TÜV RHEINLAND ENERGIE UND UMWELT GMBH

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀

> TÜV-Bericht: 936/21209885/G Köln, 20. September 2013

> > www.umwelt-tuv.de

teu-service@de.tuv.com

Die TÜV Rheinland Energie und Umwelt GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungspr
 üfung von Messeinrichtungen zur kontinuierlichen
 Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfern
 überwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallmessungen an Windenergieanlagen

nach DIN EN ISO/IEC 17025 akkreditiert.

Die Akkreditierung ist gültig bis 22-01-2018. DAkkS-Registriernummer: D-PL-11120-02-00.

Die auszugsweise Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energie und Umwelt GmbH D - 51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

Seite 2 von 431

Leerseite

Seite 3 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀

Geprüftes Gerät:	Modell 5030	Modell 5030 <i>i</i> SHARP mit PM ₁₀ Vorabscheider			
Hersteller:	Thermo Fish 27 Forge Pa Franklin, Ma USA	Thermo Fisher Scientific 27 Forge Parkway Franklin, Ma 02038 USA			
Prüfzeitraum:	Juni 2009 bi	Juni 2009 bis September 2013			
Berichtsdatum:	20. Septemb	oer 2013			
Berichtsnummer:	936/2120988	35/G			
Bearbeiter:	DiplIng. Ka Tel.: ++49 22 <u>karsten.plets</u>	rsten Pletso 21 806-259 scher@de.to	cher 2 <u>uv.con</u>	<u>1</u>	
Berichtsumfang:	Bericht:		187	Seiten	
	Anhang	ab Seite	188		
	Handbuch	ab Seite	237		
	Handbuch	mit	204	Seiten	
	Gesamt		431	Seiten	

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 4 von 431

740300_2013_936_21209885G.doc

Leerseite

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Inhaltsverzeichnis

1.	KURZFASSUNG UND BEKANNTGABEVORSCHLAG	13
1.1	Kurzfassung	13
1.2	Bekanntgabevorschlag	19
1.3	Zusammenfassende Darstellung der Prüfergebnisse	20
2.	AUFGABENSTELLUNG	29
2.1	Art der Prüfung	29
2.2	Zielsetzung	29
3.	BESCHREIBUNG DER GEPRÜFTEN MESSEINRICHTUNG	30
3.1	Messprinzip	30
3.2	Funktionsweise der Messeinrichtung	33
3.3	Umfang und Aufbau der Messeinrichtung	38
4.	PRÜFPROGRAMM	52
4.1	Allgemeines	52
4.1 4.2	Allgemeines	52 55
4.1 4.2 4.3	Allgemeines Laborprüfung Feldtest	52 55 56
4.1 4.2 4.3 5.	Allgemeines Laborprüfung Feldtest REFERENZMESSVERFAHREN	52 55 56 75
4.1 4.2 4.3 5. 6.	Allgemeines Laborprüfung Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE	52 55 56 75 76
 4.1 4.2 4.3 5. 6. 6.1 	Allgemeines Laborprüfung Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige	52 55 56 75 76 76
 4.1 4.2 4.3 5. 6. 6.1 6.1 	Allgemeines Laborprüfung Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige 4.1.2 Wartungsfreundlichkeit	52 55 56 75 76 76 78
 4.1 4.2 4.3 5. 6.1 6.1 6.1 	Allgemeines. Laborprüfung. Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige 4.1.2 Wartungsfreundlichkeit. 4.1.3 Funktionskontrolle.	52 55 56 75 76 76 78 80
 4.1 4.2 4.3 5. 6. 6.1 6.1 6.1 6.1 	Allgemeines. Laborprüfung Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige 4.1.2 Wartungsfreundlichkeit. 4.1.3 Funktionskontrolle 4.1.4 Rüst- und Einlaufzeiten	52 55 75 76 76 78 80 82
 4.1 4.2 4.3 5. 6.1 6.1 6.1 6.1 6.1 	Allgemeines Laborprüfung Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige 4.1.2 Wartungsfreundlichkeit 4.1.3 Funktionskontrolle 4.1.4 Rüst- und Einlaufzeiten 4.1.5 Bauart	52 55 75 76 76 78 80 82 84
 4.1 4.2 4.3 5. 6.1 6.1 6.1 6.1 6.1 6.1 	Allgemeines. Laborprüfung. Feldtest REFERENZMESSVERFAHREN PRÜFERGEBNISSE 4.1.1 Messwertanzeige 4.1.2 Wartungsfreundlichkeit. 4.1.3 Funktionskontrolle 4.1.4 Rüst- und Einlaufzeiten 4.1.5 Bauart 4.1.6 Unbefugtes Verstellen	52 55 75 76 76 78 80 82 84 85

Seite 6 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1	5.1 Allgemeines	88
6.1	5.2.1 Zertifizierungsbereiche	89
6.1	5.2.2 Messbereich	90
6.1	5.2.3 Negative Messsignale	91
6.1	5.2.4 Stromausfall	92
6.1	5.2.5 Gerätefunktionen	93
6.1	5.2.6 Umschaltung	94
6.1	5.2.7 Wartungsintervall	95
6.1	5.2.8 Verfügbarkeit	96
6.1	5.2.9 Gerätesoftware	
6.1	5.3.1 Allgemeines	
6.1	5.3.2 Wiederholstandardabweichung am Nullpunkt	
6.1	5.3.3 Wiederholstandardabweichung am Referenzpunkt	
6.1	5.3.4 Linearität (Lack-of-fit)	
6.1	5.3.5 Empfindlichkeitskoeffizient des Probengasdrucks	
6.1	5.3.6 Empfindlichkeitskoeffizient der Probengastemperatur	
6.1	5.3.7 Empfindlichkeitskoeffizient der Umgebungstemperatur	
6.1	5.3.8 Empfindlichkeitskoeffizient der elektrischen Spannung	112
6.1	5.3.9 Querempfindlichkeit	114
6.1	5.3.10 Mittelungseinfluss	115
6.1	5.3.11 Standardabweichung aus Doppelbestimmungen	116
6.1	5.3.12 Langzeitdrift	118
6.1	5.3.13 Kurzzeitdrift	
6.1	5.3.14 Einstellzeit	125
6.1	5.3.15 Differenz zwischen Proben- und Kalibriereingang	126
6.1	5.3.16 Konverterwirkungsgrad	

6.1

6.1

6.1

6.1

6.1

6.1

6.1

6.1

6.1

6.1

6.1

8.

9.

Seite 7 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Ir.: 936/21209885/G
5.3.17 Anstieg der NO ₂ -Konzentration durch Verweilen im Messgerät12
5.3.18 Gesamtunsicherheit12
5.4.1 Allgemeines
5.4.2 Gleichwertigkeit des Probenahmesystems13
5.4.3 Vergleichbarkeit der Probenahmesysteme13
5.4.4 Kalibrierung14
5.4.5 Querempfindlichkeit14
5.4.6 Mittelungseinfluss14
5.4.7 Konstanz des Probenahmevolumenstroms15
5.4.8 Dichtheit des Probenahmesystems15
Methodik der Äquivalenzprüfung (Module 5.4.9 – 5.4.11)

6.1	5.4.9 Ermittlung der Unsicherheit zwischen den Prüflingen ubs	157
6.1	5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge	164
6.1	5.4.11 Anwendung von Korrekturfaktoren/-termen	178
6.1	5.5 Anforderungen an Mehrkomponentenmesseinrichtungen	183
7.	EMPFEHLUNGEN ZUM PRAXISEINSATZ	184

