Alarm — 5V/24V Step Board (5 V/24 V-STEP-Karte)	Kabelverbindung	Kabelverbindungen mit dieser STEP POL-Karte prüfen.
Alarm – Conc. (Konzentration)	Konzentration hat Bereichsgrenzwert überschritten	Sicherstellen, dass der Bereich dem erwarteten Wert entspricht. Falls nicht, den richtigen Bereich auswählen.
	Konzentration zu niedrig	Benutzerdefinierten unteren Sollwert überprüfen. Sicherstellen, dass die minimale Auslöseschwelle wie erforderlich eingestellt ist.
Alarm – Analog I/O (analoges E/A-Modul)	Leiterplatte defekt	Analogkarte ersetzen.
Alarm — Digital I/O (digitales E/A-Modul)	Leiterplatte defekt	Digitalkarte ersetzen.
Alarm – Auto Bkg Cal/Check (Autom. Hintergrundkalibrierung/- prüfung)	Falscher oberer Alarmgrenzwert	Über "Settings > Status and Alarms > Concentrations" (Einstellungen > Statuswerte und Alarme > Konzentrationen) überprüfen, dass der obere

Fehlersuche und -behebung Anleitung zur Fehlersuche und -behebung

Problem	Mögliche Ursache	Maßnahme
		Alarmgrenzwert korrekt ist.
	Hintergrundkalibrierung des Geräts fehlgeschlagen	Gerät neu kalibrieren.
Alarm – Auto Span Cal/Check (Automatische Messbereichskalibrierung/- prüfung)	Falscher oberer Alarmgrenzwert	Über "Settings > Status and Alarms > Concentrations" (Einstellungen > Statuswerte und Alarme > Konzentrationen) überprüfen, dass der obere Alarmgrenzwert korrekt ist.
	Messbereichskalibrierung des Geräts fehlgeschlagen	Gerät neu kalibrieren.
Alarm – Bench Temp Thermistor Open (Stromkreisunterbrechung Messbanktemperatur- Thermistor)	Kabelverbindung	Prüfen Sie die Verbindung zwischen Heizelement und DMC- Platine. Bei Bedarf neu anschließen.
Alarm – Bench Temp Thermistor Short (Kurzschluss Messbanktemperatur- Thermistor)	Kabelverbindung	Prüfen Sie die Verbindung zwischen Heizelement und DMC- Platine. Bei Bedarf neu anschließen.
Alarm – Motor Speed too Iow (Motordrehzahl zu niedrig)	Kabelverbindung	Prüfen Sie die Verbindung zwischen Motor und DMC-Platine. Bei Bedarf neu anschließen.
	Heizelement defekt	Motor nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – Motor Speed too High (Motordrehzahl zu hoch)	Kabelverbindung	Prüfen Sie die Verbindung zwischen Motor und DMC-Platine. Bei Bedarf neu anschließen.
	Heizelement defekt	Motor nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – Module Thermistor Open (Stromkreisunterbrechung Modulthermistor)	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – Module Thermistor Short (Kurzschluss Modulthermistor)	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – Bench Temp Thermistor Open (Stromkreisunterbrechung Messbanktemperatur-	Kabelverbindung	Kabelverbindung vom Thermistor zur DMC-Platine überprüfen.

Problem	Mögliche Ursache	Maßnahme
Thermistor)		
	Thermistor defekt	Thermistor nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – Bench Temp Thermistor Short (Kurzschluss Messbanktemperatur- Thermistor)	Kabelverbindung	Kabelverbindung von der IR-Quelle zur DMC-Platine überprüfen.
	IR-Quelle defekt	IR-Quelle nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
IR Source Current too Low (IR-Quellenstrom zu niedrig)	Kabelverbindung	Kabelverbindung von der IR-Quelle zur DMC-Platine überprüfen.
	IR-Quelle defekt	IR-Quelle nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – IR Source Current too High (IR-Quellenstrom zu hoch)	Kabelverbindung	Kabelverbindung von der IR-Quelle zur DMC-Platine überprüfen.
	IR-Quelle defekt	IR-Quelle nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – IR Detector Bias too Low (IR-Detektorleerwert zu niedrig)	Kabelverbindung	Kabelverbindung von der IR-Quelle zur DMC-Platine überprüfen.
	IR-Quelle defekt	IR-Quelle nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.
Alarm – IR Detector Bias too High (IR-Detektorleerwert zu hoch)	Kabelverbindung	Kabelverbindung von der IR-Quelle zur DMC-Platine überprüfen.
	IR-Quelle defekt	IR-Quelle nach Bedarf ersetzen.
	DMC-Platine defekt	Platine bei Bedarf ersetzen.

Kapitel 7 Instandhaltung

In diesem Kapitel werden die Instandhaltungsverfahren beschrieben, die in regelmäßigen Abständen durchgeführt werden sollten, um einen ordnungsgemäßen Betrieb des Geräts sicherzustellen. Außerdem werden darin die Verfahren zum Austausch der Teilbaugruppen des 48iQ erläutert.

Sicherheitsvorkeh Machen Sie sich mit den Sicherheitsvorkehrungen vertraut, bevor Sie in diesem Kapitel beschriebene Verfahren ausführen. rungen Die Wartungsverfahren in dieser Anleitung dürfen nur durch qualifiziertes **WARNUNG** Wartungspersonal ausgeführt werden. **A**WARNUNG Wenn das Gerät nicht auf eine nicht vom Hersteller vorgesehene Weise betrieben wird, können die Schutzfunktionen des Geräts beeinträchtigt werden. **VORSICHT VORSICHT** Wenn das LCD-Display defekt ist, achten Sie darauf, dass die Flüssigkristalle nicht mit Haut oder Kleidung in Berührung kommen. Wenn Flüssigkristalle mit Ihrer Haut oder Kleidung in Berührung kommen, sofort mit Seife und Wasser abwaschen. Die LCD-Anzeige oder den Rahmen nicht vom LCD-Modul entfernen. ▲ Die LCD-Polarisationsplatte ist sehr empfindlich, bitte vorsichtig handhaben. Die Polarisationsplatte nicht mit einem trockenen Tuch abwischen, da dies die Oberfläche zerkratzen könnte. Zum Reinigen des LCD-Moduls niemals Alkohol, Azeton, MEK oder andere Lösungsmittel auf Ketonbasis oder aromatische Lösungsmittel verwenden. Zum Reinigen ein weiches, mit Benzin-Lösungsmittel

befeuchtetes Tuch verwenden.

Das LCD-Modul niemals in der Nähe organischer Lösungsmittel oder korrosiver Gase aufstellen. ▲

Das LCD-Modul nicht schütteln oder Stößen aussetzen.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe Mengen statischer Elektrizität beschädigt werden. Beim Arbeiten an internen Komponenten ist ein korrekt geerdetes Antistatik-Armband zu tragen. Weitere Informationen zu Sicherheitsvorkehrungen finden Sie unter "Sicherheit". ▲

Hinweis Wenn kein Antistatik-Armband verfügbar ist, berühren Sie vor dem Anfassen jeglicher internen Komponenten des Geräts unbedingt das Gehäuse des Geräts. Das Gehäuse ist nicht geerdet, wenn das Gerät von der Stromversorgung getrennt ist. ▲

Abbildung 7–1. Korrekt geerdetes Antistatik-Armband

Hinweis Wie abgebildet an unlackiertem Gehäuse oder Steckdose erden. ▲

Firmware-Updates

Neue Versionen der Gerätesoftware werden von Zeit zu Zeit über Ethernet, per USB-Stick oder auf der Unternehmenswebseite bereitgestellt:

www.thermofisher.com

Weitere Informationen zum Installieren neuer Firmware finden Sie im Abschnitt "Installieren neuer Firmware" im *iQ Series Kommunikationshandbuch*.

Ersatzteilliste Eine umfassende Liste von Ersatzteilen finden Sie auf der Unternehmenswebseite unter:

www.thermofisher.com/48iQ

Die Lage der Komponenten können Sie Abbildung 7–2 und Abbildung 7–3 entnehmen.

Abbildung 7–2. Anordnung der Komponenten des 48iQ – Draufsicht

Austausch von
SicherungenVerwenden Sie zum Austausch von Sicherungen das folgende Verfahren.1. Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.

- 2. Entfernen Sie den Sicherungsträger, der sich unter dem Wechselstromanschluss befindet.
- 3. Wenn eine der Sicherungen durchgebrannt ist, tauschen Sie beide Sicherungen aus.
- 4. Setzen Sie den Sicherungsträger ein und schließen Sie das Netzkabel wieder an.

Abbildung 7–4. Wechseln der Sicherungen

Austausch von Verwenden Sie zum Austausch von Filtern das folgende Verfahren. Filtern

- 1. Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- 2. Ziehen Sie die Lüfterabdeckung mit der rechten oberen Ecke beginnend heraus.

3. Tauschen Sie den Filter aus und lassen Sie die Lüfterabdeckung wieder einrasten.

Abbildung 7–6. Entfernen der Lüfterabdeckung

Austausch des Verwend Lüfters Erforder

Verwenden Sie zum Austausch des Lüfters das folgende Verfahren.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie das Lüfterkabel J18.

Abbildung 7–7. Trennen des Lüfterkabels

- 3. Ziehen Sie die Lüfterabdeckung mit der rechten oberen Ecke beginnend heraus.
- 4. Haken Sie die vier Zungen der Lüfterabdeckung aus.
- 5. Lösen Sie die vier 6-32"-Schrauben vom Lüftergehäuse.
- 6. Tauschen Sie den Lüfter aus und bauen Sie ihn in umgekehrter Reihenfolge des Ausbaus wieder ein.

Abbildung 7–8. Austauschen des Lüfters

Ausbau und Austausch der Messseite

Gehen Sie folgendermaßen vor, um die Messseite bei Bedarf zu entfernen und zu ersetzen.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie das Lüfterkabel J18 (Abbildung 7–9).

Abbildung 7–9. Trennen des Lüfterkabels

3. Ziehen Sie das DMC-Kabel ab (Abbildung 7–10).

Abbildung 7–10. Trennen des DMC-Kabels

- 4. Fassen Sie die Frontblende an den beiden oberen Ecken an und ziehen Sie sie nach außen.
- 5. Entfernen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die drei 8-32"-Senkkopfschrauben (Abbildung 7–11).

Abbildung 7–11. Befestigungsteile der Gerätefront zum Ausbau der Messseite lösen

- 6. Schwenken Sie den Arm nach oben.
- 7. Lösen Sie die unverlierbare Befestigung.
- 8. Entfernen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die zwei 8-32"-Senkkopfschrauben.
- 9. Ziehen Sie die Messseite heraus.
- 10. Bauen Sie die Teile in umgekehrter Reihenfolge des Ausbaus wieder ein.

Abbildung 7–12. Befestigungsteile der Geräterückseite zum Ausbau der Messseite lösen

Austausch des
LCD-ModulsVerwenden Sie zum Austausch des LCD-Moduls das folgende Verfahren.LCD-ModulsErforderliche Ausrüstung:

Gabelschlüssel, 1/4"

- 1. Schalten Sie das Gerät aus und ziehen Sie das Netzkabel ab.
- 2. Fassen Sie die Frontblende an den beiden oberen Ecken an und ziehen Sie sie nach außen.
- 3. Lösen Sie mit einem 1/4"-Schlüssel die vier 4-40"-Muttern (Abbildung 7–13).

Abbildung 7–13. Austauschen des LCD-Moduls

- 4. Nehmen Sie die Abdeckung ab.
- 5. Trennen Sie die LCD-Kabel von der Rückseite der Baugruppe.
- 6. Ziehen Sie das Modul aus den Abstandshaltern.

Abbildung 7–14. Elektrische Kabel vom LCD-Modul abziehen

7. Tauschen Sie das LCD-Modul aus und bauen Sie es in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch der Verwenden Sie zum Austausch der E/A-Karten das folgende Verfahren. E/A-Karten

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Schwenken Sie den Arm nach oben.

3. Ziehen Sie die Karte nach oben.

Abbildung 7–16. Austausch der E/A-Karten, Karte entfernen

- 4. Stellen Sie beim Einbau sicher, den kreisförmigen Ausschnitt auf die Nut auszurichten.
- 5. Setzen Sie die Karte nach unten ein.

Abbildung 7–17. Austausch der E/A-Karten, Einbau

6. Schließen Sie den Arm. Stellen Sie sicher, dass der Verlängerungsbügel auf die Innenseite der rechteckigen Ausschnitte ausgerichtet ist.

Abbildung 7–18. Austausch der E/A-Karten, Arm schließen und Ausrichtung

Austausch des Peripheriemoduls und des System Controller Boards

Verwenden Sie zum Austausch des Peripheriemoduls oder des System Controller Boards das folgende Verfahren.

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Ziehen Sie die Zunge heraus (zwei pro Modul).
- 3. Ziehen Sie das Modul heraus.

Abbildung 7–19. Austauschen des Peripheriemoduls

4. Tauschen Sie das Peripheriemodul aus und bauen Sie es in umgekehrter Reihenfolge des Ausbaus wieder ein.

DMC-Druck- und Durchfluss-Platine

Verwenden Sie zum Austausch der DMC-Druck- und Durchfluss-Platine das folgende Verfahren.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 7/16"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie die Kabel von der Druck- und Durchfluss-Platine.

Abbildung 7–20. Druck- und Durchfluss-Platine, DMC-Kabel trennen

- 3. Trennen Sie die Verbindungsleitungen.
- 4. Lösen Sie mit einem 7/16"-Inbusschlüssel die vier 6-32"-Innensechskantschrauben.

Abbildung 7–21. Druck- und Durchfluss-Platine, Schrauben

5. Tauschen Sie die Platine aus und bauen Sie sie in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch derVerwenden Sie zum Austausch der Pumpe das folgende Verfahren.PumpeErforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 1 und Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie das Pumpenkabel vom STEP POL-Board J7.
- 3. Drehen Sie die Rohrschellen in die entgegengesetzte Richtung, um sie zu lösen.

Hinweis Zum Verriegeln nach innen schieben. A

- 4. Trennen Sie die Leitungen von der Pumpe.
- 5. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die beiden unverlierbaren Befestigungen.
- 6. Schieben Sie die Pumpe nach links, bis die Nut mit der Öffnung übereinstimmt.

Abbildung 7–22. Pumpe entfernen, trennen und lösen

7. Ziehen Sie die Pumpe nach außen.

Hinweis Stellen Sie beim Einbau der Pumpe sicher, dass sich die Nutöffnung in der Pumpe über der Nut befindet. ▲

Abbildung 7–23. Ausbau der Pumpe, Nut

8. Entfernen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die zwei M3-Schrauben.

Abbildung 7–24. Austausch der Pumpe, Schrauben lösen

9. Tauschen Sie die Pumpe aus und bauen Sie sie in umgekehrter Reihenfolge des Ausbaus wieder ein.

Reinigung und/oder Austausch der Kapillaren

Verwenden Sie das folgende Verfahren, um die Kapillare zu reinigen bzw. zu ersetzen.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2 Innensechskantschlüssel, 7/64"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie die Verbindungsleitungen.
- 3. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die unverlierbare Befestigung.

Abbildung 7–25. Kapillare entfernen, trennen und lösen

4. Schieben Sie die Kapillarenplatte nach oben, um die Nut der Trennwand freizulegen.

Instandhaltung Reinigung und/oder Austausch der Kapillaren

Abbildung 7-26. Kapillarplatte, Nut

- 5. Entfernen Sie mit einem 7/64"-Inbusschlüssel die vier 6-32"-Innensechskantschrauben.
- 6. Legen Sie die Kapillarblöcke beiseite.

Hinweis Die Anordnung der Verschraubungen, Anzahl von Kapillaren und Größen der Kapillaren variieren je nach Konfiguration des Messgeräts. ▲

Austausch der Kapillaren-O-Ringe

Verwenden Sie zum Austausch der Kapillaren-O-Ringe das folgende Verfahren.