Seite 8 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabellenverzeichnis

Tabelle 1:	Beschreibung der Messstellen	.17
Tabelle 2:	Beschreibung der Messstelle (Zusatzkampagne 2013)	.17
Tabelle 3:	Gerätetechnische Daten Modell 5030i SHARP (Herstellerangaben)	.50
Tabelle 4:	Übersicht der Softwarestände während der Eignungsprüfung	.52
Tabelle 5:	Feldteststandorte	.57
Tabelle 6:	Umgebungsbedingungen an den Feldteststandorten, als Tagesmittelwerte	.62
Tabelle 7	Auswertung der Kampagne Teddington, Sommer mit 50 % rH Einstellung	63
Tabelle 8:	Umgebungsbedingungen am zusätzlichen Standort Bornheim	
	Sommer 2013" als Tagesmittelwerte	66
Tahelle 9 [.]	Ergebnisse der Äguivalenzprüfung am Standort Bornheim, Sommer 2013	.00
	SN 3 (58%) & SN 4 (50%) Messkomponente PM., Robdaten	67
Tabella 10:	Ergebnisse der Äguivalenzprüfung am Standort Bornheim, Sommer 2013	.07
	SN 3 (58%) & SN 4 (50%) Mosskomponente DM Steigungskorrektur	
	1000 (1000) a Sin 4 (1000), mession ponence r m ₁₀ , Steigungskon ektur	67
Taballa 11:	Ergebnisse der Äguivelenzprüfung. Eignungsprüfung i Bernheim Sommer	.07
	2012" SN 2 (58%) & SN 4 (50%) Magakampapanta DM Staigungakarrakt	
	2013, SN 3 (56%) & SN 4 (50%), Messkomponenie PM ₁₀ , Steigungskonekti	ม
	um 1,009, Achsabschnillskonektur um -0,392	.00
Tabelle 12:	Ergebnisse Grubbs-Ausrelisertest – Referenz PM ₁₀	.70
Tabelle 13:	Entrernte wertepaare Referenz Pivi ₁₀ nach Grubbs	./1
Tabelle 14:		.74
Tabelle 15:	Zertifizierungsbereiche	.89
Tabelle 16:	Ermittlung der Verfügbarkeit (ohne prüfungsbedingte Ausfalle)	.97
Tabelle 17:	Ermittlung der Verfügbarkeit (inkl. prüfungsbedingte Ausfälle)	.97
Tabelle 18:	Nachweisgrenze PM ₁₀ 1	03
Tabelle 19:	Abhängigkeit des Nullpunktes (SHARP) von der Umgebungstemperatur,	
	Abweichung in µg/m ³ , Mittelwert aus drei Messungen1	10
Tabelle 20:	Abhängigkeit der Empfindlichkeit (Massenkoeffizient) von der Umgebungs-	
	temperatur, Abweichung in %, Mittelwert aus drei Messungen1	10
Tabelle 21:	Abhängigkeit des Nullpunktes (NEPH) von der Umgebungstemperatur,	
	Abweichung in µg/m ³ , Mittelwert aus drei Messungen1	11
Tabelle 22:	Abhängigkeit des Messwertes von der Netzspannung, Abweichung in %1	13
Tabelle 23:	Konzentrationsmittelwerte, Standardabweichung, Unsicherheitsbereich	
	und Reproduzierbarkeit im Feld, Messkomponente PM ₁₀ 1	17
Tabelle 24:	Nullpunktdrift SN 3 & SN 4, mit Nullfilter1	20
Tabelle 25:	Empfindlichkeitsdrift SN 3 & SN 41	22
Tabelle 26:	Ergebnisse der linearen Regressionsanalyse der Messungen mit den	
	beiden Testgeräten SN 3 und SN 4 an den vier Standorten1	33
Tabelle 27:	Ergebnisse der linearen Regressionsanalyse der Messungen mit den	
	beiden Testgeräten SN 3 und SN 4 (gesamt)1	33
Tabelle 28:	Zweiseitiger 95%-Vertrauensbereich Cl ₉₅ für die Testgeräte SN 3	
	und SN 41	41
Tabelle 29:	Ergebnisse der Kalibrier- und Analysenfunktion, Messkomponente PM ₁₀ 1	44
Tabelle 30:	Abweichung zwischen Referenzmessung und Prüfling an Tagen mit einer	
	relativen Luftfeuchte > 70 %. Messkomponente PM ₁₀	47
Tabelle 31:	Vergleich Testgerät SN 3 mit Referenzgerät, rel. Luftfeuchte > 70 %.	
	alle Standorte. Messkomponente PM ₁₀	48
Tabelle 32 [.]	Vergleich Testgerät SN 4 mit Referenzgerät, rel. Luftfeuchte > 70 %	
	alle Standorte, Messkomponente PM ₁₀	48

Seite 9 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tahalla 33.	Fraebnisse Kontrolle Durchflussrate	151
Tabelle 34:	Kenngrößen für die Durchflussmessung (24h-Mittel). SN 3 (Feld)	
Tabelle 35:	Kenngrößen für die Durchflussmessung (24h-Mittel), SN 4 (Feld)	152
Tabelle 36:	Ergebnisse der Dichtigkeitsprüfungen	155
Tabelle 37:	Unsicherheit zwischen den Prüflingen ubs für die Testgeräte SN 3	
	und SN 4, Messkomponente PM ₁₀	159
Tabelle 38:	Übersicht Äquivalenzprüfung Modell 5030i SHARP für PM ₁₀	167
Tabelle 39:	Unsicherheit zwischen den Referenzgeräten u _{ref} für PM ₁₀	169
Tabelle 40:	Zusammenstellung der Ergebnisse der Äquivalenzprüfung, SN 3 & SN 4,	
	Messkomponente PM ₁₀ , Rohdaten	170
Tabelle 41:	Zusammenstellung der Ergebnisse der Äquivalenzprüfung, SN 3 & SN 4,	
	nach Korrektur Steigung und Achsabschnitt	182
Tabelle 42:	Stabilität Eichgewicht	230
Tabelle 43:	Stabilität der Kontrollfilter	232
Tabelle 44:	Wägebedingungen und Wiegezeiten	233

Seite 10 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildungsverzeichnis

Abbildung 1:	Weg der Probe durch das Modell 5030i SHARP	34
Abbildung 2:	Hardwarekomponenten Modell 5030i SHARP – Optik Modul	34
Abbildung 3:	Hardwarekomponenten Modell 5030i SHARP – Beta Modul	35
Abbildung 4:	Foto Hardwarekomponeten Modell 5030i, SHARP – Beta Modul	35
Abbildung 5:	Schematische Darstellung – Aufbau der Messeinrichtung Modell 5030i	
	SHARP	36
Abbildung 6:	Darstellung Modell 5030 i SHARP (SHARP Optik Modul (oben) +	
	SHARP Beta Modul (unten))	38
Abbildung 7:	(europäischer) PM10-Probenahmekopf für Modell 5030 i SHARP	39
Abbildung 8:	Beheiztes Probenahmerohr (DHS)	40
Abbildung 9:	Messgerät Modell 5030i SHARP	40
Abbildung 10:	Messgerät Modell 5030i SHARP – Optik-Modul	41
Abbildung 11:	Messgerät Modell 5030i SHARP – Beta-Modul	41
Abbildung 12:	Messgerät Modell 5030i SHARP (1. & 2. System von rechts) in	
	Messstation	42
Abbildung 13:	Vakuumpumpe (Typ: GAST Model 75R647, PN 110836-00)	42
Abbildung 14:	Hauptfenster der Benutzeranzeige	43
Abbildung 15:	Flussdiagramm – Übersicht der menügeführten Firmware	46
Abbildung 16:	Nullfilter zur Erzeugung von schwebstaubfreier Luft, inkl.	
	Anschlussadapter	47
Abbildung 17:	Foliensatz mit Folienhalter und Prüffolien	48
Abbildung 18:	Adapter zur Dichtigkeitsprüfung	49
Abbildung 19:	Verlauf der PM ₁₀ -Konzentrationen (Referenz) am Standort "Köln,	
	Parkplatzgelände, Winter"	58
Abbildung 20:	Verlauf der PM ₁₀ -Konzentrationen (Referenz) am Standort "Bornheim,	
-	Autobahnparkplatz, Sommer"	58
Abbildung 21:	Verlauf der PM ₁₀ -Konzentrationen (Referenz) am Standort "Bornheim,	
	Autobahnparkplatz, Winter"	59
Abbildung 22:	Verlauf der PM ₁₀ -Konzentrationen (Referenz) am Standort "Teddington,	
	Sommer"	59
Abbildung 23:	Feldteststandort Köln, Parkplatzgelände	60
Abbildung 24:	Feldteststandort Bornheim, Autobahnparkplatz	60
Abbildung 25:	Feldteststandort Teddington	61
Abbildung 26:	Referenz vs. Testgerät, SN 3, Messkomponente PM ₁₀ , Teddington,	
	Sommer, Schwellwert rel. Feuchte bei 50 %	64
Abbildung 27:	Referenz vs. Testgerät, SN 4, Messkomponente PM ₁₀ , Teddington,	
	Sommer, Schwellwert rel. Feuchte bei 50 %	64
Abbildung 28:	Grubbs Testergebnisse für das PM ₁₀ Referenzverfahren, Köln (Winter)	71
Abbildung 29:	Grubbs Testergebnisse für das PM ₁₀ Referenzverfahren, Bornheim	
	(Sommer)	72
Abbildung 30:	Grubbs Testergebnisse für das PM ₁₀ Referenzverfahren, Bornheim	
	(Winter)	72
Abbildung 31:	Grubbs Testergebnisse für das PM ₁₀ Referenzverfahren, Teddington	
-	(Sommer)	73
Abbildung 32:	Messanzeige Konzentrationsmesswerte SHARP	77
Abbildung 33:	Ansicht Geräterückseite Modell 5030i SHARP	87
Abbildung 34:	Anzeige der Softwareversion (hier V02.00.00.232+) im Menü	
	"Diagnostics/Program Versions"	99