Erforderliche Ausrüstung:

Spitzwerkzeug für O-Ringe

1. Entfernen Sie den O-Ring mit einem spitzen Werkzeug aus Kunststoff.

Hinweis Achten Sie dabei, die Flanken des O-Rings nicht zu beschädigen. Siehe Abbildung 7–27. ▲

Austausch des
NetzteilsVerwenden Sie zum Austausch des Netzteils das folgende Verfahren.NetzteilsErforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie alle gezeigten elektrischen Anschlüsse: J9, J10, J24, J25, J26 und die Erdung.
- 3. Lösen Sie die unverlierbare Befestigung.
- 4. Schieben Sie das Netzteil nach links, um die drei Nuten in der Gehäusebodenplatte freizulegen.

Abbildung 7–28. Ausbauen des Netzteils

- 5. Ziehen Sie das Netzteil nach oben.
- 6. Tauschen Sie das Netzteil aus und bauen Sie es in umgekehrter Reihenfolge des Ausbaus wieder ein.

Abbildung 7–29. Austauschen des Netzteils

Austausch der STEP POL-Karte

Verwenden Sie zum Austausch der STEP POL-Karte das folgende Verfahren.

Erforderliche Ausrüstung:

TORX-Schraubendreher, T15 oder Schlitzschraubendreher 3/16"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie das STEP POL-Netzkabel (J4).
- 3. Trennen Sie das STEP POL-Signalkabel (J2).
- 4. Trennen Sie das Pumpenkabel (J7).

5. Lösen Sie die unverlierbare Befestigung.

Abbildung 7–30. STEP POL-Karte trennen und lösen

Abbildung 7–31. Trennwandnut für STEP POL-Karte freilegen

- 6. Schieben Sie die STEP-Karte 1 nach oben, um die Nut der Trennwand freizulegen.
- Stellen Sie beim Austausch der STEP-Karte 1 sicher, dass Schalter 1 und 2 von ON (Ein) weg zeigen (Abbildung 7–32). Stellen Sie beim Austausch der optionalen STEP-Karte 2 sicher, dass Schalter 1 zu ON (Ein) und Schalter 2 von ON (Ein) weg zeigt (Abbildung 7–33).
- 8. Tauschen Sie die STEP POL-Karte aus und bauen Sie sie in umgekehrter Reihenfolge des Ausbaus wieder ein.

Abbildung 7-33. Schaltereinstellungen der optionalen STEP POL-Karte 2

Abbildung 7-34. Aufbau der DMC

Verwenden Sie das folgende Verfahren, um die DMC aus dem Gerätegehäuse zu auszubauen. Es ist einfacher, für folgende Arbeiten zuerst die DMC auszubauen.

- Ausbau der optischen Messbank
- Austausch des optischen Schalters, Ausbau des Spülradgehäuses, Austausch des Motors, Ausrichtung von Filterrad und Motor
- Ausbau der Heizelement-Baugruppe
- Ausbau der Vorverstärker/Detektor-Baugruppe
- Ausbau der IR-Quelle

Ausbau der optischen Messbank

Verwenden Sie das folgende Verfahren, um die optische Messbank aus dem Gerätegehäuse auszubauen.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Ziehen Sie das DMC-Kabel J6 (unten) ab.
- 3. Trennen Sie die Verbindungsleitungen wie gezeigt.
- 4. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die sechs unverlierbaren Befestigungen.

Abbildung 7–35. Ausbau der DMC aus dem Gehäuse

Austausch des optischen Schalters

Verwenden Sie zum Austausch des optischen Schalters das folgende Verfahren.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 5/32"

Kreuzschlitzschraubendreher Nr. 1

- 1. Trennen Sie die Anschlüsse J8 (Motor) und J4 (optischer Schalter).
- 2. Lösen Sie den Anschluss des Motors und des optischen Schalters.

Abbildung 7–36. Ausbau von Motor und Filter, Teil 1

- 3. Trennen Sie die elektrischen Anschlüsse.
- 4. Entfernen Sie mit einem 5/32"-Innensechskantschlüssel die drei 10-32"-Innensechskantschrauben und Sicherungsscheiben.

Abbildung 7–37. Ausbau von Motor und Filter, Teil 2

Hinweis Tauschen Sie den optischen Schalter nach Bedarf aus. Der optische Schalter muss nicht ausgebaut werden, um den Motor oder Filter zu ersetzen. ▲

- 5. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die beiden 4-40"-Senkkopfschrauben, um die optische Abdeckung zu entfernen.
- 6. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die beiden 2-56"-Flachkopfschrauben, um den optischen Schalter zu entfernen.

Abbildung 7–38. Ausbau von Motor und Filter/des optischen Schalters, Teil 3

Ausbau des Spülradgehäuses

Verwenden Sie das folgende Verfahren, um das Spülradgehäuse auszubauen, damit Sie an das Filterrad und den Motor gelangen.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 5/32"

- 1. Lösen Sie mit einem 5/32"-Innensechskantschlüssel die beiden 10-32"-Innensechskantschrauben.
- 2. Legen Sie das Spülradgehäuse vorsichtig beiseite.

Abbildung 7–39. Ausbau des Spülradgehäuses aus der Motorbaugruppe (Teil 4)

Austausch des Filterrads	Verwenden Sie zum Austausch des Filterrads das folgende Verfahren.
	Erforderliche Ausrüstung:
	Innensechskantschlüssel, 5/32" und 5/64"
	Kreuzschlitzschraubendreher Nr. 2
	1. Entfernen Sie die optische Messbank. Siehe "Ausbau der optischen Messbank" auf Seite 7-31.
	2. Entfernen Sie das Spülradgehäuse. Siehe "Ausbau des Spülradgehäuses" auf Seite 7-35.
	 Lösen Sie mit einem 5/32"-Innensechskantschlüssel die beiden 10-32"- Innensechskantschrauben.
	4. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die 8-32"- Flachkopfschraube, um an die 8-32"-Feststellschraube zu gelangen.
	5. Lösen Sie mit einem 5/64"-Innensechskantschlüssel die 8-32"- Feststellschraube nur um zwei oder drei Umdrehungen.
	6. Schieben Sie das Chopper-Rad vorsichtig von der Motorwelle.
	7. Tauschen Sie das Filterrad aus und richten Sie Motor und Filterrad aus. Siehe "Ausrichtung von Motor und Filterrad" auf Seite 7-40.

Abbildung 7–40. Filterrad

Austausch des
MotorsVerwenden Sie zum Austausch des Motors das folgende Verfahren.
Erforderliche Ausrüstung:

Innensechskantschlüssel, 5/32" und 5/64" Kreuzschlitzschraubendreher Nr. 2

- 1. Entfernen Sie die optische Messbank. Siehe "Ausbau der optischen Messbank" auf Seite 7-31.
- 2. Entfernen Sie das Spülradgehäuse. Siehe "Ausbau des Spülradgehäuses" auf Seite 7-35.
- Entfernen Sie das Filterrad. Siehe "Austausch des Filterrads" auf Seite 7-36.
- 4. Lösen Sie mit einem 5/64"-Innensechskantschlüssel die beiden 10-32"-Innensechskantschrauben.

Abbildung 7-41. Entfernen des Motors von der Motorbefestigung, Teil 1

- 5. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die 8-32"-Flachkopfschraube, um an die 8-32"-Feststellschraube zu gelangen.
- 6. Lösen Sie mit einem 5/64"-Innensechskantschlüssel die 8-32"-Feststellschraube nur um zwei oder drei Umdrehungen.
- 7. Schieben Sie den Motor vorsichtig heraus.
- 8. Tauschen Sie den Motor aus und richten Sie Filterrad und Motor aus. Siehe "Ausrichtung von Motor und Filterrad" auf Seite 7-40.

Abbildung 7-42. Ausbau des Motors

Ausrichtung von Motor und Filterrad

Nachdem Sie einen neuen Motor oder ein neues Filterrad eingebaut haben, gehen Sie folgendermaßen vor, um den Motor und das Filterrad auszurichten.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 5/32" und 5/64"

Gewindesicherung

- 1. Richten Sie die Vertiefung auf der Welle auf die Zugangsbohrung aus und schieben Sie das Chopper-Rad vorsichtig über die Motorwelle, bis die Feststellschraube auf die Bohrung ausgerichtet ist.
- 2. Tragen Sie etwas Gewindesicherung auf die 8-32"-Feststellschraube auf.
- 3. Ziehen Sie mit einem 5/64"-Innensechskantschlüssel die Feststellschraube langsam fest, während Sie das Chopper-Rad vorsichtig vor und zurück drehen. Sie sollten spüren, wie die Feststellschraube in der Vertiefung der Welle fasst. (Die Feststellschraube für das Chopper-Rad befindet sich gegenüber von der gekrümmten Nut.)
- 4. Stellen Sie sicher, dass die 10-32"-Schrauben festgezogen sind. Wenn Sie den Motor austauschen, siehe Abbildung 7–41.
- 5. Nachdem Sie das Filterrad montiert haben, drehen Sie es und vergewissern Sie sich, dass es auf der Motorwelle rund läuft.

Abbildung 7–43. Motoreinbau – Ausrichtung der Welle

- 6. Lassen Sie das Gerät 90 Minuten lang Nullluft ansaugen.
- 7. Wählen Sie auf dem Startbildschirm "Settings > Measurement Settings > Advanced Measurement Settings > Optical Bench Settings > Continue to Initial S/R Calibration" (Einstellungen > Messungseinstellungen > Erweiterte Messungseinstellungen > Einstellungen für optische Messbank > Mit anfänglicher P/R-Kalibrierung fortfahren).
- 8. Befolgen Sie die Schritte in Kapitel 4, "Kalibrierung" für "Initial S/R (Anfänglicher P/R-Wert)".

Ausbau der optischen Messbank/des Heizelements	Verwenden Sie das folgende Verfahren, um die optische Messbank auszubauen oder die Heizelement-Baugruppe auszutauschen. Erforderliche Ausrüstung:
	Innensechskantschlüssel, 5/32"
	Kreuzschlitzschraubendreher Nr. 1
WARNUNG	Warten Sie, bis sich die Komponenten abkühlen, bevor Sie die Unterseite der optischen Messbank berühren. ▲
	1. Trennen Sie die elektrischen Anschlüsse: J5 Heizelement, J1 Vorverstärker, unterer Anschluss J8 Motor und oberer Anschluss J4 optischer Schalter.
	 Entfernen Sie mit einem 5/32"-Innensechskantschlüssel die vier 10- 32"-Innensechskantschrauben und Sicherungsscheiben.
G	
J5	HEIZELEMENT J1 VORVERSTÄRKER ANSCHLUSS J8 J4 OPTISCHER TRENNEN TRENNEN MOTOR TRENNEN SCHALTER TRENNEN

Abbildung 7-44. Ausbau der Messbank, Teil 1

- 3. Drehen Sie die optische Messbank um, um an die Rückseite zu gelangen.
- 4. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die fünf 4-40"-Flachkopfschrauben.

5. Beim Einbau eines neuen Kühlkörpers oder Thermistors wird Wärmeleitpaste benötigt. Tragen Sie eine dünne und gleichmäßige Schicht Wärmeleitpaste auf die Unterseite auf.

Ausbau der Vorverstärker/ Detektor-Baugruppe

Verwenden Sie zum Ausbau der Vorverstärker/Detektor-Baugruppe das folgende Verfahren.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 1

Innensechskantschlüssel, 7/64"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung.
- 2. Trennen Sie das Vorverstärker- und IR-Quellen-Kabel.

Abbildung 7–46. Entfernen der Vorverstärker-Detektor-Abdeckung, Teil 1

- 3. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die zwei 4-40"-Flachkopfschrauben.
- 4. Heben Sie die Vorverstärkerabdeckung an.

5. Lösen Sie mit einem 7/64"-Innensechskantschlüssel die beiden 6-32"-Innensechskantschrauben.

6. Ziehen Sie die Vorverstärker-Platinenbaugruppe nach außen.

Abbildung 7-47. Ausbau des Vorverstärkers/Detektors

7. Tauschen Sie den Vorverstärker/Detektor nach Bedarf aus und bauen Sie ihn in umgekehrter Reihenfolge des Ausbaus wieder ein.

Hinweis Stellen Sie beim Wiedereinbau der Vorverstärker-Baugruppe sicher, dass der O-Ring richtig sitzt. ▲

Austausch der
IR-QuelleDas Steuerungssystem der IR-Q
Quelle mit Drahtwiderstand ko
Lebensdauer der Komponente z

Das Steuerungssystem der IR-Quelle wurde so konzipiert, dass die IR-Quelle mit Drahtwiderstand konservativ betrieben werden kann, um die Lebensdauer der Komponente zu erhöhen. Die Lebensdauer der Komponente ist jedoch endlich. Da die IR-Quelle in der Anschaffung relativ kostengünstig ist und leicht ausgetauscht werden kann, wird ein Austausch nach einem Jahr (kontinuierlicher Betrieb) empfohlen. Somit wird ein Datenverlust durch eine Störung oder einen Ausfall der IR-Quelle vermieden. Wenn die IR-Quelle nach Bedarf ausgetauscht werden soll, ist sie in folgenden Situationen zu ersetzen:

- Wenn kein Licht emittiert wird
- Wenn nach dem Reinigen der Optik die IR-Lichtstärke unter 100.000 Hz bleibt

Eine Nachkalibrierung des 48iQ nach dem Austausch der IR-Lichtquelle ist nicht erforderlich, da der 48iQ mit Verhältniswerten arbeitet und der Austausch der IR-Lichtquelle die Kalibrierung nicht beeinflusst.

Verwenden Sie zum Austausch der IR-Quelle des DMC das folgende Verfahren.

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung.
- 2. Trennen Sie die Kabel der IR-Quelle wie gezeigt.

Abbildung 7-48. Trennen des Kabels der IR-Quelle

- 3. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 1 die zwei 4-40"-Flachkopfschrauben.
- 4. Ziehen Sie die IR-Quellen-Baugruppe nach oben.

Abbildung 7–49. Ausbau der IR-Quellen-Baugruppe

5. Bauen Sie die Teile in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch des
optionalen
Verwenden Sie zum Austausch des Verteilers das folgende Verfahren.Optionalen
VerteilersErforderliche Ausrüstung:
Innensechskantschlüssel, 9/16"

Innensechskantschlüssel, 9/64"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie die drei elektrischen Anschlüsse (J5, J6 und J8) von der STEP POL-Karte 1.

Abbildung 7–50. Austauschen des Verteilers, Teil 1

3. Lösen Sie die drei Muttern. Entfernen Sie die Muttern sowie die vorderen und hinteren Klemmringe wie gezeigt von den Anschlüssen SPAN, ZERO IN und SAMPLE an der Rückwand (Abbildung 7–51).

Abbildung 7–51. Austauschen des Verteilers, Teil 2

- 4. Trennen Sie die Leitungen.
- 5. Lösen Sie mit einem 9/64"-Innensechskantschlüssel die vier 8-32"-Innensechskantschrauben.

Abbildung 7–52. Austauschen des Verteilers, Teil 3

6. Tauschen Sie den Verteiler aus und bauen Sie ihn in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch des optionalen Nullluftabscheiders

Verwenden Sie zum Austausch des Nullluftabscheiders das folgende Verfahren.

Erforderliche Ausrüstung:

Innensechskantschlüssel, 9/16"

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie die Verbindungsleitungen.
- 3. Lösen Sie die vier 8-32"-Innensechskantschrauben.

Abbildung 7–53. Austausch des Nullluftabscheiders

4. Tauschen Sie den Nullluftabscheider ein und bauen Sie ihn in umgekehrter Reihenfolge des Ausbaus wieder ein.

Optionaler DMC-Sauerstoffsensor

Verwenden Sie das folgende Verfahren, um den Sauerstoffsensor aus dem Gerätegehäuse zu auszubauen. Es ist einfacher, für folgende Arbeiten zuerst den Sauerstoffsensor auszubauen:

- Ausbau des Sauerstoffsensors
- Austausch der Sauerstoffsensor-Platine
- Austausch der Sauerstoffsensor-Kapillaren
- Austausch des Sauerstoffsensors

Ausbau des Sauerstoffsensors

Verwenden Sie das folgende Verfahren, um den Sauerstoffsensor auszubauen und zu ersetzen.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Schalten Sie das Gerät aus, ziehen Sie das Netzkabel ab und entfernen Sie die Abdeckung (Abbildung 2–1).
- 2. Trennen Sie die elektrischen Anschlüsse und das DMC-Kabel zur Sauerstoffsensor-Platinen-DMC (J4).
- 3. Trennen Sie die 2 Verbindungsleitungen.
- 4. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die unverlierbaren Befestigungen.

Abbildung 7-54. Ausbau des Sauerstoffsensors, Teil 1

5. Schieben Sie die Sauerstoffsensor-Baugruppe nach links.

Hinweis Stellen Sie sicher, dass die Sauerstoffsensor-Platte nicht an die Kante und den Bolzen stößt. ▲

Abbildung 7–55. Ausbau des Sauerstoffsensors, Teil 2

6. Schieben Sie die Sauerstoffsensor-Baugruppe nach oben.

Abbildung 7–56. Ausbau des Sauerstoffsensors, Teil 3

7. Schieben Sie den Sensor von der Trennwand weg.

Hinweis Stellen Sie sicher, dass die Sauerstoffsensor-Platte nicht an die Kante stößt. ▲

Abbildung 7–57. Ausbau des Sauerstoffsensors, Teil 4

Austausch der Verw Sauerstoffsensor- Verfa Platine Erfor

Verwenden Sie zum Austausch der Sauerstoffsensor-Platine das folgende Verfahren.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Bauen Sie die Sauerstoffsensor-DMC aus dem Gerät aus. Siehe "Ausbau des Sauerstoffsensors" auf Seite 7-52.
- 2. Trennen Sie den Anschluss J1.
- 3. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die fünf 6-32"-Flachkopfschrauben.

4. Schieben Sie die Platine nach oben.

Hinweis Nut herausschieben.

Abbildung 7–59. Austauschen der Sauerstoffsensor-DMC-Platine, Teil 2

5. Tauschen Sie die Sauerstoffsensor-Platine aus und bauen Sie sie in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch der
Sauerstoffsensor-
KapillarenVerwenden Sie zum Austausch der Sauerstoffsensor-Kapillaren das folgende
Verfahren.KapillarenErforderliche Ausrüstung:

Innensechskantschlüssel mit Kugelkopf, 3/32"

- 1. Bauen Sie die Sauerstoffsensor-DMC aus dem Gerät aus. Siehe "Ausbau des Sauerstoffsensors" auf Seite 7-52.
- Lösen Sie mit einem 3/32"-Innensechskantschlüssel mit Kugelkopf (schräg ausgerichtete Schrauben) die beiden 4-40"-Innensechskantschrauben.
- 3. Lösen Sie die Rohrschelle.
- 4. Ziehen Sie die Leitung ab, nachdem Sie die Rohrschelle gelöst haben.

Abbildung 7–60. Austauschen der Sauerstoffsensor-Kapillaren

Abbildung 7–61. Austauschen der Kapillaren, Teil 2

5. Tauschen Sie die Kapillare aus und bauen Sie sie in umgekehrter Reihenfolge des Ausbaus wieder ein.

Austausch des Sauerstoffsensors

Verwenden Sie zum Austausch der Sauerstoffsensors das folgende Verfahren.

Erforderliche Ausrüstung:

Kreuzschlitzschraubendreher Nr. 2

- 1. Bauen Sie die Sauerstoffsensor-DMC aus dem Gerät aus. Siehe "Ausbau des Sauerstoffsensors" auf Seite 7-52.
- 2. Trennen Sie das Kabel des Sauerstoffsensors ab.

Abbildung 7-62. Austauschen des Sauerstoffsensors

- 3. Lösen Sie mit einem Kreuzschlitzschraubendreher Nr. 2 die beiden 6-32"-Senkkopfschrauben.
- 4. Trennen Sie die Leitungen.
- 5. Ziehen Sie den Sauerstoffsensor heraus.
- 6. Tauschen Sie den Sauerstoffsensor aus und bauen Sie ihn in umgekehrter Reihenfolge des Ausbaus wieder ein.

Kapitel 8 Systembeschreibung

Der 48iQ arbeitet mit einer Reihe von modularen Teilsystemen, die die Gesamtfunktion des Geräts bereitstellen. Die Kernmessungen für die Konzentration erfolgen in DMC-Modulen (Distributed Measurement and Control). Dieses Kapitel beschreibt die Funktion und Position der Systemkomponenten in der Modulstruktur, einschließlich der Firmware, Elektronik und E/A-Funktionen.

Die Systemkomponenten des 48iQ umfassen:

- Optische Messbank-DMC
 - Hardware für optische Messbank mit Bandpassfiltern, Spiegeln und Heizelement-Kabel
 - Filterrad und Motor-Teilbaugruppe
 - Filterradspülung
 - Detektor/Vorverstärker
 - Infrarotquelle
 - Optische Messbank-DMC-Platine
- Allgemeine Elektronik
 - Netzteil
 - System Control Board
 - Rückwandplatine
 - Frontblende
 - E/A (optional)
- Peripherie-Unterstützungssystem
 - Lüfter (an Rückwand)
 - STEP POL-Karte
 - Probennahmepumpe
 - Magnetventilplatte (optional)
- Durchfluss-Druck-DMC mit Drosselkapillare
- Firmware
- Sauerstoffsensor (optional)

Optische Messbank-DMC	Die optische Messbank-DMC enthält die Hauptkomponenten für die optische Messung, die zur Ermittlung der CO-Konzentration dient.	
Hardware für optische Messbank	Die optische Messbank ist eine luftdichte Messbank, die das Probengas enthält. Sie beinhaltet auch die Spiegel, die das Infrarotlicht vor der Detektion über den Probenweg mehrmals reflektieren, um die Absorption zu maximieren. Heizelemente werden verwendet, um eine konstante Temperatur der optischen Messbank aufrechtzuerhalten.	
	Ein Bandpassfilter begrenzt das Licht, das in die optische Messbank eintritt, auf ein schmales Band im Infrarotspektrum, innerhalb dessen CO absorbiert wird.	
Filterradmotor	Ein Gasfilterrad enthält CO- und N ₂ -Proben mit einer Chopper-Scheibe. Das Rad wird gedreht, sodass der Infrarotlichtstrahl periodisch unterbrochen wird, um bei der Detektion ein moduliertes Signal zu erzeugen. Die Differenzierung des Lichts des durch die CO- und N ₂ - Komponenten des Rades gestrahlten Lichts bei Vorhandensein von CO in der optischen Messbank ermöglicht die Bestimmung der CO-Absorption und -Konzentration der Probe.	
	Der Chopper-Motor dreht das Gasfilterrad und die Chopper-Scheibe mit gleichmäßiger Geschwindigkeit.	
	Eine separate optische Schalterbaugruppe erkennt die Position des Filterrads, um das modulierte Signal zu synchronisieren und die Drehzahl des Chopper-Motors zu überprüfen.	
Filterradspülung	Die Filterradspülung umfasst ein Gehäuse, das zwischen der optischen Messbank und der Motorplatte montiert ist. Das Gehäuse umgibt das Gaskorrelationsrad und ermöglicht die Spülung des Bereichs um das Gaskorrelationsrad herum mit Instrumentenluft oder einem anderen Gas als dem in der lokalen Atmosphäre vorhandenen. Dies erhöht die Zuverlässigkeit bei Vorhandensein von Verschmutzungen, die den Analyseprozess stören könnten. Abbildung 8–1 zeigt, wie die Filterradspülung innerhalb des Geräts für eine externe Spülgasversorgung konfiguriert ist. Die Standardkonfiguration des Geräts ermöglicht den aktiven Durchfluss von Instrumentenluft durch die Filterradspülung.	

Abbildung 8–1. Flussdiagramm des 48iQ mit Filterradspülung

Hinweis zur Kalibrierung Die Stabilität des Spülgases ist sehr wichtig. Da das Gas sich im selben optischen Pfad wie die Probe befindet, können Veränderungen der Zusammensetzung des Spülgases die Kalibrierung des Instruments verändern. Daher wird als Spülgas saubere Nullluft oder ein nicht toxisches, trockenes Inertgas wie Stickstoff benötigt.

Um eine optimale Leistung zu erzielen, wird ein konstanter Spülgasfluss mit ca. 140 cm³/min empfohlen. Dieser wird erzeugt, indem ein Spülgas über den Schottanschluss an der Rückwand mit einem konstanten Druck von 10 psig eingeleitet wird. Ein Fitting mit einer lasergebohrten 0,010 Zoll-Öffnung erzeugt den erforderlichen Durchfluss mit 140 cm³/min. Von höheren Durchflüssen wird abgeraten, da sie zu einer instabilen Kühlung der IR-Quelle führen. Niedrigere Durchflüsse sind akzeptabel, solange das Spülgehäuse für die Anwendung ausreichend gespült wird. ▲

Detektor/Vorverstärker	Die Detektor/Vorverstärker-Baugruppe wandelt Infrarotlicht nach der Modulierung und CO-Probenabsorption in ein verstärktes elektrisches Signal um, das anschließend verarbeitet wird.		
Infrarotquelle	Die Infrarotlichtquelle ist ein spezieller Drahtwicklungswiderstand, der bei hohen Temperaturen betrieben wird, um eine Breitband-Infrarotstrahlung zu erzeugen.		

Optische Messbank- DMC-Platine	Eine einzelne elektronische Baugruppe mit Mikroprozessor sorgt für die aktive Steuerung der oben aufgeführten Elemente, führt die vorläufige Datenverarbeitung durch und erzeugt Register, die mit den übergeordneten Systemsteuerungen interagieren.
Allgemeine Elektronik	Die allgemeine Elektronik enthält die Rechen- und Leistungsverkabelungs- Hardware für den 48iQ und kommt auch in weiteren Produkten der iQ Serie zum Einsatz (Abbildung 8–2). Sie umfasst auch das Frontblenden- Display, die USB-Anschlüsse, den Ethernet-Anschluss und die optionalen E/A-Schnittstellen (RS-485, analog und digital).
	Abbildung 8–3 zeigt die Verschaltungsstruktur der elektronischen Baugruppen für den 48iQ einschließlich von Optionen. Das modulare Design des Messgeräts spiegelt sich in seiner Architektur wider. Es folgen Kurzbeschreibungen der spezifischen elektronischen Baugruppen.

Abbildung 8-3. Systemschaltungsdiagramm für den 48iQ

Stromversorgung	Die gesamte Elektronik wird über eine universelles Schaltnetzteil betrieben, das die Eingangsspannung automatisch erkennen kann und über den gesamten Betriebsbereich hinweg arbeitet. Der 48iQ enthält einen 24 VDC-Kanal für den Betrieb der meisten elektronischen Komponenten, einschließlich der Pumpe und des Lüfters, sowie einen speziell für die Heizung der optischen Messbank vorgesehenen 48 VDC-Kanal.
Frontblende	Zu den elektronischen Komponenten der Frontblende zählen das Touchscreen-Display, der EIN/AUS-Schalter und zwei Anzeige-LEDs für den Betriebs- und Alarmstatus, wie ausführlich in Kapitel 2, "Installation und Einrichtung" beschrieben.
E/A- und Kommunikationskomponenten	Die Messgeräte der iQ Series bieten eine Reihe von Methoden, um die Messergebnisse für den Bediener anzuzeigen oder an externe Geräte zu übertragen. Jedes Messgerät der iQ Series verfügt serienmäßig über ein Frontblenden-Display, 3 USB-Anschlüsse und eine Ethernet- Datenschnittstelle.
	Zusätzlich sind optionale RS-232/485-, analoge E/A- und digitale E/A- Schnittstellen verfügbar, um Daten an externe Systeme zu übertragen (siehe Kapitel 9, "Anschluss von externen Geräten"). Die Benutzeroberfläche an der Frontblende ermöglicht dem Bediener, diese ausgehenden Kommunikationskanäle zu konfigurieren (siehe Kapitel 3, "Betrieb").
System Controller Board	Das System Controller Board (SCB) oder Motherboard umfasst den Hauptprozessor, Netzteile und einen Subprozessor und dient als Kommunikations-Hub für das Messgerät. Das SCB empfängt Bedienereingaben von der grafischen Benutzeroberfläche an der Frontblende und/oder über optionale E/A-Anschlüsse an der Rückwand. Das SCB sendet Befehle an die anderen Platinen, um die Funktionen des Messgeräts zu steuern sowie Messungs- und Diagnoseinformationen zu erfassen. Das SCB gibt den Messgerätestatus und Messdaten an die Benutzeroberfläche, Ethernet/USB und die optionalen E/A an der Rückwand aus. Das SCB ist über einen einzelnen Stecker mit der Rückwandplatine verbunden und wird durch mechanische Befestigungen in Position gehalten.
Rückwandplatine	Die Rückwandplatine sorgt für die Verschaltung und Konditionierung für +24 VDC (optional +48 VDC) und die RS-485-Kommunikation innerhalb des Messgeräts. Sie dient über direkte Steckverbindungen als Verbindungsglied für das System Controller Board (Motherboard, SCB) und das Peripheriemodul (PSB) sowie über Rückwandschnittstellen als Verbindungsglied für die optionalen E/A (Kommunikation, analog und digital). Sie verfügt über Anschlüsse für die RS-485-Kommunikation mit DMCs und dem STEP POL-Modul sowie deren Stromversorgung. Sie verschaltet darüber hinaus das Frontblenden-Display, Treiber, das externe USB und Ethernet.

Peripherie- Unterstützungssystem	Das Peripherie-Unterstützungssystem betreibt die erforderlichen zusätzlichen Geräte, die keine spezielle Feedback-Steuerung oder Verarbeitung erfordern. Diese Komponenten sind mit einem Peripheriemodul (Peripherals Support Board, PSB) verbunden.		
	Der PSB-Mikroprozessor regelt die Zeitsteuerung und den Zustand dieser Geräte und erzeugt Register, die mit den übergeordneten Systemsteuerungen interagieren.		
Lüfter	Der Gehäuselüfter sorgt für die Luftkühlung der aktiven elektronischen Komponenten.		
STEP POL-Karte	Die STEP POL-Karte stellt logische High/Low-Ausgänge für den kontinuierlichen Betrieb oder Ein/Aus-Zustände bereit. Die STEP POL- Karte enthält die grundlegenden Schaltungen zur Bereitstellung einer programmierbaren Last an passive Geräte, entweder kontinuierlich oder per Benutzer- oder automatischer Steuerung. Bei den Geräten der iQ Series werden die Pumpen, Magnetventile usw. durch die STEP POL-Karte über Befehle gesteuert, die vom PSB erzeugt werden.		
Probennahmepumpe	Interne Vakuumpumpe zur Erzeugung des Luftstroms/Probenflusses durch das Messgerät.		
Magnetventilplatte (optional)	Optionale Magnetventile zur Umschaltung zwischen Proben, Nullluft und Prüfgasen sowie weiteren optionalen Komponenten.		
Durchfluss/ Druck-DMC	Die Durchfluss/Druck-DMC wird verwendet, um Gerätedrücke zu messen, die eine ordnungsgemäße Durchflussregelung gewährleisten, sowie den um den Probendruck in der Messbank für Druckkorrekturen und den Druckausgleich aufrechtzuerhalten.		
	Die DMC verfügt über zwei Drucksensoren mit einem Messbereich von 0 – 860 mmHg. Diese Sensoren werden mit der gekoppelten Drosselkapillare für die Durchflussregelung der nachgelagerten Probennahmepumpe verwendet. Der Differenzdruck legt den Durchfluss durch die Kapillare fest. Der vorgelagerte Druck ist der Druck in der Messbank, während der nachgelagerte Druck der Druck am Pumpeneinlass ist.		
Firmware	Wie die Hardware ist auch die Firmware modular und befindet sich in den über das Gerät verteilten Mikroprozessoren. Im 48iQ befinden sich Mikroprozessoren mit Firmware in folgenden Komponenten:		

- Optische Messbank-DMC
- Durchfluss/Druck-DMC
- Peripheriemodul
- Optionale Analog- und Digitaleingänge (Kommunikation, analog und digital)
- Optionaler Sauerstoffsensor

Die Firmware enthält die aktiven Steuerelemente für deren Anwendung sowie Selbstidentifizierungs- und Konfigurationsfunktionen für den "Plug and Play"-Betrieb. Jedes Steuerelement ist mit spezifischen Registern zweier Typen verknüpft:

- Modbus-Register, die von jedem Mikroprozessor über eine interne RS-485-Verbindung an das System Controller Board (SCB) übermittelt werden
- SNMP-Register, die in der Software und im SCB für die Berechnung von Zustandsdaten und die Datenverarbeitung verwaltet werden

Das Modbus-Kommunikationssystem arbeitet mit 1-Sekunden-Intervallen. Innerhalb dieser Intervalle sind die Datenverarbeitung (analog oder digital) und Servosteuerung in die Modulfirmware integriert. Das SCB empfängt die 1-sekündigen Aktualisierungen für die übergeordnete "Software"-Verarbeitung und -Steuerung über SNMP-Register, von denen einige mit der grafischen Benutzeroberfläche (GUI) an der Frontblende verschaltet sind.