für die Komponente Schwebstaub PM₁₀,

Berichts-Nr.: 936/21209885/G

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific

Seite 11 von 431

Nullpunktdrift SN 3, Messkomponente PM₁₀.....121 Abbildung 35: Nullpunktdrift SN 4, Messkomponente PM₁₀.....121 Abbildung 36: Drift des Messwertes SN 3, Messkomponente PM₁₀.....122 Abbildung 37: Drift des Messwertes SN 4, Messkomponente PM₁₀.....123 Abbildung 38: Abbildung 39: Referenz-Äquivalenzfunktion SN 3, Standort Köln, Winter......134 Abbildung 40: Referenz-Äquivalenzfunktion SN 4, Standort Köln, Winter......134 Abbilduna 41: Abbildung 42: Abbildung 43: Referenz-Äquivalenzfunktion SN 3, Standort Bornheim, Winter......136 Referenz-Äquivalenzfunktion SN 4, Standort Bornheim, Winter......136 Abbildung 44: Abbildung 45: Abbildung 46: Abbildung 47: Abbildung 48: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Abbildung 49: Standort Köln, Winter.....141 Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Abbildung 50: Abbildung 51: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Abbildung 52: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Standort Teddington, Sommer......143 Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Abbildung 53: Durchfluss am Testgerät SN 3 (Feld)......153 Abbildung 54: Abbildung 55: Durchfluss am Testgerät SN 4 (Feld).....153 Abbildung 56: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4. Messkomponente PM₁₀, alle Standorte.....160 Abbildung 57: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM₁₀, Standort Köln, Winter160 Abbildung 58: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM₁₀, Standort Bornheim, Sommer......161 Abbildung 59: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM₁₀, Standort Bornheim, Winter.....161 Abbildung 60: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM₁₀, Standort Teddington, Sommer162 Abbildung 61: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM₁₀, alle Standorte, Werte \geq 30 µg/m³......162 Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Abbildung 62: Messkomponente PM₁₀, alle Standorte, Werte < 30 µg/m³163 Referenz vs. Testgerät, SN 3 & SN 4, Messkomponente PM₁₀, Abbildung 63: Abbildung 64: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, alle Standorte172 Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, alle Standorte173 Abbildung 65: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Köln, Winter......173 Abbildung 66: Abbildung 67: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Köln, Winter......173 Abbildung 68: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Bornheim, Sommer 174 Abbildung 69: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Bornheim, Sommer 174 Abbildung 70: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Bornheim,

Genau. monti

Seite 12 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 71:	Referenz vs. Testgerät, SN 4, Messkomponente PM ₁₀ , Bornheim, Winter	175
Abbildung 72:	Referenz vs. Testgerät, SN 3, Messkomponente PM ₁₀ , Teddington,	
Abbildung 73	Sommer	176
ribblidding 70.	Sommer	176
Abbildung 74:	Referenz vs. Testgerät, SN 3, Messkomponente PM ₁₀ ,	4
Abbildung 75	Werte ≥ 30 µg/m ³ Referenz vs. Testgerät, SN 4. Messkomponente PM ₄₀	1//
ribblidding 70.	Werte \geq 30 µg/m ³	177
Abbildung 76:	Stabilität Eichgewicht	229
Abbildung 77:	Stabilität der Kontrollfilter	231
Abbildung 78:	Streuung der Emfab Filter für (A) Anfangswägung m Vergleich zum	
-	Prüfgewicht und (B) Endwägung im Vergleich zum Prüfgewicht	236

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

1. Kurzfassung und Bekanntgabevorschlag

1.1 Kurzfassung

Gemäß der Richtlinie 2008/50/EG vom 21. Mai 2008 [7] (ersetzt die Luftqualitätsrahmenrichtlinie 96/62/EG vom 27. September 1996 inkl. der zugehörigen Tochterrichtlinien 1999/30/EG, 2000/69/EG, 2002/3/EG sowie die Entscheidung des Rates 97/101/EG) "über Luftqualität und saubere Luft für Europa" sind als Referenzmethoden zur Messung der PM₁₀-Konzentration die in der EN 12341 "Luftbeschaffenheit - Ermittlung der PM₁₀-Fraktion von Schwebstaub – Referenzmethode und Feldprüfverfahren zum Nachweis der Gleichwertigkeit von Messverfahren und Referenzmessmethode" [3] sowie zur Messung der PM_{2,5}-Konzentration die in der EN 14907 "Luftbeschaffenheit – Gravimetrisches Standardmessverfahren für die Bestimmung der PM_{2,5}-Massenfraktion des Schwebstaubs" beschriebenen Methoden zu verwenden. Die Mitgliedsstaaten können bei Partikeln jedoch auch eine andere Methode verwenden, wenn nachgewiesen werden kann, "dass diese einen konstanten Bezug zur Referenzmethode aufweist. In diesem Fall müssen die mit dieser Methode erzielten Ergebnisse korrigiert werden, damit diese den Ergebnissen gleichwertig sind, die bei der Anwendung der Referenzmethode erzielt worden wären" (2008/50/EG, Anhang VI, B).

Der Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods" [4] der Adhoc-EG-Arbeitsgruppe vom Januar 2010

(Quelle: http://ec.europa.eu/environment/air/quality/legislation/pdf/equivalence.pdf)

beschreibt ein Verfahren für die Prüfung auf Äquivalenz von Nicht-Standardmessverfahren. Die Anforderungen des Leitfadens zur Äquivalenzprüfung wurden in der letzten Revision der VDI-Richtlinien VDI 4202, Blatt 1 [1] sowie VDI 4203, Blatt 3 [2] mit aufgenommen.

Im Rahmen der vorliegenden Prüfung wurden folgende Grenzwerte angesetzt:

	PM_{10}
Tagesgrenzwert TGW (24 h)	50 µg/m³
Jahresgrenzwert JGW (1 a)	40 µg/m³

sowie für die Berechnungen gemäß des Leitfadens [4]

	PM ₁₀
Grenzwert	50 µg/m³

Seite 14 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die Richtlinie VDI 4202, Blatt 1 von 2002 beschreibt die "Mindestanforderungen an automatische Immissionsmesseinrichtungen bei der Eignungsprüfung". Die allgemeinen Rahmenbedingungen für die zugehörigen Prüfungen sind in der Richtlinie VDI 4203, Blatt 1 "Prüfpläne für automatische Messeinrichtungen – Grundlagen" vom Oktober 2001 beschrieben. VDI 4203, Blatt 3, "Prüfpläne für automatische Messeinrichtungen – Prüfprozeduren für Messeinrichtungen zur punktförmigen Messung von gas- und partikelförmigen Immissionen" von 2004 präzisiert diese Rahmenbedingungen.