Zusätzlich zu den Betriebsregistern wird auf dem 48iQ ein Verlaufsdatenprotokoll in einer MySQL-Datenbank gespeichert. Der Speicher befindet sich auf derselben microSD-Karte wie die Betriebssoftware. Er bietet eine Kapazität zur Speicherung der Daten eines Jahres in 1-Minuten-Intervallen. In Kapitel 3, "Betrieb" wird beschrieben, wie diese externe Datenbank aufgerufen und genutzt werden kann, einschließlich von Downloads von externen Speicheressourcen.

Sauerstoffsensor (optional)

Der 48iQ kann mit einem optionalen DMC-basierten Sauerstoffsensor (O₂) konfiguriert werden. Dieser Sensor ist ein paramagnetischer Sensor zur Messung der O₂-Konzentration und CO-Korrektur. Diese Option ermöglicht es dem Benutzer, die CO-Messwerte um den Sauerstoffgehalt in der Probe zu korrigieren. Als Korrekturfaktor können wählbare O₂-Konzentrationen verwendet werden.

Kapitel 9 Optionales Zubehör

Der 48iQ ist mit folgenden Optionen erhältlich:

Anschluss von externen Geräten

Für den Anschluss von externen Geräten sind mehrere Komponenten verfügbar.

Diese Anschlussoptionen bestehen aus drei Steckkarten:

- Kommunikationsbaugruppe
- Analoge E/A-Karte
- Digitale E/A-Karte

Abbildung 9–1. E/A-Erweiterungskarten zum Austausch

Kommunikationsbaugruppe

Die Kommunikationsbaugruppe besteht aus folgenden Komponenten:

- RS-232/485-Schnittstelle
- RS-485-Schnittstelle für externes Zubehör

RS-232/RS-485-Schnittstelle

Die RS-232/RS-485-Schnittstelle verwendet einen 9-poligen seriellen Steckverbinder mit einer bidirektionalen seriellen Schnittstelle, die für die RS-232- oder die RS-485-Kommunikation konfiguriert werden kann.

Abbildung 9–2. RS-232/RS-485-Schnittstelle

Tabelle 9–1. Klemmenbelegung der RS-232/RS-485-Schnittstelle

Klemmennummer	Signalbezeichnung
1	Nicht belegt
2	RX/RS485_RX_P
3	TX/RS485_TX_N
4	Nicht belegt
5	Erdung
6	Nicht belegt
7	RTS/RS485_TX_P
8	CTS/RS485_RX_N
9	Nicht belegt

RS-485-Schnittstelle für externes Zubehör

Die RS-485-Schnittstelle für externes Zubehör verwendet einen 15-poligen seriellen Steckverbinder für die Kommunikation mit externen intelligenten Geräten.

Tabelle 9–2. Klemmenbelegung der RS-485-Schnittstelle für externes Zubehör

Klemmennummer	Signalbezeichnung
1	EXT_RS485_RX_N
2	EXT_RS485_RX_P
3	+5 V (mit 0,4 A-Sicherung)
4	+5 V (mit 0,4 A-Sicherung)
5	+5 V (mit 0,4 A-Sicherung)
6	Erdung
7	Erdung
8	Erdung
9	EXT_RS485_TX_N
10	EXT_RS485_TX_P
11	+24 V (mit 0,4 A-Sicherung)
12	+24 V (mit 0,4 A-Sicherung)
13	+24 V (mit 0,4 A-Sicherung)
14	+24 V (mit 0,4 A-Sicherung)
15	+24 V (mit 0,4 A-Sicherung)

Analoge E/A-Karte

Die analoge E/A-Karte umfasst:

- + 4 isolierte analoge Spannungseingänge, Eingangsspannungsbereich: 0 10 V
- 6 isolierte analoge Spannungsausgänge, drei Bereiche: 0 1,0 V, 0 – 5,0 V, 0 – 10 V
- 6 isolierte analoge Stromausgänge, zwei Bereiche: 0 20 mA, 4 20 mA

Analoge Spannungseingänge

Tabelle 9–3 enthält die analogen Spannungseingänge, die zur Überwachung von vier externen 0 - 10 V-Signalen verwendet werden.

 Tabelle 9–3.
 Klemmenbelegung der analogen Spannungseingänge

Klemmennummer	Signalbezeichnung
1	Analogeingang 1
2	Analoge Erdung
3	Analogeingang 2
4	Analoge Erdung
5	Analogeingang 3
6	Analoge Erdung
7	Analogeingang 4
8	Analoge Erdung

Analoge Spannungsausgänge

Es gibt sechs global isolierte analoge 16-Bit-Ausgangskanäle mit jeweils einem Spannungsausgang, einem Stromausgang und einer gemeinsamen Rückleitung (isolierte Erdung). Die Analogausgänge werden über die Software-Steuerungsregister konfiguriert, um Spannungsausgangsbereiche von 0 – 1 V, 0 – 5 V oder 0 – 10 V sowie Stromausgangsbereiche von 0 – 20 mA oder 4 – 20 mA zu wählen. Die maximal zulässige Last für jeden Spannungsausgang beträgt 1000 Ω . Alle Spannungsausgänge und Stromausgänge werden separat kontinuierlich auf Genauigkeit überwacht.

Die Analogausgänge können verwendet werden, um Parameter für die Messfunktionen des Analysators zu steuern und zu melden.

Abbildung 9–5. Analogspannung und -strom

Klemmennummer	Signalbezeichnung
1	Stromausgang 1
2	Spannungsausgang 1
3	Spannungs-/Stromrückleitung 1
4	Stromausgang 2
5	Spannungsausgang 2
6	Spannungs-/Stromrückleitung 2
7	Stromausgang 3
8	Spannungsausgang 3
9	Spannungs-/Stromrückleitung 3
10	Stromausgang 4
11	Spannungsausgang 4
12	Spannungs-/Stromrückleitung 4
13	Stromausgang 5
14	Spannungsausgang 5
15	Spannungs-/Stromrückleitung 5
16	Stromausgang 6
17	Spannungsausgang 6
18	Spannungs-/Stromrückleitung 6

 Tabelle 9–4.
 Klemmenzuweisung für Analogspannung und -strom

Kalibrierung der Analogausgänge

Die Messgeräte der iQ Series bieten die Möglichkeit, die Analogausgänge (sowohl Spannung als auch Strom) der Messgeräte zu kalibrieren. Das grundlegende Verfahren für Spannung und Strom ist identisch:

- Stellen Sie die gewünschten Verbindungen des Aufzeichnungsgeräts mit dem gewünschten analogen Ausgangskanal her. (Informationen zu Kanälen siehe Seite 9-5).
- Kalibrieren Sie den unteren Pegel des Ausgangskanals.

Hinweis Bei der Kalibrierung des Stromausgangs unter Verwendung der 0 – 20 mA-Skala wird der untere Pegel auf 4 mA gesetzt, da der tatsächliche Stromausgang nicht auf unter Null eingestellt werden kann. ▲

• Kalibrieren Sie den Skalenendwert des Ausgangskanals.

Nullkalibrierung des
AnalogausgangsVerwenden Sie das folgende Verfahren, um den unteren Pegel des
Ausgangskanals zu kalibrieren. Das zur Veranschaulichung hier dargestellte
Kalibrierungsverfahren für den Analogausgang zeigt die Nullkalibrierung
für die Analogausgangsspannung. Um die 4 mA-Stromkalibrierung zu
kalibrieren, befolgen Sie dasselbe Verfahren, wählen Sie jedoch die Option
für die 4 mA-Stromkalibrierung aus.

Hinweis Diese Einstellung darf nur von geschulten Messgerätetechnikern vorgenommen werden. ▲

 Wählen Sie auf dem Startbildschirm Settings > Communications > Analog I/O > Analog Out Calibration (Einstellungen > Kommunikation > Analoge E/A > Kalibrierung des Analogausgangs) aus.

 Wählen Sie je nach dem verwendeten Ausgangstyp entweder "Analog Out Zero Calibration (Voltage)" (Nullkalibrierung des Analogausgangs (Spannung) oder "Analog Out 4.000 mA Calibration (Current)" (4,000 mA-Kalibrierung des Analogausgangs (Strom)) aus.

 Ein Bestätigungsbildschirm wird angezeigt. Wählen Sie "Continue" (Weiter), um mit der Kalibrierung fortzufahren, oder "Return to Previous Screen" (Zurück zum vorherigen Bildschirm).

4. Es gibt sechs Spalten für jeden der sechs verfügbaren Ausgangskanäle:

Channel	Output (V)	Decrease	Decrease	Increase	Increase	Commit	
	0.000	+ . F	+	t	tt	Commit	
	0.000	++	÷	t	† †	Commit	
3	0.000	++	Q	+	++	Commit	
4	0.000	++		t	t t	Commit	
5	0.000	++	+	1	tt.	Commit	
6	0.000	++	\$	t	++	Commit	

- *Output (V) (Ausgang (V)):* Zeigt den Ist-Ausgangspegel an der Klemme der Analogausgangskarte. Für Analogspannung ist dieser Wert standardmäßig Null. Für Analogstrom ist dieser Wert standardmäßig 4 mA.
- Decrease \$\$ (Grob reduzieren) und Decrease \$\$ (Fein reduzieren): Reduziert den Ausgang um grobe oder feine Schritte.
- Increase † (Fein erhöhen) und Increase † (Grob erhöhen)†: Erhöht den Ausgang um grobe oder feine Schritte.
- *Commit (Bestätigen):* Übernimmt die Änderungen an den Analogausgangspegeln.
- 5. Erhöhen oder verringern Sie für den gewünschten Ausgangskanal den Ausgang, bis der Messwert auf dem Aufzeichnungsgerät den richtigen Wert angibt.
- 6. Nachdem Sie Änderungen an den Ausgangspegeln vorgenommen haben, ändert sich die Farbe der Schaltfläche "Commit" (Bestätigen) zu Grün. Um die Änderungen zu übernehmen, drücken Sie die Schaltfläche "Commit" (Bestätigen). Um die vorherigen Werte beizubehalten, drücken Sie die Schaltfläche "Zurück", und Sie gelangen zum vorherigen Bildschirm für die Kalibrierung des Analogausgangs zurück.

Skalenendwert-Kalibrierung für den Analogausgang

Verwenden Sie das folgende Verfahren, um den Skalenendwert für den Ausgangskanal zu kalibrieren. Das zur Veranschaulichung hier dargestellte Kalibrierungsverfahren für den Analogausgang zeigt die Skalenendwertkalibrierung für die Analogausgangsspannung. Um den 20 mA-Stromausgang zu kalibrieren, befolgen Sie dasselbe Verfahren, wählen Sie jedoch die Option für die 20 mA-Stromkalibrierung aus.

Hinweis Diese Einstellung darf nur von geschulten Messgerätetechnikern vorgenommen werden. ▲

 Wählen Sie auf dem Startbildschirm Settings > Communications > Analog I/O > Analog Output Calibration (Einstellungen > Kommunikation > Analoge E/A > Kalibrierung des Analogausgangs) aus.

2. Wählen Sie je nach dem verwendeten Ausgangstyp entweder "Analog Out Full Scale Calibration (Voltage)" (Skalenendwert-Kalibrierung des Analogausgangs (Spannung) oder "Analog Out 20.000 mA Calibration (Current)" (20,000 mA-Kalibierung des Analogausgangs (Strom)) aus.

 Ein Bestätigungsbildschirm wird angezeigt. Wählen Sie "Continue" (Weiter), um mit der Kalibrierung fortzufahren, oder "Return to Previous Screen" (Zurück zum vorherigen Bildschirm).

4. Es gibt sechs Spalten für jeden der sechs verfügbaren Ausgangskanäle:

Channel	Output (V)	Decrease	Decrease	Increase	Increase	Commit	
1	5.000	++	ŧ	t	t t	Commit	
2	1.000	++	4	1	† †	Commit	
3	10.000	++	ŧ.	+	++	Commit	
4	1.000	++	*	t	t.t	Commit	
5	1.000	++		t	† †	Commit	
6	1.000	++	ŧ	t	† †	Commit	

- *Output (V) (Ausgang (V)):* Zeigt den Ist-Ausgangspegel an der Klemme der Analogausgangskarte. Für die Analogausgangsspannung ist dieser Wert standardmäßig die Einstellung des Ausgangskanals: 1, 5, oder 10 V. Für Analogstrom ist dieser Wert standardmäßig 20 mA.
- Decrease \$\$ (Grob reduzieren) und Decrease \$\$ (Fein reduzieren): Reduziert den Ausgang um grobe oder feine Schritte.
- Increase † (Fein erhöhen) und Increase † (Grob erhöhen)†: Erhöht den Ausgang um grobe oder feine Schritte.
- *Commit (Bestätigen):* Übernimmt die Änderungen an den Analogausgangspegeln.
- 5. Erhöhen oder verringern Sie für den gewünschten Ausgangskanal den Ausgang, bis der Messwert auf dem Aufzeichnungsgerät den richtigen Wert angibt.
- 6. Nachdem Sie Änderungen an den Ausgangspegeln vorgenommen haben, ändert sich die Farbe der Schaltfläche "Commit" (Bestätigen) zu Grün. Um die Änderungen zu übernehmen, drücken Sie die Schaltfläche "Commit" (Bestätigen). Um die vorherigen Werte beizubehalten, drücken Sie die Schaltfläche "Zurück", und Sie gelangen zum vorherigen Bildschirm für die Kalibrierung des Analogausgangs zurück.

Digitale E/A-Karte

Die digitale E/A-Karte umfasst:

- 16 Digitaleingänge (18-poliger Steckverbinder)
- 10 digitale Relaisschalter (20-poliger Steckverbinder)
- 8 Ventilantriebsausgänge (16-poliger Steckverbinder)

Digitaleingänge Die Digitaleingänge sind TTL (3 V oder 5 V)-kompatibel und werden im Messgerät auf den Logik-Pegel High angehoben. Der aktive Zustand kann vom Benutzer in der Firmware definiert werden.