Die Richtlinien VDI 4202, Blatt 1 und VDI 4203, Blatt 3 wurden nach umfangreicher Revision mit Stand September 2010 neu veröffentlicht. Leider bestehen nach dieser Revision in Hinblick zur Prüfung von Staub-Immissionsmesseinrichtungen einige Unklarheiten und Widersprüche bezüglich konkreter Mindestanforderungen auf der einen Seite und der generellen Relevanz von Prüfpunkten auf der anderen Seite. Es besteht konkret Klärungsbedarf bei den folgenden Prüfpunkten:

6.1	5.3.2 W	iederholstandardabweichung am Nullpunkt	→ keine Mindestan- forderung definiert
6.1	5.3.3 W	iederholstandardabweichung am Referenzpunkt	→ nicht relevant für Staubgeräte
6.1	5.3.4 Lir	nearität (Lack-of-fit)	→ nicht relevant für Staubgeräte
6.1	5.3.7 Er	npfindlichkeitskoeffizient der Umgebungstemperatur	→ keine Mindestan- forderung definiert
6.1	5.3.8 Er	npfindlichkeitskoeffizient der elektrischen Spannung	→ keine Mindestan- forderung definiert
6.1	5.3.11	Standardabweichung aus Doppelbestimmungen	→ keine Mindestan- forderung definiert
6.1	5.3.12	Langzeitdrift	→ keine Mindestan- forderung definiert
6.1	5.3.13	Kurzzeitdrift	→ nicht relevant für Staubgeräte

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.18 Gesamtunsicherheit

→ nicht relevant für Staubgeräte, abgedeckt durch 5.4.10.

Aus diesem Grunde wurde eine offizielle Anfrage an die zuständige Stelle in Deutschland gestellt, um eine abgestimmte Vorgehensweise zum Umgang mit den Inkonsistenzen der Richtlinie festzulegen.

Es wurde folgende Vorgehensweise vorgeschlagen:

Die Prüfpunkte 5.3.2, 5.3.7, 5.3.8, 5.3.11 und 5.3.12 werden wie bisher auf Basis der Mindestanforderungen aus VDI 4202 Blatt 1 von 2002 bewertet (d.h. unter Verwendung der Bezugswerte B_0 , B_1 und B_2).

Auf die Prüfung der Prüfpunkte 5.3.3, 5.3.4, 5.3.13 und 5.3.18 wird verzichtet, da diese Prüfpunkte für Staubmesseinrichtungen nicht relevant sind.

Die zuständige deutsche Stelle hat dieser vorgeschlagenen Vorgehensweise per Entscheidung vom 27.06.2011 bzw. 07.10.2011 zugestimmt.

Die gemäß der herangezogenen Richtlinien anzuwendenden Bezugswerte für die Messkomponente PM₁₀ sind wie folgt festgelegt:

	PM ₁₀
B ₀	2 µg/m³
B1	40 µg/m³
B ₂	200 µg/m³

Seite 16 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Im Auftrag der Firma Thermo Fisher Scientific führte die TÜV Rheinland Energie und Umwelt GmbH die Eignungsprüfung der Messeinrichtung Modell 5030*i* SHARP für die Komponente Schwebstaub PM₁₀ durch.

- VDI-Richtlinie 4202, Blatt 1, "Mindestanforderungen an automatische Immissionsmesseinrichtungen bei der Eignungsprüfung – Punktmessverfahren für gas- und partikelförmige Luftverunreinigungen", September 2010 bzw. Juni 2002 [1]
- VDI-Richtlinie 4203, Blatt 3, "Prüfpläne für automatische Messeinrichtungen Prüfprozeduren für Messeinrichtungen zur punktförmigen Messung von gas- und partikelförmigen Immissionen", September 2010 bzw. August 2004 [2]
- Europäische Norm EN 12341, "Luftbeschaffenheit Ermittlung der PM₁₀-Fraktion von Schwebstaub; Referenzmethode und Feldprüfverfahren zum Nachweis der Gleichwertigkeit von Messverfahren und Referenzmessmethode", Deutsche Fassung EN 12341: 1998 [3]
- Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods", Englische Fassung von Januar 2010 [4]

Die Messeinrichtung Modell 5030i SHARP ist ein synchronisiertes Hybrid-Echtzeit Staubmessgerät und ermittelt die Staubkonzentrationen mittels eines kombinierten Nephelometer-/Radiometer-Messprinzips. Mit Hilfe einer Pumpe wird Umgebungsluft über einen PM₁₀ Probenahmekopf angesaugt (Probenahmefluss 16,67 l/min). Die staubbeladene Probenahmeluft passiert zunächst ein Lichtstreuungsphotometer (Nephelometer) und wird anschließend auf ein Filterband gesaugt. Die Bestimmung der abgeschiedenen Staubmasse auf dem Filterband erfolgt kontinuierlich während der Probenahme durch das radiometrische Messprinzip der Beta-Absorption. Der eigentliche Messwert des Modell 5030i SHARP wird über einen Rechenalgorithmus aus den Messwerten des Nephelometers und des Radiometers ermittelt.

Die Untersuchungen erfolgten im Labor und während eines mehrmonatigen Feldtests.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Der mehrmonatige Feldtest erfolgte an den Standorten gemäß Tabelle 1:

Tabelle 1: Beschreibung der Messstellen

	Köln, Parkplatzgelände, Winter	Bornheim, Autobahnparkplatz, Sommer	Bornheim, Autobahnparkplatz, Winter	Teddington (UK), Sommer
Zeitraum	03/2011 – 05/2011	07/2011 – 11/2011	01/2012 - 03/2012	07/2012 – 09/2012
Anzahl der Messwertpaare: Prüflinge	53	96	49	64
Charakterisierung	Städtischer Hinter- grund	Ländliche Struktur + Autobahn	Ländliche Struktur + Autobahn	Städtischer Hinter- grund
Einstufung der Im- missionsbelastung	durchschnittlich bis hoch	niedrig bis durchschnittlich	durchschnittlich	durchschnittlich

Zur Qualifizierung der im Laufe der Prüfung auf Grund der Ergebnisse aus der Vergleichskampagne in Teddington (UK) notwendigen Änderung des Schwellwertes für die relative Luftfeuchte zur Regelung der Probenahmeheizung von ursprünglich 50 % auf 58 %, wurde gemäß Beschluss des 32. Fachgespräch "Prüfberichte" vom 14./15. Mai 2013 eine zusätzliche Vergleichskampagne an einem der deutschen Standorte mit zwei Prüflingen mit der Einstellung von je 50 % und 58 % durchgeführt. Tabelle 2 gibt einen Überblick über diese Zusatzkampagne. Die Ergebnisse dieser Zusatzuntersuchungen sind in Kapitel 4.3 Feldtest ab Seite 63 dargestellt.

Tabelle 2: Beschreibung der Messstelle (Zusatzkampagne 2013)

	Bornheim, Autobahnparkplatz, Sommer
Zeitraum	06/2013 - 07/2013
Anzahl der Messwertpaare: Prüflinge	45
Charakterisierung	Ländliche Struktur + Autobahn
Einstufung der Im- missionsbelastung	niedrig bis durchschnittlich

Seite 18 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die komplette Prüfung erfolgte im Rahmen des Testprogramms "Combined MCERTS and TUV PM Equivalence Testing Programme". Dieses Prüfprogramm wurde vor dem Hintergrund der europäischen Harmonisierung gemeinsam von britischen und deutschen Prüfinstituten (Bureau Veritas UK & Ireland, National Physical Laboratory NPL und TÜV Rheinland) entwickelt und durchgeführt und umfasst die Prüfung der neuesten Serien von Schwebstaubmesseinrichtungen verschiedener Hersteller im Labor und an Standorten in Großbritannien und in Deutschland.

Bei der Eignungsprüfung wurden die Bedingungen der Mindestanforderungen erfüllt.

Seitens der TÜV Rheinland Energie und Umwelt GmbH wird daher eine Veröffentlichung als eignungsgeprüfte Messeinrichtung zur laufenden Aufzeichnung der Immissionen von Schwebstaub PM₁₀ vorgeschlagen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Aufgrund der erzielten positiven Ergebnisse wird folgende Empfehlung für die Bekanntgabe als eignungsgeprüfte Messeinrichtung ausgesprochen:

Messeinrichtung:

Modell 5030*i* SHARP mit PM₁₀ Vorabscheider für Schwebstaub PM₁₀

Hersteller:

Thermo Fisher Scientific, Franklin, USA

Eignung:

Zur kontinuierlichen Immissionsmessung der PM₁₀-Fraktion im Schwebstaub im stationären Einsatz

Messbereiche in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	Einheit
PM ₁₀	0 – 1000	µg/m³

Softwareversion:

V02.00.00.232+

Einschränkungen:

Keine

Hinweise:

- Die Anforderungen an den Variationskoeffizienten R² gemäß Richtlinie EN 12341 wurden f
 ür die Standorte K
 öln, Winter, Bornheim, Sommer und Teddington, Sommer nicht von beiden Pr
 üflingen eingehalten.
- 2. Die Referenz-Äquivalenzfunktion liegt für den Standort Teddington, Sommer nicht in den Grenzen des Akzeptanzbereichs gemäß Richtlinie EN 12341.
- 3. Die Anforderungen gemäß des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" werden für die Messkomponente PM₁₀ eingehalten.
- 4. Die Messeinrichtung ist in einem verschließbaren Messcontainer zu betreiben.
- 5. Die Messeinrichtung ist mit dem gravimetrischen PM₁₀-Referenzverfahren nach DIN EN 12341 regelmäßig am Standort zu kalibrieren.
- 6. Es wird empfohlen, die Messeinrichtung mit einem Schwellwert für die relative Luftfeuchte von 58 % zu betreiben, insbesondere an Standorten mit signifikant hohen Anteilen von Volatilen am Schwebstaub.
- 7. Der Prüfbericht über die Eignungsprüfung ist im Internet unter <u>www.qal1.de</u> einsehbar.

Prüfbericht:

TÜV Rheinland Energie und Umwelt GmbH, Köln Bericht-Nr.: 936/21209885/G vom 20. September 2013 **TÜV**Rheinland[®]

Genau. Richtia.

Seite 19 von 431

Seite 20 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

1.3 Zusammenfassende Darstellung der Prüfergebnisse

Mindestanfor	derung	Anforderung	Prüfergebnis	einge- halten	Seite
4 Bauar	rtanforderunge	en	·		
4.1 Allgen	neine Anforde	erungen			
4.1.1 Messv	wertanzeige	Muss vorhanden sein.	Die Messeinrichtung besitzt eine Messwertanzeige.	ja	76
4.1.2 Wartu lichkeit	ingsfreund-	Wartungsarbeiten sollten ohne größeren Aufwand möglichst von außen durchführbar sein.	Wartungsarbeiten sind mit üblichen Werkzeugen und vertretbarem Aufwand von außen durchführbar.	ja	78
4.1.3 Funkti	ionskontrolle	Spezielle Einrichtungen hierzu sind als zum Gerät gehörig zu betrachten, bei den entspre- chenden Teilprüfungen einzu- setzen und zu bewerten.	Alle im Bedienungshandbuch be- schriebenen Gerätefunktionen sind vorhanden, aktivierbar und funktionie- ren. Der aktuelle Gerätestatus wird kontinuierlich überwacht und Proble- me über eine Reihe von verschiede- nen Warnungsmeldungen angezeigt.	ja	81
4.1.4 Rüst- zeiten	und Einlauf-	Die Betriebsanleitung muss hierzu Angaben enthalten.	Die Rüst- und Einlaufzeiten wurden ermittelt.	ja	83
4.1.5 Bauar	rt	Die Betriebsanleitung muss Angaben hierzu enthalten	Die in der Betriebsanleitung aufge- führten Angaben zur Bauart sind voll- ständig und korrekt.	ja	84
4.1.6 Unbef stellen	fugtes Ver-	Muss Sicherung dagegen ent- halten.	Die Messeinrichtung ist gegen unbe- absichtigtes und unbefugtes Verstel- len von Geräteparametern gesichert. Die Messeinrichtung ist darüber hin- aus in einem Messcontainer zu ver- schließen.	ja	85
4.1.7 Messe gang	signalaus-	Muss digital und/oder analog angeboten werden.	Die Messsignale werden analog (in V oder in mA) und digital (über Ether- net, RS 232, RS 485) angeboten.	ja	86

Seite 21 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5. Leistungsanforder	ungen			
5.1 Allgemeines	Herstellerangaben der Be- triebsanleitung dürfen den Er- gebnissen der Eignungsprü- fung nicht widersprechen.	Differenzen zwischen Geräteausstat- tung und Handbüchern wurden nicht beobachtet.	ja	88
5.2 Allgemeine Anford	lerungen			
5.2.1 Zertifizierungs- bereiche	Müssen den Anforderungen aus Tabelle 1 der Richtlinie VDI 4202 Blatt 1 entsprechen.	Die Beurteilung der Messeinrichtung im Bereich der relevanten Grenzwerte ist möglich.	ja	89
5.2.2 Messbereich	Messbereichsendwert größer oder gleich der oberen Grenze des Zertifizierungsbereichs.	Es ist standardmäßig ein Messbe- reich von 0 – 10.000 µg/m ³ einge- stellt. Andere Messbereiche sind möglich.	ja	90
		Der Messbereichsendwert der Mess- einrichtung ist größer als die jeweilige obere Grenze des Zertifizierungsbe- reichs.		
5.2.3 Negative Mess- signale	Dürfen nicht unterdrückt wer- den (lebender Nullpunkt).	Negative Messsignale werden von der Messeinrichtung direkt angezeigt und über die entsprechenden Mess- signalausgänge korrekt ausgegeben.	ja	91
5.2.4 Stromausfall	Unkontrolliertes Ausströmen von Betriebs- und Kalibriergas muss unterbunden sein; Gerä- teparameter müssen gegen Verlust durch Pufferung ge- schützt sein; messbereiter Zu- stand bei Spannungswieder- kehr muss gesichert sein und Messung muss fortgesetzt werden.	Alle Geräteparameter sind gegen Ver- lust durch Pufferung geschützt. Die Messeinrichtung befindet sich bei Spannungswiederkehr in störungs- freier Betriebsbereitschaft und führt selbstständig den Messbetrieb fort. Die ersten mindestens 12 h an Messwerten nach Wiederkehr der Stromversorgung sollten allerdings verworfen werden, da sich die Mess- einrichtung nach dem Wiederein- schalten zuerst in einer Äquilibrier- phase befindet, bis sich der BETA- Detektor an die Umgebungsverhält- nisse angepasst hat.	ja	92
5.2.5 Gerätefunktionen	Müssen durch telemetrisch übermittelbare Statussignale überwachbar sein.	Die Messeinrichtungen können über ein Modem bzw. einen Router von ei- nem externen Rechner aus umfas- send überwacht und gesteuert wer- den.	ja	93
5.2.6 Umschaltung	Messen/Funktionskontrolle und/oder Kalibrierung muss te- lemetrisch und manuell aus- lösbar sein.	Grundsätzlich können alle notwendi- gen Arbeiten zur Funktionskontrolle direkt am Gerät oder aber per tele- metrischer Fernbedienung überwacht werden.	ja	94
5.2.7 Wartungsinter- vall	Möglichst 3 Monate, mindes- tens 2 Wochen.	Das Wartungsintervall wird durch die notwendigen Wartungsarbeiten be- stimmt und beträgt 1 Monat.	ja	95

Seite 22 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.2.8 Verfügbarkeit	Mindestens 95 %.	Die Verfügbarkeit betrug für SN 3 97,9 % und für SN 4 100 % ohne prü- fungsbedingte Ausfälle bzw. 90,3 % für SN 3 sowie 92,4 % für SN 4 inkl. prüfungsbedingter Ausfälle.	ja	96
5.2.9 Gerätesoftware	Muss beim Einschalten ange- zeigt werden. Funktionsbeein- flussende Änderungen sind dem Prüfinstitut mitzuteilen.	Die Version der Gerätesoftware wird im Display angezeigt. Änderungen der Gerätesoftware werden dem Prüfinstitut mitgeteilt.	ja	98
5.3 Anforderungen an	Messeinrichtungen für gasförmig	e Luftverunreinigungen		
5.3.1 Allgemeines	Mindestanforderungen gemäß VDI 4202 Blatt 1.	Die Prüfung erfolgte auf Basis der der Mindestanforderungen der Richtlinie VDI 4202 Blatt 1 (September 2010). Die Prüfpunkte 5.3.2, 5.3.7, 5.3.8, 5.3.11 und 5.3.12 werden daher auf Basis der Mindestanforderungen aus VDI 4202 Blatt 1 von 2002 bewertet (d.h. unter Verwendung der Bezugs- werte B_0 , B_1 und B_2). Auf die Prüfung der Prüfpunkte 5.3.3, 5.3.4, 5.3.13 und 5.3.18 wird verzichtet, da diese Prüfpunkte für Staubmesseinrichtun- gen nicht relevant sind.	ja	100
5.3.2 Wiederholstan- dardabweichung am Nullpunkt	Die Wiederholstandardabwei- chung am Nullpunkt darf im Zertifizierungsbereich nach Tabelle der Richtlinie VDI 4202 Blatt 1 (September 2010) die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über- schreiten. Für PM: Maximal B ₀ .	Die Nachweisgrenze ermittelte sich aus den Untersuchungen zu 0,01 µg/m ³ für Gerät 1 (SN 3) und zu 0,16 µg/m ³ für Gerät 2 (SN 4).	ja	102
5.3.3 Wiederholstan- dardabweichung am Referenzpunkt	Die Wiederholstandardabwei- chung am Referenzpunkt darf im Zertifizierungsbereich nach Tabelle der Richtlinie VDI 4202 Blatt 1 (September 2010) die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über- schreiten.	Nicht zutreffend.	-	104
5.3.4 Linearität (Lack- of-fit)	Der Zusammenhang zwischen dem Ausgangssignal und dem Wert des Luftbeschaffenheits- merkmals muss mithilfe einer linearen Analysenfunktion dar- stellbar sein.	Für Staubmesseinrichtungen für PM ₁₀ ist diese Prüfung nach der Mindestan- forderung 5.4.2 "Gleichwertigkeit des Probenahmesystems" durchzuführen.	-	105