- Logischer Low-Schwellenwert: 0,8 V
- Logischer High-Schwellenwert: 2,0 V
- Absolute zulässige Eingangsspannungen: -0,5 bis 5,5 V

Abbildung 9–6. Digitaleingänge

Klemmennummer	Signalbezeichnung
SAMMELLEITER	
1	Digitaleingang 1
2	Digitaleingang 2
3	Digitaleingang 3
4	Digitaleingang 4
5	Digitaleingang 5
6	Digitaleingang 6
7	Digitaleingang 7
8	Digitaleingang 8
9	Digitaleingang 9
10	Digitaleingang 10
11	Digitaleingang 11
12	Digitaleingang 12
13	Digitaleingang 13
14	Digitaleingang 14
15	Digitaleingang 15
16	Digitaleingang 16
SAMMELLEITER	

Tabelle 9–5. Klemmenbelegung der Digitaleingänge
--

Digitale Relaisschalter

Tabelle 9-6 enthält die digitalen Relaisschalter.

- Maximale Spannung: 300 VDC
- Maximaler Strom: 500 mA
- Sicherung: 800 mA

Abbildung 9–7. Digitale Relaisschalter

Klemmennummer	Signalbezeichnung
1A	Relais 1A
1B	Relais 1B
2A	Relais 2A
2B	Relais 2B
3A	Relais 3A
3B	Relais 3B
4A	Relais 4A
4B	Relais 4B
5A	Relais 5A
5B	Relais 5B
6A	Relais 6A
6B	Relais 6B
7A	Relais 7A
7B	Relais 7B
8A	Relais 8A
8B	Relais 8B
9A	Relais 9A
9B	Relais 9B
10 A	Relais 10A
10B	Relais 10B

Tabelle 9–6. Klemmenbelegung der digitalen Relaisschalter

Ventilantriebsausgänge

Tabelle 9–7 enthält die Ventilantriebsausgänge.

- Ausgangsspannungs-Istwert: 22–24 VDC
- Maximaler Strom: 300 mA
- Sowohl negative als auch positive Ausgänge sind durch 500 mA-Sicherungen vor Überspannung und Überstrom geschützt.

Abbildung 9-8. Ventilantriebsausgänge

Klemmennummer	Signalbezeichnung
1+	Ventilantrieb 1+
1-	Ventilantrieb 1-
2+	Ventilantrieb 2+
2-	Ventilantrieb 2-
3+	Ventilantrieb 3+
3-	Ventilantrieb 3-
4+	Ventilantrieb 4+
4-	Ventilantrieb 4-
5+	Ventilantrieb 5+
5-	Ventilantrieb 5-
6+	Ventilantrieb 6+
6-	Ventilantrieb 6-
7+	Ventilantrieb 7+
7-	Ventilantrieb 7-
8+	Ventilantrieb 8+
8-	Ventilantrieb 8-

Tabelle 9–7. Klemmenbelegung der Ventilantriebsausgänge

Hinweis Für 24 V-Ventile vorgesehen. Diese Ausgänge können auch beliebige Gleichstromlasten von 22–24 VDC bis zu 300 mA steuern. ▲

Interne Nullluft-/ Prüfgas-Baugruppe

Bei der internen Nullluft-/Prüfgas-Baugruppe wird eine Prüfgasquelle an den Anschluss SPAN und eine Nullluftquelle an den Anschluss ZERO angeschlossen. Die Nullluft und das Prüfgas müssen mit atmosphärischem Druck eingeleitet werden. Um dies sicherzustellen, muss möglicherweise eine atmosphärische Abblasleitung verwendet werden. Abbildung 9–9 zeigt, wie diese Option in das Gerät integriert ist.

Abbildung 9–9. 48iQ Flussdiagramm mit Nullluft/Prüfgas-Baugruppe und Nullluftabscheider

Interner Sauerstoffsensor (0₂)

Der optionale interne Sauerstoffsensor (2) ist ein paramagnetischer Sensor zur Messung der O₂-Konzentration und CO-Korrektur. Diese Option ermöglicht es dem Benutzer, die CO-Messwerte um den Sauerstoffgehalt in der Probe zu korrigieren. Als Korrekturfaktor können wählbare O₂-Konzentrationen verwendet werden.

Abbildung 9–10 zeigt, wie diese Option in den 48iQ integriert ist.

Abbildung 9–10. Flussdiagramm des 48iQ mit internem O₂-Sensor

Interner
NullluftabscheiderDer interne Nullluftabscheider befindet sich innerhalb des Geräts und
bietet eine Nullluftquelle. Abbildung 9–9 zeigt, wie diese Option in das
Gerät integriert ist.PTFE-PartikelfilterFür den 48iQ ist ein PTFE-Filterelement mit einer Porengröße von 5 –
10 µm und zwei Zoll Durchmesser erhältlich. Dieser Filter sollte direkt vor
dem Schottanschluss SAMPLE installiert werden. Wenn ein Filter verwendet
wird, müssen alle Kalibrierungen und Messbereichsprüfungen über den
Filter durchgeführt werden.

Anhang A Sicherheit, Garantie und WEEE

Sicherheit

Lesen Sie sich die folgenden Informationen sorgfältig durch, bevor Sie das Gerät verwenden. Diese Anleitung bietet spezifische Informationen zum Betrieb des Geräts. Wenn das Gerät jedoch auf eine nicht vom Hersteller vorgesehene Weise verwendet wird, können die Schutzfunktionen des Geräts beeinträchtigt werden.

Sicherheitshinweise und Warnhinweise zu Schäden am Gerät

Diese Anleitung enthält wichtige Informationen, die Sie auf potenzielle Sicherheitsrisiken und Risiken von Schäden am Gerät aufmerksam machen. Nachfolgend finden Sie eine Auflistung der verschiedenen Arten von Warnhinweisen, die in dieser Anleitung verwendet werden.

Beschreibungen der Sicherheitshinweise und Warnhinweise zu Schäden am Gerät

Warnung	Beschreibung
A GEFAHR	Eine Gefährdung kann bei Nichtbeachtung dieses Warnhinweises zum Tod oder zu schweren Verletzungen führen. ▲
WARNUNG	Eine Gefährdung oder eine unsichere Vorgehensweise kann bei Nichtbeachtung dieses Warnhinweises zu schweren Verletzungen führen. ▲
A VORSICHT	Eine Gefährdung oder eine unsichere Vorgehensweise könnte bei Nichtbeachtung dieses Warnhinweises zu leichten bis mittelschweren Verletzungen führen. ▲
Schäden am Gerät	Eine Gefährdung oder eine unsichere Vorgehensweise könnte bei Nichtbeachtung dieses Warnhinweises zu Sachschäden führen. ▲

Sicherheitshinweise und Warnhinweise zu Schäden am Gerät in dieser Anleitung

Warnung	Beschreibung
WARNUNG	Wenn das Gerät nicht auf eine nicht vom Hersteller vorgesehene Weise betrieben wird, können die Schutzfunktionen des Geräts beeinträchtigt werden.
	Die Wartungsverfahren in dieser Anleitung dürfen nur durch qualifiziertes Wartungspersonal ausgeführt werden. ▲
Schäden am Gerät	Versuchen Sie nicht, den Analysator am Deckel oder an Anschlüssen anzuheben. ▲
	Diese Einstellung darf nur von geschulten Messgerätetechnikern vorgenommen werden. ▲

Gewährleistung

Der Verkäufer gewährleistet für den in der Produktdokumentation, in den veröffentlichten Spezifikationen oder in den Packungsbeilagen angegebenen Zeitraum, dass die Produkte im Wesentlichen gemäß den veröffentlichten Angaben des Verkäufers funktionieren und frei von Material- und Herstellungsfehlern sind, wenn sie durch ordnungsgemäß ausgebildetes Personal korrekt und bestimmungsgemäß verwendet werden. Wenn in der Produktdokumentation, in den veröffentlichten Spezifikationen oder in den Packungsbeilagen des Verkäufers kein Zeitraum angegeben ist, beträgt der Gewährleistungszeitraum für Geräte (1) Jahr ab dem Datum des Versands an den Käufer und für alle anderen Produkte neunzig (90) Tage (der "Gewährleistungszeitraum"). Der Verkäufer verpflichtet sich, während des Gewährleistungsraums mangelhafte Produkte nach seinem Ermessen zu reparieren oder zu ersetzen, sodass diese gemäß den vorgenannten veröffentlichten Angaben betrieben werden können, sofern: (a) Der Käufer den Verkäufer nach Feststellung eines Mangels unverzüglich schriftlich informiert, wobei das Produktmodell und die Seriennummer (falls zutreffend) sowie die Ursache des Gewährleistungsanspruchs anzugeben sind; (b) der Verkäufer nach Prüfung dem Käufer Servicedaten und/oder eine Rücksendegenehmigung ("RMA") übermittelt, die Dekontaminierungsverfahren für Biogefahren und andere produktspezifische Anweisungen zur Handhabung umfassen können; und (c) der Käufer dann gegebenenfalls die mangelhaften Produkte unter Vorauszahlung aller Kosten durch den Käufer an den Verkäufer zurücksendet. Die Ersatzteile können nach Ermessen des Verkäufers neue oder aufgearbeitete Teile sein. Alle ersetzten Teile gehen in das Eigentum des Verkäufers über. Der Versand von reparierten oder ersetzten Produkten an den Käufer erfolgt gemäß den Lieferbedingungen in den allgemeinen Verkaufsbedingungen des Verkäufers. Lampen, Sicherungen, Batterien, Glühbirnen und andere Einwegartikel sind von der Gewährleistung gemäß diesen Gewährleistungsbedingungen ausdrücklich ausgeschlossen.

Ungeachtet des Vorstehenden unterliegen vom Verkäufer gelieferte Produkte, die durch den Verkäufer von einem Originalhersteller oder Drittanbieter bezogen werden, nicht der Gewährleistung durch den Verkäufer. Der Verkäufer sichert jedoch zu, jegliche Gewährleistungsrechte an solchen Produkten, die dem Verkäufer von dem Originalhersteller oder Drittanbieter eingeräumt wurden, an den Käufer zu übertragen, sofern eine solche Übertragung von dem Originalhersteller oder Drittanbieter gestattet wird.

In keinem Fall ist der Verkäufer verpflichtet, Reparaturen, Ersetzungen oder Korrekturen vorzunehmen, die teilweise oder vollständig die Folge sind von: (i) normaler Abnutzung und normalem Verschleiß, (ii) Unfällen, Katastrophen oder höherer Gewalt, (iii) Missbrauch, Verschulden oder Fahrlässigkeit seitens des Käufers, (iv) nicht bestimmungsgemäßer Gebrauch der Produkte, (v) Ursachen, die nicht in den Produkten selbst begründet sind, insbesondere Stromausfall oder elektrische Spannungsstöße, (vi) unsachgemäßer Lagerung und Handhabung der Produkte oder (vii) Verwendung der Produkte in Kombination mit Geräten oder Software, die nicht vom Verkäufer geliefert wurden. Wenn der Verkäufer feststellt, dass Produkte, für die der Käufer eine Gewährleistung fordert, von dieser Gewährleistung nicht gedeckt sind, muss der Käufer dem Verkäufer alle Kosten für die Prüfung und Beantwortung dieser Anforderung zu den dann geltenden Stundensätzen und Materialkosten bezahlen oder erstatten. Wenn der Verkäufer Reparaturleistungen erbringt oder Ersatzteile bereitstellt, die von dieser Gewährleistung nicht gedeckt sind, muss der Käufer diese dem Käufer zu den dann geltenden Stundensätzen und Materialkosten bezahlen. DIE INSTALLATION, INSTANDHALTUNG, REPARATUR, WARTUNG, AUFSTELLUNG AN EINEM ANDEREN ORT, VERÄNDERUNG ODER SONSTIGE MANIPULATION DER PRODUKTE DURCH ANDERE NATÜRLICHE ODER JURISTISCHE PERSONEN ALS MITARBEITER DES VERKÄUFERS OHNE VORHERIGE SCHRIFTLICHE GENEHMIGUNG DES VERKÄUFERS ODER JEGLICHER GEBRAUCH VON ERSATZTEILEN, DIE NICHT VOM VERKÄUFER GELIEFERT WURDEN, FÜHREN ZUM SOFORTIGEN ERLÖSCHEN ALLER GARANTIEN BEZÜGLICH DER BETROFFENEN PRODUKTE.

DIE VERPFLICHTUNGEN AUS DIESER GEWÄHRLEISTUNGSERKLÄRUNG ZUR REPARATUR ODER ERSETZUNG EINES MANGELHAFTEN PRODUKTS SIND DAS EINZIGE RECHTSMITTEL DES KÄUFERS IM FALL EINES MANGELHAFTEN PRODUKTS. AUSSER WIE IN DIESER GEWÄHRLEISTUNGSERKLÄRUNG AUSDRÜCKLICH DARGELEGT, SCHLIESST DER VERKÄUFER ALLE ANDEREN MÜNDLICHEN ODER SCHRIFTLICHEN, AUSDRÜCKLICHEN ODER IMPLIZITEN GEWÄHRLEISTUNGEN IM HINBLICK AUF DIE PRODUKTE AUS. DIES GILT INSBESONDERE AUCH FÜR ALLE IMPLIZITEN GEWÄHRLEISTUNGEN DER MARKTGÄNGIGKEIT ODER EIGNUNG FÜR EINEN BESTIMMTEN ZWECK. DER VERKÄUFER SCHLIESST AUSSERDEM VON DER GEWÄHRLEISTUNG AUS, DASS DIE PRODUKTE FEHLERFREI SIND ODER BESTIMMTE ERGEBNISSE ERZIELEN.

WEEE-Konformität Dieses Produkt erfüllt die Bestimmungen der EU-Richtlinie 2002/96/EG über Elektro- und Elektronik-Altgeräte (WEEE-Richtlinie). Es ist mit dem folgenden Symbol gekennzeichnet:

Thermo Fisher Scientific hat Verträge mit einem oder mehreren Recyclingoder Entsorgungsunternehmen in jedem Mitgliedsstaat der Europäischen Union (EU) abgeschlossen, die Entsorgung oder Recycling dieses Produkts regeln. Weitere Informationen zur Einhaltung dieser Richtlinien durch Thermo Fisher Scientific und zu Recyclingunternehmen in Ihrem Land sowie Informationen zu Produkten von Thermo Fisher Scientific, die bei der Auffindung von unter die RoHS-Richtlinie fallenden Stoffen helfen, sind unter www.thermoscientific.com/WEEERoHS verfügbar.

WEEE-Symbol

Das unten dargestellte Symbol und die folgende Beschreibung beziehen sich auf das WEEE-Zeichen, das auf dem Gerät und in der zugehörigen Dokumentation verwendet wird.

Symbol Beschreibung

Kennzeichnung von Elektro- und Elektronikgeräten, die für Elektro- und Elektronikgeräte gilt, die unter die Richtlinie 2002/96/EG (WEEE) fallen und nach dem 13. August 2005 in Verkehr gebracht wurden.