Seite 23 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.3.5 Empfindlichkeits- koeffizient des Proben- gasdrucks	Der Empfindlichkeitskoeffizient des Probengasdrucks am Re- ferenzpunkt darf die Anforde- rungen der Tabelle 2 der Richt- linie VDI 4202 Blatt 1 (Septem- ber 2010) nicht überschreiten.	Nicht zutreffend.	-	106
5.3.6 Empfindlichkeits- koeffizient der Proben- gastemperatur	Der Empfindlichkeitskoeffizient der Probengastemperatur am Referenzpunkt darf die Anfor- derungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über- schreiten.	Nicht zutreffend.	-	107
5.3.7 Empfindlichkeits- koeffizient der Umge- bungstemperatur	Der Empfindlichkeitskoeffizient der Umgebungstemperatur am Nullpunkt und am Referenz- punkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Für PM: Nullpunktmesswert darf bei Δ Tu um 15 K zwischen +5 °C und +20 °C bzw. um 20 K zwischen +20 °C und +40 °C B0 nicht überschreiten. Der Messwert im Bereich von B ₁ darf nicht mehr als ± 5 % bei Δ Tu um 15 K zwischen +5 °C und +20 °C bzw. um 20 K zwischen +20 °C und +40 °C	Es konnte ein maximaler Einfluss der Umgebungstemperatur im Bereich 5 °C bis 40 °C auf den Nullpunkt von - 1,1 µg/m³ festgestellt werden. Am Referenzpunkt konnten keine Abweichungen > 0,9 % zum Aus- gangswert bei 20 °C ermittelt werden.	ja	108
5.3.8 Empfindlichkeits- koeffizient der elektri- schen Spannung	Der Empfindlichkeitskoeffizient der elektrischen Spannung darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Für PM: Messwertänderung bei B ₁ maximal B ₀ im Spannungs- intervall (230 +15/-20) V.	Durch Netzspannungsänderungen konnten keine Abweichungen > 0,8 % für PM ₁₀ , bezogen auf den Startwert von 230 V, festgestellt werden.	ja	112
5.3.9 Querempfindlich- keit	Die Änderung des Messwerts aufgrund von Störeinflüssen durch die Querempfindlichkeit gegenüber im Messgut enthal- tenen Begleitstoffen darf am Nullpunkt und am Referenz- punkt die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.	Nicht zutreffend.	-	114

Seite 24 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.3.10 Mittelungseinfluss	Für gasförmige Messkompo- nenten muss die Messeinrich- tung die Bildung von Stunden- mittelwerten ermöglichen.	Nicht zutreffend.	-	115
	Der Mittelungseinfluss darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über- schreiten.			
5.3.11 Standardabwei- chung aus Doppelbe- stimmungen	Die Standardabweichung aus Doppelbestimmungen ist mit zwei baugleichen Messeinrich- tungen in der Feldprüfung zu ermitteln. Sie darf die Anforde- rungen der Tabelle 2 der Richt- linie VDI 4202 Blatt 1 (Septem- ber 2010) nicht überschreiten.	Die Reproduzierbarkeit für PM ₁₀ be- trug im Feldtest für den Gesamtda- tensatz 20.	ja	116
	Für PM:			
	$RD \ge 10$ bezogen auf B_1 .			
5.3.12 Langzeitdrift	Die Langzeitdrift am Nullpunkt und am Referenzpunkt darf in der Feldprüfung die die Anfor- derungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über-	Die maximal gefundene Abweichung am Nullpunkt lag bei 1,8 μ g/m ³ bezo- gen auf den Vorgängerwert und bei 1,9 μ g/m ³ bezogen auf den Startwert und damit innerhalb der erlaubten Grenzen von B ₀ = 2 μ g/m ³ .	ja	118
	schreiten.	Die im Rahmen der Untersuchung ermittelten Werte für die Drift der Empfindlichkeit betrugen, bezogen auf den Vorgängerwert, maximal -2,1 % für PM ₁₀ .		
	Nullpunkt: In 24 Stunden und im Wartungsintervall maximal B ₀ .			
	Referenzpunkt: In 24 Stunden und im Wartungsintervall maximal 5 % von B_1 .			
5.3.13 Kurzzeitdrift	Die Kurzzeitdrift am Nullpunkt und am Referenzpunkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) in der La- borprüfung in 12 h (für Benzol in 24 h) und in der Feldprüfung in 24 h nicht überschreiten.	Nicht zutreffend.	-	124

Seite 25 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.3.14 Einstellzeit	Die Einstellzeit (Anstieg) der Messeinrichtung darf höchs- tens 180 s betragen.	Nicht zutreffend.	-	125
	Die Einstellzeit (Abfall) der Messeinrichtung darf höchs- tens 180 s betragen.			
	Die Differenz zwischen der Einstellzeit (Anstieg) und der Einstellzeit (Abfall) der Mess- einrichtung darf maximal 10 % der Einstellzeit (Anstieg) oder 10 s betragen, je nachdem, welcher Wert größer ist.			
5.3.15 Differenz zwi- schen Proben- und Kalib- riereingang	Die Differenz zwischen den Messwerten bei Aufgabe am Proben- und Kalibriereingang darf den Wert der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht über- schreiten	Nicht zutreffend.	-	126
5.3.16 Konverterwir- kungsgrad	Bei Messeinrichtungen mit ei- nem Konverter muss dessen Wirkungsgrad mindestens 98 % betragen.	Nicht zutreffend.	-	127
5.3.17 Anstieg der NO ₂ - Konzentration durch Verweilen im Messgerät	Bei NO _x -Messeinrichtungen darf der Anstieg der NO ₂ - Konzentration durch Verweilen im Messgerät die Anforderun- gen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.	Nicht zutreffend.	-	128
5.3.18 Gesamtunsicher- heit	Die erweiterte Messunsicher- heit der Messeinrichtung ist zu ermitteln. Dieser ermittelte Wert darf die in Anhang A, Ta- belle A1 der Richtlinie VDI 4202 Blatt 1 (September 2010) aufgeführten Vorgaben der an- zuwendenden EU-Richtlinien zur Luftqualität nicht über- schreiten.	Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staub- messeinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.	-	129