Anhang B Kurzanleitung

Abbildungon	Abbildung 1–1. Vorderseite des 48iQ	. 1-2
Abbildungen	Abbildung 1–2. 48iQ Flussdiagramm	. 1-4
	Abbildung 1–3. 48iQ Flussdiagramm mit Nullluft/Prüfgas-Baugruppe und	
	Nullluftabscheider	. 1-4
	Abbildung 1–4. Tischaufstellung (Abmessungen in Zoll [mm])	. 1-7
	Abbildung 1–5. Gestellmontage (Abmessungen in Zoll [mm])	. 1-8
	Abbildung 1–6. Anforderungen für Gestellmontage	. 1-9
	Abbildung 1–7. Anforderungen für Gestellmontage, Teil 2	. 1-9
	Abbildung 2–1. Entfernen der Abdeckung	. 2-2
	Abbildung 2–2. Anbringen der Füße	. 2-3
	Abbildung 2–3. Entfernen der Frontblende	. 2-4
	Abbildung 2–4. Anbringen der Montagebleche und Griffe	. 2-5
	Abbildung 2–5. Rückwand des 48iQ	. 2-7
	Abbildung 2–6. Abblasleitung	. 2-7
	Abbildung 2–7. Frontblende und Touchscreen-Display	. 2-8
	Abbildung 4–1. Flussdiagramm für die Kalibrierung	. 4-3
	Abbildung 5–1. Einstufige Pumpe	. 5-2
	Abbildung 5–2. Überholung der Pumpe	. 5-4
	Abbildung 5–3. Entfernen des Feldspiegels	. 5-7
	Abbildung 7–1. Korrekt geerdetes Antistatik-Armband	. 7-2
	Abbildung 7–2. Anordnung der Komponenten des 48iQ – Draufsicht	. 7-4
	Abbildung 7–3. Anordnung der Komponenten des 48iQ – Seitenansicht	. 7-4
	Abbildung 7–4. Wechseln der Sicherungen	. 7-5
	Abbildung 7–5. Mit der rechten oberen Ecke der Lüfterabdeckung anfangen	. 7-6
	Abbildung 7–6. Entfernen der Lüfterabdeckung	. 7-6
	Abbildung 7–7. Trennen des Lüfterkabels	. 7-7
	Abbildung 7–8. Austauschen des Lüfters	. 7-8
	Abbildung 7–9. Trennen des Lüfterkabels	. 7-9
	Abbildung 7–10. Trennen des DMC-Kabels	7-10
	Abbildung 7–11. Befestigungsteile der Gerätefront zum Ausbau der	
	Messseite lösen	7-10
	Abbildung 7–12. Befestigungsteile der Geräterückseite zum Ausbau der	
	Messseite lösen	7-11
Abbildung 7–13. Austauschen des LCD-Moduls	.7-12	
--	-------	
Abbildung 7–14. Elektrische Kabel vom LCD-Modul abziehen	.7-13	
Abbildung 7–15. Austausch der E/A-Karten, Arm	.7-14	
Abbildung 7–16. Austausch der E/A-Karten, Karte entfernen	.7-14	
Abbildung 7–17. Austausch der E/A-Karten, Einbau	.7-15	
Abbildung 7–18. Austausch der E/A-Karten, Arm schließen		
und Ausrichtung	.7-15	
Abbildung 7–19. Austauschen des Peripheriemoduls	.7-16	
Abbildung 7–20. Druck- und Durchfluss-Platine, DMC-Kabel trennen	.7-17	
Abbildung 7–21. Druck- und Durchfluss-Platine, Schrauben	.7-18	
Abbildung 7–22. Pumpe entfernen, trennen und lösen	.7-20	
Abbildung 7–23. Ausbau der Pumpe, Nut	.7-21	
Abbildung 7–24. Austausch der Pumpe, Schrauben lösen	.7-21	
Abbildung 7–25. Kapillare entfernen, trennen und lösen	.7-22	
Abbildung 7–26. Kapillarplatte, Nut	.7-23	
Abbildung 7–27. Austausch der Kapillaren und des O-Rings	.7-24	
Abbildung 7–28. Ausbauen des Netzteils	.7-25	
Abbildung 7–29. Austauschen des Netzteils	.7-26	
Abbildung 7–30. STEP POL-Karte trennen und lösen	.7-27	
Abbildung 7–31. Trennwandnut für STEP POL-Karte freilegen	.7-28	
Abbildung 7-32. Schaltereinstellungen der STEP POL-Karte 1	.7-29	
Abbildung 7-33. Schaltereinstellungen der optionalen STEP POL-Karte 2	.7-29	
Abbildung 7–34. Aufbau der DMC	.7-30	
Abbildung 7–35. Ausbau der DMC aus dem Gehäuse	.7-31	
Abbildung 7-36. Ausbau von Motor und Filter, Teil 1	.7-32	
Abbildung 7–37. Ausbau von Motor und Filter, Teil 2	.7-33	
Abbildung 7–38. Ausbau von Motor und Filter/des optischen		
Schalters, Teil 3	.7-34	
Abbildung 7–39. Ausbau des Spülradgehäuses aus der		
Motorbaugruppe (Teil 4)	.7-35	
Abbildung 7–40. Filterrad	.7-37	
Abbildung 7–41. Entfernen des Motors von der Motorbefestigung, Teil 1	.7-38	
Abbildung 7–42. Ausbau des Motors	.7-39	
Abbildung 7–43. Motoreinbau – Ausrichtung der Welle	.7-41	
Abbildung 7–44. Ausbau der Messbank, Teil 1	.7-42	
Abbildung 7–45. Ausbau des Heizelements	.7-43	
Abbildung 7–46. Entfernen der Vorverstärker-Detektor-Abdeckung, Teil 1	.7-44	
Abbildung 7–47. Ausbau des Vorverstärkers/Detektors	.7-45	
Abbildung 7–48. Trennen des Kabels der IR-Quelle	.7-47	
Abbildung 7–49. Ausbau der IR-Quellen-Baugruppe	.7-48	
Abbildung 7–50. Austauschen des Verteilers, Teil 1	.7-49	

	Abbildung 7–51. Austauschen des Verteilers, Teil 2	7-50
	Abbildung 7–52. Austauschen des Verteilers, Teil 3	7-50
	Abbildung 7–53. Austausch des Nullluftabscheiders	7-51
	Abbildung 7–54. Ausbau des Sauerstoffsensors, Teil 1	7-53
	Abbildung 7–55. Ausbau des Sauerstoffsensors, Teil 2	7-53
	Abbildung 7–56. Ausbau des Sauerstoffsensors, Teil 3	7-54
	Abbildung 7–57. Ausbau des Sauerstoffsensors, Teil 4	7-55
	Abbildung 7–58. Austauschen der Sauerstoffsensor-DMC-Platine	7-56
	Abbildung 7–59. Austauschen der Sauerstoffsensor-DMC-Platine, Teil 2	7-57
	Abbildung 7–60. Austauschen der Sauerstoffsensor-Kapillaren	7-58
	Abbildung 7–61. Austauschen der Kapillaren, Teil 2	7-59
	Abbildung 7–62. Austauschen des Sauerstoffsensors	7-60
	Abbildung 8–1. Flussdiagramm des 48iQ mit Filterradspülung	8-3
	Abbildung 8–2. Allgemeines Systemschaltungsdiagramm	8-5
	Abbildung 8–3. Systemschaltungsdiagramm für den 48iQ	8-6
	Abbildung 9–1. E/A-Erweiterungskarten zum Austausch	9-1
	Abbildung 9–2. RS-232/RS-485-Schnittstelle	9-2
	Abbildung 9–3. RS-485-Schnittstelle für externes Zubehör	9-3
	Abbildung 9–4. Analoge Spannungseingänge	9-4
	Abbildung 9–5. Analogspannung und -strom	9-5
	Abbildung 9–6. Digitaleingänge	9-11
	Abbildung 9–7. Digitale Relaisschalter	9-13
	Abbildung 9–8. Ventilantriebsausgänge	9-15
	Abbildung 9–9. 48iQ Flussdiagramm mit Nullluft/Prüfgas-Baugruppe und	
	Nullluftabscheider	9-17
	Abbildung 9–10. Flussdiagramm des 48iQ mit internem O ₂ -Sensor	9-18
Tahellen	Tabelle 1–1. Technische Daten des 48iQ	1-5
rabonon	Tabelle 1–2. Technische Daten des optionalen internen 48iQ	
	Sauerstoffsensors	1-6
	Tabelle 3–1. Variablen für die Datenaufzeichnung	3-42
	Tabelle 3–2. Variablen f ür das Datenstreaming	3-45
	Tabelle 6–1. Anleitung zur Fehlersuche und -behebung f ür den 48iQ	6-1
	Tabelle 9–1. Klemmenbelegung der RS-232/RS-485-Schnittstelle	9-2
	Tabelle 9–2. Klemmenbelegung der RS-485-Schnittstelle für	0.2
	Taballa 0, 2, Klammanhalagung dar analagan Channungasing #ara	Ⴘ-Კ ০ ላ
	Tabelle 9–3. Klemmenbelegung der analogen Spannungseingange	9 -4
	Tabelle 9 – 4. Klemmenzuweisung für Analogspannung und -strom	Y-b
	Tabelle 9–5. Klemmenbelegung der Digitaleingange	9-1Z
	Tabelle 9–6. Klemmenbelegung der digitalen Kelaisschalter	9-14
	Iabelle 9–7. Klemmenbelegung der Ventilantriebsausgänge	9-16

Anhang C GNU Lesser General Public License

Version 2.1, Februar 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Es ist jedermann gestattet, diese Lizenzurkunde zu vervielfältigen und unveränderte Kopien zu verbreiten; Änderungen sind jedoch nicht erlaubt.

DA DIE BIBLIOTHEK OHNE JEGLICHE KOSTEN LIZENZIERT WIRD, BESTEHT KEINERLEI GEWÄHRLEISTUNG FÜR DIE BIBLIOTHEK, SOFERN DIES GESETZLICH ZULÄSSIG IST.

Der für die Entwicklung dieses Produkts verwendete offene Quellcode wird dem Erstkäufer für einen Zeitraum von 3 Jahren ab dem Kaufdatum zur Verfügung gestellt, sofern der Erstkäufer Thermo Fisher Scientific die Seriennummer für das Produkt übermittelt, für das der offene Quellcode angefordert wird.

[Dies ist die erste veröffentlichte Version der Lesser GPL. Sie ist als Nachfolgerin der GNU Library Public License, Version 2 zu betrachten und erhielt daher die Versionsnummer 2.1.]

Präambel

Die meisten Softwarelizenzen wurden entworfen, um Ihnen die Freiheit zu nehmen, die Software weiterzugeben und zu verändern. Im Gegensatz dazu sollen Ihnen die GNU General Public Licenses diese Freiheit garantieren – um sicherzustellen, dass die Software für alle Benutzer frei ist.

Diese Lizenz, die Lesser General Public License, gilt für einige besonders bezeichnete Software-Pakete – typischerweise Bibliotheken – der Free Software Foundation und von anderen Autoren, die beschließen, diese Lizenz zu verwenden. Auch Sie können sie verwenden; wir empfehlen aber, vorher gründlich darüber nachzudenken, ob diese Lizenz oder die gewöhnliche General Public License die bessere Strategie für den jeweiligen Fall ist. Dabei bieten Ihnen die nachstehenden Erläuterungen eine Grundlage für Ihre Entscheidung.

Die Bezeichnung "freie" Software bezieht sich auf die Freiheit der Nutzung, nicht auf den Preis. Unsere Lizenzen sollen sicherstellen, dass Sie die Freiheit haben, Kopien freier Software zu verbreiten (und auf Wunsch etwas für diesen Service zu berechnen); dass Sie die den Quellcode erhalten oder erhalten können, wenn Sie es möchten; dass Sie die Software ändern oder Teile davon in neuen freien Programmen verwenden dürfen; und dass Sie wissen, dass Sie dies alles tun dürfen.

Um Ihre Rechte zu schützen, müssen wir Einschränkungen machen, die es Vertreibern verbieten, Ihnen diese Rechte zu verweigern oder Sie aufzufordern, auf diese Rechte zu verzichten. Aus diesen Einschränkungen folgen bestimmte Verantwortlichkeiten für Sie, wenn Sie Kopien der Bibliothek verbreiten oder sie verändern.

Beispielsweise müssen Sie den Empfängern alle Rechte gewähren, die wir Ihnen gegeben haben, wenn Sie – kostenlos oder gegen Bezahlung – Kopien der Bibliothek verbreiten. Sie müssen sicherstellen, dass auch die Empfänger den Quellcode erhalten oder erhalten können. Wenn Sie einen anderen Code mit der Bibliothek verknüpfen, müssen Sie den Empfängern die vollständigen Objektdateien zukommen lassen, sodass sie selbst diesen Code mit der Bibliothek neu verknüpfen können, auch nachdem sie Veränderungen an der Bibliothek vorgenommen und sie neu kompiliert haben. Und Sie müssen ihnen diese Bedingungen zeigen, damit sie ihre Rechte kennen.

Wir schützen Ihre Rechte in zwei Schritten: (1) Wir stellen die Bibliothek unter ein Urheberrecht (Copyright), und (2) wir bieten Ihnen diese Lizenz an, die Ihnen das Recht gibt, die Bibliothek zu vervielfältigen, zu verbreiten und/oder zu verändern.

Um jeden, der die Bibliothek weitergibt, zu schützen, wollen wir darüber hinaus klarstellen, dass für diese freie Bibliothek keinerlei Gewährleistung besteht. Wenn die Bibliothek von jemand anderem modifiziert und weitergegeben wird, sollten die Empfänger wissen, dass sie nicht die Originalversion erhalten haben, damit jegliche von anderen verursachte Probleme nicht den Ruf des ursprünglichen Autors schädigen.

Schließlich und endlich stellen Software-Patente für die Existenz jedes freien Programms eine ständige Bedrohung dar. Wir möchten sicherstellen, dass kein Unternehmen den Benutzern eines freien Programms Einschränkungen auferlegen kann, indem es von einem Patentinhaber eine die freie Nutzung einschränkende Lizenz erwirbt. Deshalb bestehen wir darauf, dass jegliche für eine Version der Bibliothek erworbene Patentlizenz mit der in dieser Lizenz im Einzelnen dargelegten Nutzungsfreiheit voll vereinbar sein muss.

Die meiste GNU-Software, einschließlich einiger Bibliotheken, fällt unter die gewöhnliche GNU General Public License. Die vorliegende Lizenz, die GNU Lesser General Public License, gilt für bestimmte näher bezeichnete Bibliotheken und unterscheidet sich wesentlich von der gewöhnlichen General Public License. Wir benutzen diese Lizenz für gewisse Bibliotheken, um das Verknüpfen von Programmen, die nicht frei sind, mit diesen Bibliotheken zu gestatten. Wenn ein Programm mit einer Bibliothek verknüpft wurde, sei es statisch oder durch eine geteilte Bibliothek, ist die Kombination der beiden rechtlich gesehen ein "kombiniertes Werk", also eine abgeleitete Version der Originalbibliothek. Die gewöhnliche General Public License erlaubt eine solche Verknüpfung nur dann, wenn die gesamte Kombination die Kriterien für freie Software erfüllt. Die Lesser General Public License erlaubt dagegen weniger strenge Kriterien für die Verknüpfung von anderem Code mit der Bibliothek.

Wir nennen diese Lizenz die "Lesser" General Public License (die "weniger allgemeine öffentliche Lizenz"), da sie weniger ("less") dazu beiträgt, die Freiheit des Benutzers zu schützen, als die gewöhnliche General Public License. Sie verschafft auch anderen Entwicklern freier Software weniger Vorteile gegenüber konkurrierenden nichtfreien Programmen. Diese Nachteile sind ein Grund dafür, dass wir die gewöhnliche General Public License für viele Bibliotheken nutzen. Die Lesser General Public License bietet jedoch unter bestimmten besonderen Umständen auch Vorteile.

So kann, wenn auch nur bei seltenen Gelegenheiten, eine besondere Notwendigkeit bestehen, einen Anreiz zur möglichst weitgehenden Benutzung einer bestimmten Bibliothek zu schaffen, sodass diese dann ein De-facto-Standard wird. Um dies zu erreichen, müssen nichtfreie Programme die Bibliothek benutzen dürfen. Ein häufigerer Fall ist der, dass eine freie Bibliothek dasselbe leistet wie weithin verwendete nichtfreie Bibliotheken. In diesem Falle bringt es wenig Nutzen, die freie Bibliothek allein auf freie Software zu beschränken, sodass wir eben die Lesser General Public License nutzen.