Seite 26 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.4 Anforderungen an	Messeinrichtungen für partikelförn	nige Luftverunreinigungen		
5.4.1 Allgemeines	Prüfung gemäß Mindestanfor- derungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1. Partikelmassenkonzentration muss auf definiertes Volumen	Die Prüfung erfolgte gemäß der Min- destanforderungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1 (Septem- ber 2010). Die ermittelte Partikelmasse wird auf	ja	130
	bezogen sem.	Probenahmevolumen bezogen und somit die Partikelmassenkonzentrati- on bestimmt.		
5.4.2 Gleichwertigkeit des Probenahmesystems	Zum Referenzverfahren nach DIN EN 12 341 [T2] ist nach- zuweisen.	Die Referenz-Äquivalenzfunktionen liegen mit Ausnahme der Kampagne "Teddington, Sommer" in den Gren- zen des jeweiligen Akzeptanzberei- ches. Weiterhin ist der Variationskoef- fizient R ² der berechneten Referenz- Äquivalenzfunktionen im betreffenden Konzentrationsbereich für die Da- tensätze "Gesamtdatensatz", "Köln, Winter" (nur SN 3), Bornheim, Som- mer (nur SN 3) und "Bornheim, Win- ter" ≥ 0.95 . Für die Datensätze "Köln, Winter" (nur SN 4), Bornheim, Som- mer (nur SN 4) und "Teddington, Sommer" liegt der Variationskoeffi- zient R ² bei < 0.95. Die Äquivalenz- prüfung gemäß 6.1 5.4.10 Be- rechnung der erweiterten Unsicher- heit der Prüflinge wird dennoch für al- le Standorte erfüllt.	nein	131
5.4.3 Vergleichbarkeit der Probenahmesysteme	Ist im Feldtest nach DIN EN 12 341 [T2] für zwei baugleiche Probenahmesysteme nachzu- weisen.	Der zweiseitige Vertrauensbereich CI_{95} liegt mit maximal 2,51 µg/m ³ unterhalb des geforderten Wertes von 5 µg/m ³ .	ja	139
5.4.4 Kalibrierung	Durch Vergleichsmessung im Feldtest mit Referenzverfahren nach DIN EN 12341 und DIN EN 14907; Zusammenhang zwischen Messsignal und gra- vimetrischer Referenzkonzent- ration als stetige Funktion er- mitteln.	Ein statistisch gesicherter Zusam- menhang zwischen dem Referenz- messverfahren und der Geräteanzei- ge konnte nachgewiesen werden.	ja	144

Seite 27 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.4.5 Querempfindlich- keit	Maximal 10 % vom Grenzwert.	Es konnte kein Störeinfluss > 0,4 μ g/m ³ Abweichung vom Sollwert für PM ₁₀ durch die im Messgut enthal- tene Luftfeuchte auf das Messsignal festgestellt werden. Während des Feldtestes konnte bei wechselnden relativen Luftfeuchten kein negativer Einfluss auf die Messwerte beobach- tet werden. Die Vergleichbarkeit der Prüflinge mit dem Referenzverfahren gemäß Leitfaden "Demonstration of Equivalence of Ambient Air Monito- ring Methods" [4] ist auch für Tage mit einer relativen Luftfeuchte > 70 % ge- geben.	ja	146
5.4.6 Mittelungseinfluss	Die Messeinrichtung muss die Bildung von 24 h-Mittelwerten ermöglichen. Die Summe aller Filterwechsel darf innerhalb von 24 h nicht mehr als 1 % dieser Mitte- lungszeit betragen.	Mit der beschriebenen Gerätekonfigu- ration und einem Messzyklus von 8 h ist die Bildung von validen Tagesmit- telwerten auf Basis der 3 Messzyklen möglich.	ja	149
5.4.7 Konstanz des Probenahmevolumen- stroms	± 3 % vom Sollwert während der Probenahmedauer; Mo- mentanwerte ± 5 % vom Soll- wert während der Probenah- medauer.	Alle ermittelten Tagesmittelwerte wei- chen weniger als ± 3 %, alle Momen- tanwerte weniger als ± 5 % vom Soll- wert ab.	ja	150
5.4.8 Dichtheit des Pro- benahmesystems	Undichtigkeit maximal 1 % vom Probenahmevolumen.	Die vom Gerätehersteller implemen- tierten Kriterien zum Bestehen der Dichtigkeitsprüfung – maximale Diffe- renz der Durchflusswerte Gerät vs. Externe Durchflussmessung bei An- wendung des Prüfadapters darf ±0,42 l/min (= ±2,5 % der Durchflussrate) nicht überschreiten – erwiesen sich in der Prüfung als geeignete Kenngrö- ßen zur Überwachung der Geräte- dichtigkeit. Im Rahmen der Untersu- chungen im Labor konnte für beide Prüflinge eine maximale Undichtigkeit von < 1 % der nominalen Durchfluss- rate von 16,67 l/min ermittelt werden. Die Dichtigkeitsprüfung darf aus- drücklich nur unter Verwendung des Dichtigkeitsprüfadapters und der be- schriebenen Prozedur durchgeführt werden, da es ansonsten zu Schäden am Gerät kommen kann.	ja	154

Seite 28 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Mindestanforderung	Anforderung	Prüfergebnis	einge- halten	Seite
5.4.9 Ermittlung der Unsicherheit zwischen den Prüflingen u _{bs}	Ist im Feldtest gemäß Punkt 9.5.2.1 des Leitfadens "De- monstration of Equivalence of Ambient Air Monitoring Me- thods" für zwei baugleiche Sys- teme zu ermitteln.	Die Unsicherheit zwischen den Prüflingen u_{bs} liegt mit maximal 1,22 $\mu g/m^3$ für PM ₁₀ unterhalb des geforderten Wertes von 2,5 $\mu g/m^3$.	ja	157
5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge	Ermittelung der erweiterten Unsicherheit der Prüflinge ge- mäß den Punkten 9.5.2.2ff des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods".	Die ermittelten Unsicherheiten W_{CM} liegen ohne Anwendung von Korrek- turfaktoren für alle betrachteten Da- tensätze unter der festgelegten erwei- terten relativen Unsicherheit W_{dqo} von 25 % für Feinstaub.	ja	164
5.4.11 Anwendung von Korrekturfaktoren/- termen	Ist die höchste errechnete er- weiterte Unsicherheit der Prüf- linge größer als die in den An- forderungen an die Datenquali- tät von Immissionsmessungen nach EU-Richtlinie [7] festge- legte erweiterte relative Unsi- cherheit, ist eine Anwendung von Korrekturfaktoren zulässig. Die korrigierten Werte müssen die Anforderungen gemäß den Punkten 9.5.2.2ff. des Leitfa- dens "Demonstration of Equi- valence of Ambient Air Monito- ring Methods" erfüllen.	Die Prüflinge erfüllen während der Prüfung die Anforderungen an die Da- tenqualität von Immissionsmessun- gen schon ohne eine Anwendung von Korrekturfaktoren. Eine Korrektur der Steigung und des Achsabschnitts führt jedoch zu keiner signifikanten Veränderung der erweiterten Messunsicherheiten für den Gesamt- datensatz.	ja	178
5.5 Anforderungen an Mehrkomponentenmess- einrichtungen	Müssen für jede Einzelkompo- nente im Simultanbetrieb aller Messkanäle erfüllt sein.	Nicht zutreffend.	-	183

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

2. Aufgabenstellung

2.1 Art der Prüfung

Im Auftrag der Thermo Fisher Scientific wurde von der TÜV Rheinland Energie und Umwelt GmbH eine Eignungsprüfung für die Messeinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider vorgenommen. Die Prüfung erfolgte als vollständige Eignungsprüfung.

2.2 Zielsetzung

Die Messeinrichtung soll den Gehalt an PM_{10} Feinstaub in der Umgebungsluft im Konzentrationsbereich 0 bis 1000 μ g/m³ bestimmen.

Die Eignungsprüfung war anhand der aktuellen Richtlinien zur Eignungsprüfung unter Berücksichtigung der neuesten Entwicklungen durchzuführen.

Die Prüfung erfolgte unter Beachtung der folgenden Richtlinien:

- VDI-Richtlinie 4202, Blatt 1, "Mindestanforderungen an automatische Immissionsmesseinrichtungen bei der Eignungsprüfung – Punktmessverfahren für gas- und partikelförmige Luftverunreinigungen", September 2010 bzw. Juni 2002 [1]
- VDI-Richtlinie 4203, Blatt 3, "Prüfpläne für automatische Messeinrichtungen Prüfprozeduren für Messeinrichtungen zur punktförmigen Messung von gas- und partikelförmigen Immissionen", September 2010 bzw. August 2004 [2]
- Europäische Norm EN 12341, "Luftbeschaffenheit Ermittlung der PM 10-Fraktion von Schwebstaub; Referenzmethode und Feldprüfverfahren zum Nachweis der Gleichwertigkeit von Messverfahren und Referenzmessmethode", Deutsche Fassung EN 12341: 1998 [3]
- Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods", Englische Fassung von Januar 2010 [4]

Seite 30 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

3. Beschreibung der geprüften Messeinrichtung

3.1 Messprinzip

Die Immissionsmesseinrichtung Modell 5030i SHARP basiert auf der Kombination der Messprinzipien Partikel-Lichtstreuung (Nephelometrie) und der Beta-Abschwächung. Die Bezeichnung SHARP steht hierbei für "Synchronised Hybrid Ambient Real-time Particulate". Die geschickte Kombination aus einer hochempfindlichen, aber potentiell ungenauen Messtechnik (NEPH) mit einer unempfindlichen, aber sehr genauen Messtechnik (BETA) zielt dabei auf eine präzise und gleichzeitig empfindliche Echtzeit-Messung von Feinstaub ab.