In anderen Fällen ermöglicht die Erlaubnis zur Benutzung einer bestimmten Bibliothek in nichtfreien Programmen viel mehr Personen, eine umfangreiche Sammlung freier Software zu nutzen. So ermöglicht beispielsweise die Erlaubnis zur Benutzung der GNU-C-Bibliothek in nichtfreien Programmen einer viel größeren Zahl von Personen, das ganze GNU-Betriebssystem ebenso wie seine Variante, das Betriebssystem GNU/Linux, zu nutzen.

Obwohl die Lesser General Public License die Freiheit des Benutzers weniger schützt, stellt sie doch sicher, dass der Benutzer eines Programms, das mit der Bibliothek verknüpft wurde, die Freiheit und die erforderlichen Mittel hat, das Programm unter Verwendung einer abgeänderten Version der Bibliothek zu betreiben.

Es folgen die genauen Bedingungen für die Vervielfältigung, Verbreitung und Modifizierung. Achten Sie genau auf den Unterschied zwischen einem "auf der Bibliothek basierendes Werk" und einem "Werk, das die Bibliothek nutzt". Ersteres enthält Code, der von der Bibliothek abgeleitet ist, während Letzteres lediglich mit der Bibliothek kombiniert werden muss, um betriebsfähig zu sein.

BEDINGUNGEN DER GNU LESSER GENERAL PUBLIC LICENSE FÜR DIE VERVIELFÄLTIGUNG, VERBREITUNG UND MODIFIZIERUNG

0. Diese Lizenzvereinbarung gilt für jede Software-Bibliothek und jedes andere Programm, in dem ein entsprechender Vermerk des Copyright-Inhabers oder eines anderen Befugten darauf hinweist, dass das Werk unter den Bedingungen dieser Lesser General Public License (im Weiteren auch als "diese Lizenz" bezeichnet) verbreitet werden darf. Jeder Lizenznehmer wird im Folgenden als "Sie" angesprochen.

Eine "Bibliothek" bedeutet eine Zusammenstellung von Softwarefunktionen und/oder Daten, die so vorbereitet ist, dass sie sich bequem mit Anwendungsprogrammen (die einige dieser Funktionen und Daten benutzen) verknüpfen lässt, um ausführbare Programmen zu bilden.

Der Begriff "Bibliothek" bezieht sich im Weiteren auf jegliche Softwarebibliotheken und Werke, die unter den Bedingungen dieser Lizenz verbreitet worden sind. Ein "auf der Bibliothek basierendes Werk" bezeichnet die betreffende Bibliothek selbst sowie jegliche davon abgeleitete Bearbeitung im urheberrechtlichen Sinne, also ein Werk, welches die Bibliothek oder einen Teil davon, sei es unverändert oder verändert und/oder direkt in eine andere Sprache übersetzt, enthält. (Im Folgenden wird die Übersetzung ohne Einschränkung als "Modifizierung" eingestuft.)

Unter dem "Quellcode" eines Werkes wird die Form des Werkes verstanden, die für Modifizierungen vorzugsweise verwendet wird. Für eine Bibliothek bedeutet "der komplette Quellcode": Der Quellcode aller in der Bibliothek enthaltenen Module einschließlich aller zugehörigen Modulschnittstellen-Definitionsdateien sowie der zur Kompilierung und Installation verwendeten Skripte.

Andere Handlungen als Vervielfältigung, Verbreitung und Modifizierung werden von dieser Lizenz nicht berührt; sie fallen nicht in ihren Anwendungsbereich. Das Ausführen eines Programms unter Benutzung der Bibliothek wird nicht eingeschränkt, und die Ausgaben des Programms unterliegen dieser Lizenz nur dann, wenn der Inhalt ein auf der Bibliothek basierendes Werk darstellt (unabhängig davon, dass die Bibliothek in einem Werkzeug zum Schreiben dieser Bibliothek verwendet wurde). Ob dies zutrifft, hängt davon ab, was die Bibliothek und was das Programm, das die Bibliothek nutzt, tut.

1. Sie dürfen auf beliebigen Medien unveränderte Kopien des Quellcodes der Bibliothek, wie Sie ihn erhalten haben, anfertigen und verbreiten, vorausgesetzt, dass Sie mit jeder Kopie einen entsprechenden Urheberrechtsvermerk sowie einen Haftungsausschluss veröffentlichen, alle Vermerke, die sich auf diese Lizenz und das Fehlen einer Gewährleistung beziehen, unverändert lassen und des Weiteren eine Kopie dieser Lizenz zusammen mit der Bibliothek verbreiten. Sie dürfen für den physikalischen Vorgang des Zugänglichmachens einer Kopie eine Gebühr verlangen; ebenso dürfen Sie auf Ihren Wunsch hin gegen Entgelt eine Garantie für das Programm anbieten.

2. Sie dürfen Ihre Kopie(n) der Bibliothek oder eines Teils davon verändern, wodurch ein auf der Bibliothek basierendes Werk entsteht; Sie dürfen derartige Modifizierungen unter den Bestimmungen von Abschnitt 1 oben vervielfältigen und verbreiten, vorausgesetzt, dass zusätzlich alle im Folgenden genannten Bedingungen erfüllt werden:

a) Das modifizierte Werk muss selbst eine Softwarebibliothek sein.

b) Sie müssen die veränderten Dateien mit einem auffälligen Vermerk versehen, der auf die von Ihnen vorgenommene Änderung und das Datum jeder Änderung hinweist.

c) Sie müssen dafür sorgen, dass das Werk als Ganzes Dritten unter den Bedingungen dieser Lizenz ohne Lizenzgebühren zur Verfügung gestellt wird.

d) Wenn sich eine Funktionseinheit der modifizierten Bibliothek auf eine Funktion oder Datentabelle stützt, die von einem die Funktionseinheit nutzenden Anwendungsprogramm bereitgestellt werden muss, ohne dass sie als Argument übergeben werden muss, wenn die Funktionseinheit angesprochen wird, müssen Sie sich nach bestem Wissen und Gewissen bemühen, sicherzustellen, dass die betreffende Funktionseinheit auch dann noch funktioniert, wenn die Anwendung eine solche Funktion oder Datentabelle nicht bietet, und dass sie den sinnvoll bleibenden Teil ihres Bestimmungszwecks noch ausführt.

(So hat z. B. eine Funktion in einer Bibliothek zum Berechnen von Quadratwurzeln einen von der Anwendung unabhängigen genau definierten Zweck. Deshalb verlangt Unterabschnitt 2d, dass jede von der Anwendung bereitgestellte Funktion oder von dieser Funktion verwendete Tabelle optional sein muss: Auch wenn die Anwendung sie nicht bereitstellt, muss die Quadratwurzelfunktion trotzdem noch Quadratwurzeln berechnen.)

Diese Anforderungen gelten für das modifizierte Werk als Ganzes. Wenn identifizierbare Abschnitte des Werkes nicht von der Bibliothek abgeleitet sind und vernünftigerweise als unabhängige und eigenständige Werke für sich selbst zu betrachten sind, gelten diese Lizenz und ihre Bedingungen nicht für die betroffenen Abschnitte, wenn Sie diese als eigenständige Werke weitergeben. Wenn Sie jedoch dieselben Abschnitte als Teil eines Ganzen weitergeben, das ein auf der Bibliothek basierendes Werk darstellt, muss die Weitergabe des Ganzen nach den Bedingungen dieser Lizenz erfolgen, deren Bedingungen für weitere Lizenznehmer somit auf das gesamte Ganze ausgedehnt werden – und somit auf jeden einzelnen Teil, unabhängig vom jeweiligen Autor. Somit ist es nicht die Absicht dieses Abschnittes, Rechte für Werke in Anspruch zu nehmen oder Ihnen die Rechte für Werke streitig zu machen, die komplett von Ihnen geschrieben wurden; vielmehr ist es die Absicht, die Rechte zur Kontrolle der Verbreitung von Werken, die auf der Bibliothek basieren oder unter ihrer auszugsweisen Verwendung zusammengestellt worden sind, auszuüben.

Ferner bringt auch das einfache Zusammenlegen eines anderen Werkes, das nicht auf der Bibliothek basiert, mit der Bibliothek (oder einem auf der Bibliothek basierenden Werk) auf ein- und demselben Speicher- oder Vertriebsmedium dieses andere Werk nicht in den Anwendungsbereich dieser Lizenz.

3. Sie können sich dafür entscheiden, dass für eine bestimmte Kopie der Bibliothek die Bedingungen der gewöhnlichen General Public License statt dieser Lizenz gelten. Dazu müssen Sie alle Hinweise, die sich auf diese Lizenz beziehen, ändern, sodass sie nun für die gewöhnliche General Public License, Version 2, anstatt für diese Lizenz gelten. (Wenn eine neuere Version als Version 2 der gewöhnlichen General Public License erschienen ist, können Sie diese angeben, wenn Sie das wünschen.) Nehmen Sie keine anderen Veränderungen an diesen Hinweisen vor.

Wenn diese Veränderungen an einer bestimmten Kopie einmal vorgenommen wurden, sind sie für diese Kopie nicht mehr zurücknehmbar, und somit gilt dann die gewöhnliche General Public License für alle nachfolgenden Kopien und abgeleiteten Werke, die von die anhand dieser Kopie erstellt wurden. Diese Option ist nützlich, wenn Sie einen Teil des Codes der Bibliothek in ein Programm kopieren wollen, das keine Bibliothek ist.

4. Sie können die Bibliothek (oder einen Teil oder eine Ableitung davon , gemäß Abschnitt 2) in Objektcode-Form oder in ausführbarer Form unter den Bedingungen der vorstehenden Abschnitte 1 und 2 kopieren und weitergeben, sofern Sie den vollständigen entsprechenden maschinenlesbaren Quellcode beifügen, der unter den Bedingungen der vorstehenden Abschnitte 1 und 2 auf einem Medium weitergegeben werden muss, das üblicherweise zum Austausch von Software benutzt wird.

Wenn die Verbreitung von Objektcode dadurch erfolgt, dass eine Kopie davon von einem bestimmten Ort abgerufen werden kann, erfüllt die Gewährung eines gleichwertigen Kopierzugriffs auf den Quellcode vom selben Ort die Anforderung bezüglich der Verbreitung des Quellcodes, auch wenn Dritte nicht dazu gezwungen sind, den Quellcode zusammen mit dem Objektcode zu kopieren.

5. Ein Programm, das keine Ableitung von einem beliebigen Teil der Bibliothek enthält, aber darauf ausgelegt ist, mit der Bibliothek zusammenzuarbeiten, indem es mit ihr kompiliert oder verknüpft wird, nennt man ein "Werk, das die Bibliothek nutzt". Ein solches Werk ist für sich allein genommen kein von der Bibliothek abgeleitetes Werk und fällt daher nicht unter diese Lizenz.

Wenn jedoch ein "Werk, das die Bibliothek nutzt" mit der Bibliothek verknüpft wird, entsteht ein ausführbares Programm, das ein von der Bibliothek abgeleitetes Werk (weil es Teile der Bibliothek enthält) und kein "Werk, das die Bibliothek nutzt" ist. Das ausführbare Programm fällt daher unter diese Lizenz. Abschnitt 6 gibt die Bedingungen für die Weitergabe solcher ausführbarer Programme an.

Wenn ein "Werk, das die Bibliothek nutzt", Material aus einer Header-Datei verwendet, die Teil der Bibliothek ist, kann der Objektcode für das Werk ein von der Bibliothek abgeleitetes Werk sein, selbst wenn der Quellcode dies nicht ist. Ob dies jeweils zutrifft, ist besonders dann von Bedeutung, wenn das Werk ohne die Bibliothek verknüpft werden kann oder wenn das Werk selbst eine Bibliothek ist. Die genaue Grenze, ab der dies zutrifft, ist rechtlich nicht genau definiert.

Wenn eine solche Objektdatei nur numerische Parameter, Datenstruktur-Layouts und Zugriffsfunktionen sowie kleine Makros und kleine Inline-Funktionen (zehn Zeilen lang oder kürzer) verwendet, unterliegt die Benutzung der Objektdatei keinen Beschränkungen, ohne Rücksicht darauf, ob sie rechtlich gesehen ein abgeleitetes Werk ist. (Ausführbare Programme, die diesen Objektcode plus Teile der Bibliothek enthalten, fallen jedoch weiterhin unter die Bedingungen von Abschnitt 6).

Ansonsten können Sie, wenn das Werk von der Bibliothek abgeleitet ist, den Objektcode für das Werk unter den Bedingungen von Abschnitt 6 weitergeben. Alle ausführbaren Programme, die dieses Werk enthalten, fallen ebenfalls unter Abschnitt 6, gleichgültig, ob sie direkt mit der Bibliothek selbst verknüpft sind oder nicht.

6. Als Ausnahme von den Bedingungen der vorstehenden fünf Abschnitte dürfen Sie auch ein "Werk, das die Bibliothek nutzt", mit der Bibliothek kombinieren oder verknüpfen, um ein Werk zu erzeugen, das Teile der Bibliothek enthält, und dieses unter Bedingungen Ihrer Wahl weitergeben, sofern diese Bedingungen Modifizierungen für den eigenen Gebrauch des Empfängers und Reverse Engineering zum Beheben von Mängeln solcher Modifizierungen gestatten.

Sie müssen bei jeder Kopie des Werkes deutlich erkennbar angeben, dass die Bibliothek darin genutzt wird und dass die Bibliothek und ihre Nutzung durch diese Lizenz abgedeckt sind. Sie müssen eine Kopie dieser Lizenz zur Verfügung stellen. Wenn das Werk bei seiner Ausführung Urheberrechtsvermerke anzeigt, müssen Sie den Urheberrechtsvermerk für die Bibliothek ebenfalls anzeigen lassen und dem Benutzer einen Hinweis geben, der ihn zu einer Kopie dieser Lizenz führt. Ferner müssen Sie einen der nachfolgend genannten fünf Punkte erfüllen: a) Liefern Sie das Werk zusammen mit dem vollständigen zugehörigen maschinenlesbaren Quellcode der Bibliothek aus, und zwar einschließlich jeglicher in dem Werk angewandter Änderungen (wobei dessen Weitergabe gemäß den Bedingungen der Abschnitte 1 und 2 erfolgen muss); und, wenn das Werk ein ausführbares, mit der Bibliothek verknüpftes Programm ist, liefern Sie es zusammen mit dem vollständigen maschinenlesbaren "Werk, das die Bibliothek nutzt", in Form von Objektcode und/oder Quellcode, sodass der Benutzer die Bibliothek verändern und dann erneut verknüpfen kann, um ein verändertes ausführbares Programm zu erzeugen, das die modifizierte Bibliothek enthält. (Es versteht sich, dass der Benutzer, der die Inhalte von Definitionsdateien in der Bibliothek verändert, nicht notwendigerweise in der Lage sein wird, die Anwendung neu zu kompilieren, um die veränderten Definitionen zu verwenden.)

b) Verwenden Sie einen geeigneten Mechanismus zur Bibliotheksfreigabe für die Verknüpfung mit der Bibliothek. Geeignet ist ein solcher Mechanismus, der (1) während der Laufzeit eine im Computersystem des Benutzers bereits vorhandene Kopie der Bibliothek nutzt, anstatt Bibliotheksfunktionen in das ausführbare Programm zu kopieren, und der (2) auch mit einer veränderten Version der Bibliothek, wenn der Benutzer eine solche installiert, korrekt funktioniert, solange die veränderte Version schnittstellenkompatibel mit der Version ist, mit der das Werk erstellt wurde.

c) Liefern Sie das Werk zusammen mit einem mindestens drei Jahre lang gültigen schriftlichen Angebot, demselben Benutzer die oben in Abschnitt 6a genannten Materialien zu Kosten, welche die reinen Weitergabekosten nicht übersteigen, zur Verfügung zu stellen.

d) Wenn die Verbreitung des Werkes dadurch erfolgt, dass eine Kopie davon von einem bestimmten Ort abgerufen werden kann, bieten Sie gleichwertigen Kopierzugriff auf die oben angegebenen Materialien vom gleichen Ort an.

e) Vergewissern Sie sich, dass der Benutzer bereits eine Kopie dieser Materialien erhalten hat oder dass Sie diesem Benutzer bereits eine Kopie geschickt haben.

Für ein ausführbares Programm muss die verlangte Form des "Werkes, das die Bibliothek nutzt" alle Daten und Hilfsprogramme beinhalten, die man benötigt, um daraus das ausführbare Programm zu reproduzieren. Als besondere Ausnahme jedoch müssen die zu verbreitenden Materialien nichts von dem enthalten, was üblicherweise (entweder als Quellcode oder in binärer Form) zusammen mit den Hauptkomponenten des Betriebssystems (Kernel, Compiler usw.) geliefert wird, unter dem das Programm läuft – es sei denn, diese Komponente selbst gehört zum ausführbaren Programm. Es kann vorkommen, dass diese Anforderung im Widerspruch zu Lizenzbeschränkungen anderer, proprietärer Bibliotheken steht, die normalerweise nicht zum Betriebssystem gehören. Ein solcher Widerspruch bedeutet, dass Sie nicht gleichzeitig die proprietären Bibliotheken und die vorliegende Bibliothek zusammen in einem ausführbaren Programm, das Sie weitergeben, verwenden dürfen.

7. Sie dürfen Bibliotheks-Funktionseinheiten, die ein auf der Bibliothek basierendes Werk darstellen, zusammen mit anderen, nicht unter diese Lizenz fallenden Funktionseinheiten in eine einzelne Bibliothek integrieren und eine solche kombinierte Bibliothek weitergeben, vorausgesetzt, dass die gesonderte Weitergabe des auf der Bibliothek basierenden Werkes einerseits und der anderen Funktionseinheiten andererseits ansonsten gestattet ist, und vorausgesetzt, dass Sie die folgenden beiden Punkte erfüllen:

a) Fügen Sie der kombinierten Bibliothek auch eine Kopie desselben auf der Bibliothek basierenden Werkes bei, die nicht mit anderen Funktionseinheiten kombiniert ist. Dieses Werk muss unter den Bedingungen der vorstehenden Abschnitte weitergegeben werden.

b) Weisen Sie bei der kombinierten Bibliothek deutlich auf die Tatsache hin, dass ein Teil davon ein auf der Bibliothek basierendes Werk ist, und erklären Sie, wo man die beigefügte, nicht kombinierte Form desselben Werkes finden kann.

8. Sie dürfen die Bibliothek nicht vervielfältigen, modifizieren, weiter lizenzieren, verknüpfen oder verbreiten, sofern es nicht durch diese Lizenz ausdrücklich gestattet ist. Jeder anderweitige Versuch der Vervielfältigung, Modifizierung, Weiterlizenzierung, Verknüpfung und Verbreitung der Bibliothek ist nichtig und beendet automatisch Ihre Rechte unter dieser Lizenz. Jedoch werden die Lizenzen Dritter, die von Ihnen Kopien oder Rechte unter dieser Lizenz erhalten haben, nicht beendet, solange diese die Lizenz voll anerkennen und befolgen.

9. Sie sind nicht verpflichtet, diese Lizenz anzunehmen, da Sie sie nicht unterzeichnet haben. Allerdings erhalten Sie auf keinem anderen Wege die Erlaubnis, die Bibliothek oder davon abgeleitete Werke zu verändern oder zu verbreiten. Diese Handlungen sind gesetzlich verboten, wenn Sie diese Lizenz nicht anerkennen. Indem Sie die Bibliothek (oder ein darauf basierendes Werk) verändern oder verbreiten, erklären Sie Ihr Einverständnis mit dieser Lizenz und mit allen ihren Bedingungen bezüglich der Vervielfältigung, Verbreitung und Modifizierung der Bibliothek oder eines darauf basierenden Werkes.

10. Jedes Mal, wenn Sie die Bibliothek (oder ein auf der Bibliothek basierendes Werk) weitergeben, erhält der Empfänger automatisch vom ursprünglichen Lizenzgeber die Lizenz, die Bibliothek gemäß den hier festgelegten Bedingungen zu vervielfältigen, zu verbreiten und zu verändern. Sie dürfen keine weiteren Einschränkungen der Ausübung der hier zugestandenen Rechte des Empfängers vornehmen. Sie sind nicht dafür verantwortlich, die Einhaltung dieser Lizenz durch Dritte durchzusetzen.

11. Sollten Ihnen infolge eines Gerichtsurteils, des Vorwurfs einer Patentverletzung oder aus einem anderen Grunde (nicht auf Patentfragen begrenzt) Bedingungen (durch Gerichtsbeschluss, Vergleich oder anderweitig) auferlegt werden, die den Bedingungen dieser Lizenz widersprechen, befreien Sie diese Umstände nicht von den Bedingungen dieser Lizenz. Wenn es Ihnen nicht möglich ist, die Bibliothek unter gleichzeitiger Beachtung der Bedingungen in dieser Lizenz und Ihrer anderweitigen Verpflichtungen zu verbreiten, dürfen Sie als Folge die Bibliothek überhaupt nicht verbreiten. Wenn zum Beispiel ein Patent nicht die gebührenfreie Weiterverbreitung der Bibliothek durch alle Personen erlaubt, die die Bibliothek direkt oder indirekt von Ihnen erhalten haben, ist die einzige Möglichkeit, sowohl das Patentrecht als auch diese Lizenz zu befolgen, ganz auf die Verbreitung der Bibliothek zu verzichten.

Sollte sich ein Teil dieses Absatzes als ungültig oder unter bestimmten Umständen nicht durchsetzbar erweisen, ist dieser Abschnitt seinem Sinne nach anzuwenden; im Übrigen soll dieser Abschnitt als Ganzes gelten.

Zweck dieses Abschnitts ist nicht, Sie dazu zu bringen, Patente oder andere Eigentumsansprüche zu verletzen oder die Gültigkeit solcher Ansprüche zu bestreiten; dieser Abschnitt hat einzig den Zweck, die Integrität des Verbreitungssystems der freien Software zu schützen, das durch die Praxis öffentlicher Lizenzen verwirklicht wird. Viele Personen haben großzügige Beiträge zu dem großen Angebot der mit diesem System verbreiteten Software im Vertrauen auf die konsistente Anwendung dieses Systems geleistet; es obliegt dem Autor/Geber, zu entscheiden, ob er die Software mittels eines anderen Systems verbreiten will; ein Lizenznehmer hat auf diese Entscheidung keinen Einfluss.

Dieser Abschnitt ist dazu gedacht, deutlich klarzustellen, was als Konsequenz aus dem Rest dieser Lizenz betrachtet wird.

12. Wenn die Verbreitung und/oder die Nutzung der Bibliothek in bestimmten Staaten entweder durch Patente oder durch urheberrechtlich geschützte Schnittstellen eingeschränkt ist, kann der ursprüngliche Urheberrechtsinhaber, der die Bibliothek unter diese Lizenz gestellt hat, eine explizite geographische Begrenzung der Verbreitung angeben, in der diese Staaten ausgeschlossen werden, sodass die Verbreitung nur innerhalb von und zwischen Staaten erlaubt ist, die nicht ausgeschlossen sind. In einem solchen Fall beinhaltet diese Lizenz die Beschränkung, als wäre sie in diesem Text niedergeschrieben.

13. Die Free Software Foundation kann von Zeit zu Zeit überarbeitete und/oder neue Versionen der Lesser General Public License veröffentlichen. Solche neuen Versionen werden vom Grundprinzip her der gegenwärtigen entsprechen, können aber im Detail abweichen, um neuen Problemen und Anforderungen gerecht zu werden.

Jede Version dieser Lizenz hat eine eindeutige Versionsnummer. Wenn in der Bibliothek angegeben wird, dass sie dieser Lizenz in einer bestimmten Versionsnummer oder "allen späteren Versionen" ("any later version") unterliegt, haben Sie die Wahl, entweder den Bedingungen der genannten Version oder denen einer beliebigen späteren Version zu folgen, die von der Free Software Foundation veröffentlicht wurde. Wenn die Bibliothek keine Versionsnummer der Lizenz angibt, können Sie eine beliebige Version wählen, die von der Free Software Foundation veröffentlicht wurde.

14. Wenn Sie Teile der Bibliothek in anderen freien Programmen verwenden möchten, deren Bedingungen für die Verbreitung mit den vorliegenden unvereinbar sind, schreiben Sie an den Autor, um ihn um die Erlaubnis zu bitten. Für Software, die unter dem Urheberrecht der Free Software Foundation steht, schreiben Sie an die Free Software Foundation; wir machen zu diesem Zweck gelegentlich Ausnahmen. Unsere Entscheidung wird von zwei Zielen geleitet werden, zum einen den freien Status aller von unserer freien Software abgeleiteten Werke zu erhalten und zum anderen die gemeinschaftliche Nutzung und Wiederverwendung von Software im Allgemeinen zu fördern.

KEINE GEWÄHRLEISTUNG

15. DA DIE BIBLIOTHEK OHNE JEGLICHE KOSTEN LIZENZIERT WIRD, BESTEHT KEINERLEI GEWÄHRLEISTUNG FÜR DIE BIBLIOTHEK, SOFERN DIES GESETZLICH ZULÄSSIG IST. SOFERN NICHT ANDERWEITIG SCHRIFTLICH BESTÄTIGT, STELLEN DIE URHEBERRECHTSINHABER UND/ODER DRITTE DIE BIBLIOTHEK "WIE VORLIEGEND" ZUR VERFÜGUNG, OHNE GEWÄHRLEISTUNG, WEDER AUSDRÜCKLICH NOCH KONLUDENT, INSBESONDERE IM HINBLICK AUF DIE MARKTGÄNGIGKEIT ODER DIE EIGNUNG FÜR EINEN BESTIMMTEN ZWECK. DAS GESAMTE RISIKO BEZÜGLICH DER QUALITÄT UND LEISTUNG DER BIBLIOTHEK LIEGT BEI IHNEN. SOLLTE SICH DIE BIBLIOTHEK ALS FEHLERHAFT HERAUSSTELLEN, TRAGEN SIE DIE KOSTEN FÜR DIE NOTWENDIGE WARTUNG, REPARATUR ODER KORREKTUR.

16. IN KEINEM FALL, AUSSER WENN DURCH GELTENDES RECHT GEFORDERT ODER SCHRIFTLICH ZUGESICHERT, IST EIN URHEBERRECHTSINHABER ODER EIN DRITTER, DER DIE BIBLIOTHEK WIE OBEN ERLAUBT VERÄNDERT UND/ODER VERBREITET HAT, IHNEN GEGENÜBER FÜR SCHÄDEN HAFTBAR, EINSCHLIESSLICH ALLER ALLGEMEINEN ODER SPEZIELLEN SCHÄDEN, SEKUNDÄRE ODER FOLGESCHÄDEN, DIE AUS DER NUTZUNG ODER DER NICHTVERWENDBARKEIT DER BIBLIOTHEK FOLGEN (INSBESONDERE IM HINBLICK AUF DATENVERLUST, FEHLERHAFT GEWORDENE DATEN, VERLUSTE, DIE IHNEN ODER DRITTEN ENTSTEHEN, UND DEM UNVERMÖGEN DER BIBLIOTHEK, MIT ANDERER SOFTWARE ZUSAMMENZUARBEITEN), SELBST WENN EIN SOLCHER URHEBERRECHTSINHABER ODER DRITTER ÜBER DIE MÖGLICHKEIT SOLCHER SCHÄDEN UNTERRICHTET WAR.

ENDE DER LIZENZBEDINGUNGEN

Wie Sie diese Bedingungen auf Ihre eigenen, neuen Bibliotheken anwenden können

Wenn Sie eine neue Bibliothek entwickeln und möchten, dass dies vom größtmöglichen Nutzen für die Allgemeinheit ist, empfehlen wir Ihnen, sie zu freier Software machen, die jeder gemäß diesen Bedingungen weiterverbreiten und verändern kann. Dies geschieht, indem Sie eine Weiterverbreitung gemäß den Bedingungen dieser Lizenz erlauben (oder als Alternative gemäß den Bedingungen der gewöhnlichen General Public License).

Damit diese Bedingungen gelten, fügen Sie die folgenden Vermerke zu Ihrer Bibliothek hinzu. Am sichersten ist es, sie an den Anfang einer jeden Quelldatei zu stellen, um den Gewährleistungsausschluss möglichst deutlich darzustellen; zumindest aber sollten in jeder Datei die "Copyright"-Zeile sowie ein kurzer Hinweis darauf, wo die vollständigen Vermerke zu finden sind, enthalten sein.

<Eine Zeile mit dem Programmnamen und einer kurzen Beschreibung.> Copyright (C) <Jahr> <Name des Autors>

Diese Bibliothek ist freie Software; Sie können sie gemäß den Bedingungen der GNU Lesser General Public License, wie von der Free Software Foundation veröffentlicht, weitergeben und/oder abändern, entweder gemäß Version 2.1 der Lizenz oder (nach Ihrer Wahl) jeder späteren Version.

Die Veröffentlichung der Bibliothek erfolgt in der Hoffnung, dass sie Ihnen von Nutzen sein wird, aber OHNE GEWÄHRLEISTUNG, selbst ohne die konkludente Garantie der MARKTGÄNGIGKEIT oder der EIGNUNG FÜR EINEN BESTIMMTEN ZWECK. Einzelheiten finden Sie in der GNU Lesser General Public License.

Sie sollten ein Exemplar der GNU Lesser General Public License zusammen mit dieser Bibliothek erhalten haben; falls nicht, schreiben Sie an die Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Fügen Sie auch einen kurzen Hinweis hinzu, wie Sie elektronisch und postalisch erreichbar sind.

Soweit vorhanden, sollten Sie auch Ihren Arbeitgeber (wenn Sie als Programmierer arbeiten) oder Ihre Schule einen "Copyright-Verzicht" für die Bibliothek unterschreiben lassen. Hier dafür ein Beispiel, bei dem Sie natürlich die Namen ändern müssen:

Yoyodyne, Inc., erhebt keinen urheberrechtlichen Anspruch auf die von James Random Hacker geschriebene Bibliothek "Frob" (eine Bibliothek für das Justieren von Knöpfen).

<Unterschrift von Ty Coon>, 1. April 1990

Ty Coon, Vizepräsident

Das ist schon alles!

Nokia Qt LGPL Exception Version 1.1

Als zusätzliche Genehmigung über die GNU Lesser General Public License Version 2.1 hinaus kann der Objektcode für ein "Werk, das die Bibliothek nutzt", Material aus einer Header-Datei verwenden, die Teil der Bibliothek ist. Sie dürfen derartigen Objektcode gemäß Bedingungen Ihrer Wahl weitergeben, sofern:

(i) die Header-Dateien der Bibliothek nicht modifiziert wurden; und

(ii) das enthaltene Material auf numerische Parameter, Datenstruktur-Layouts, Zugriffsfunktionen, Makros, Inline-Funktionen und Vorlagen beschränkt ist; und

(iii) Sie die Bedingungen von Absatz 6 der GNU Lesser General Public License Version 2.1 erfüllen.

Außerdem dürfen Sie diese Ausnahme auf eine modifizierte Version der Bibliothek anwenden, unter der Voraussetzung, dass diese Modifizierung nicht das Kopieren von Material aus der Bibliothek in die Header-Dateien der modifizierten Bibliothek umfasst, sofern dieses Material auf (i) numerische Parameter; (ii) Datenstruktur-Layouts; (iii) Zugriffsfunktionen und (iv) kleine Makros, Vorlagen und Inline-Funktionen mit einer Länge von fünf Zeilen oder weniger beschränkt ist.

Zudem sind Sie nicht verpflichtet, diese zusätzliche Genehmigung auf eine modifizierte Version der Bibliothek anzuwenden.