Die Nephelometrie basiert auf der Messung der Strahlungsstärke von Licht, das von einer Gesamtheit von Partikeln gestreut wird, die ein Messvolumen passieren, das vom Schnittpunkt des illuminierenden Strahls und dem Sichtfeld der Detektionsoptik definiert wird. Im Gegensatz zu Partikelzählern muss das Messvolumen im Hinblick auf die Umkehrfunktion der Partikelzahlkonzentration groß sein. Das resultierende Signal ist linear proportional zur Partikelvolumenkonzentration für ein Aerosol mit konstanten optischen Eigenschaften (Partikelgröße, Form und Brechungsindex), abhängig von der Erfüllung der Bedingungen unabhängiger und einzelner Streuung, die immer über den im Fokus stehenden Konzentrationsbereich beibehalten werden.

Die Response R eines Nephelometers wird als Verhältnis des Detektionssignals für Lichtstreuung und der Massenkonzentration der Partikel durch folgende Formel beschrieben:

$$R = \frac{I_0 N}{C_m} \iiint f(d_p) \frac{\lambda^2}{8\pi^2 r^2} (i_1 + i_2) f(\lambda) F(\theta) dd_p d\lambda d\theta$$

Hierin sind:

Bestrahlungsstärke

 \mathbf{I}_0

- N Teilchenzahlkonzentration
- C_m Massenkonzentration $f(d_p)$ Partikelgrößenverteilungsfunktion
- λ Wellenlänge der Beleuchtung r Abstand streuender Partikel zu Detektor
- i₁,i₂ Lorenz-Mie-Streuungsintensitätsfunktionen, abwechselnd abhängig von Verhältnis Partikelgröße zu Wellenlänge und vom Brechungsindex
- $f(\lambda)$ kombinierte Abhängigkeit der Wellenlänge vom Strahler und vom Detektor
- $F(\theta)$ Winkelstreuungsgeometrie des optischen Systems

Der sehr hohen Empfindlichkeit des Nephelometers steht also eine allgemeine Abhängigkeit des Messsignals von der Partikelgröße gegenüber, die durch Response-Verlagerung zu Schwierigkeiten bei nephelometrischen Messgeräten im Vergleich zur gravimetrischen Referenzmessungen führt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 31 von 431

Das Nephelometer wird daher im Werk mit Hilfe eines HEPA-Filters (Nullpunkt) und Testaerosolen als Referenz (mit vorgeschaltetem PM2,5 Sharp-Cut-Zyklon) kalibriert. Die Überprüfung des Nullpunktes kann jederzeit mit Hilfe des HEPA-Filters am Geräteeinlass erfolgen. Die Empfindlichkeit des Nephelometers wird darüber hinaus im laufenden Betrieb kontinuierlich durch die radiometrische Messung re-kalibriert.

Das Prinzip der radiometrischen Massenbestimmung basiert auf dem physikalischen Gesetz der Abschwächung von Betastrahlen beim Durchgang durch eine dünne Schicht an Material.

Es gilt die folgende Beziehung:

$$C_{\beta} = \frac{A}{\mu_m Q t} \left(\ln \left[\frac{f_o}{f_f} \right] \right)$$

Hierin sind:

C_{β}	Partikel-Massenkonzentration	А	Sammelfläche für Partikel (Filterfleck)
μ _m	Massenabschwächungskoeffizient (abhä	ängig	von der Energie des Betastrahlers)
Q	Probenahme-Durchflussrate	t	Probenahmezeit
f ₀	Beta-Zählrate am Anfang (Tara)	f _f	Beta-Zählrate am Ende

Die radiometrische Massenbestimmung wird im Werk mit Hilfe von Null- und Referenzfolien kalibriert. Mit Hilfe des Foliensatz "Massentransferstandard" (=Referenzfoliensatz) kann im Rahmen von Qualitätssicherung die radiometrische Messung jederzeit überprüft und ggf. kalibriert werden.

Die ausgegebene Massenkonzentration $C_{\rm m}$ des Modell 5030i SHARP wird wie folgt berechnet:

$$C_m = C_{N1} \frac{C_\beta}{C_{N2}}$$

Hierin sind:

C_m Massenkonzentration SHARP

- C_{N1} über 1-Minute gemitteltes Nephelometersignal
- C_β radiometrische Massenkonzentration, dynamisch gefiltert über variablen Zeitraum
- C_{N2} nephelometrische Konzentration, dynamisch gefiltert über variablen Zeitraum

Seite 32 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Beide Werte C_{β} und C_{N2} werden auf die gleiche Art und Weise über einen variablen Zeitraum gemittelt. Diese Mittelungszeit ist abhängig von dem über das Nephelometer bestimmten Koeffizienten der Schwankung der Massenkonzentration selbst. Dieser Koeffizient wird dabei nach einem mathematischen Algorithmus bestimmt, in den die jeweils aktuelle Nephelometer-Konzentration sowie die 1 Sekunde zuvor ermittelte Nephelometer-Konzentration einfließen. Der fortlaufend ermittelte Koeffizient wird mit einem digitalen Filter gemittelt (1-min-Zeitkonstante) und der daraus resultierende Faktor mit der maximalen Zeitkonstante von 720 min multipliziert. Bei niedrigen und stabilen Konzentrationen wird die Mittelungsdauer (=Zeitkonstante) der radiometrischen Messung dadurch automatisch auf bis zu 12 h verlängert, um die Genauigkeit der Bestimmung der Massenkonzentration zu verbessern. Bei stark schwankenden und hohen Konzentrationen ist dies genau umgekehrt; d.h. die Mittelungszeit wird auf bis zu 20 min verkürzt. In der Praxis ist die Zeitkonstante selten kleiner als 4 Stunden.

Das Verhältnis C_{β} / C_{N2} in der obigen Gleichung ist der sog. variable (Auto-)Kalibrierfaktor, der eine Echtzeit-Kalibrierung auf das über 1-Minute gemittelte Nephelometersignal C_{N1} anwendet. Zur Optimierung dieser kontinuierlichen Massenkalibrierung des Nephelometersignals ist das Modell 5030i SHARP mit einer Software ausgestattet, deren Anwendung die Unabhängigkeit der gemessenen Massenkonzentration von Änderungen in der gesammelten Partikelpopulation sicherstellen soll.

3.2 Funktionsweise der Messeinrichtung

Das Modell 5030i SHARP basiert auf der Kombination des Prinzip der Aerosol-Lichtstreuung (Nephelometrie) mit dem Prinzip der Beta-Abschwächung (analog zu Modell 5014i BETA, siehe auch Prüfbericht 936/21209985/I).

Die Partikelprobe passiert mit einer Durchflussrate von 1 m³/h (=16,67 l/min) den PM_{10} -Probenahmekopf und gelangt über das beheizte Probenahmerohr (DHS = Dynamisches Heizungssystem) zum eigentlichen Messgerät Modell 5030i SHARP.

Durch das eingesetzte Dynamische Heizungssystem DHS wird gewährleistet, dass die relative Luftfeuchte der durch das Filterband der radiometrischen Stufe im Gerät passierenden Luft deutlich unter dem Punkt gehalten wird, an dem die gesammelten Partikel aneinander haften bleiben und es zu störenden Kondensationseffekten kommt und dass im Nephelometer eine relative Luftfeuchte unterhalb eines festgelegten Grenzwertes eingestellt wird (in der Eignungsprüfung eingestellt: 50 % bzw. 58 % rel. Luftfeuchte). Dieses System minimiert den internen Temperaturanstieg, womit ein vernachlässigbarer Verlust an halbflüchtigen Partikelbestandteilen sichergestellt werden kann, wenn die relative Feuchte der Umgebungsluft unterhalb des Grenzwertes liegt, auf den die Heizung eingestellt ist. Überschreitet die relative Feuchte der Umgebungsluft den Grenzwert, so wird die eingeschaltete Heizung des Probenahmerohres optimiert um den Grenzwert für die relative Luftfeuchtigkeit über dem Filterband der radiometrischen Stufe aufrecht zu halten. Die Regelung des DHS-Systems erfolgt mit Hilfe der Regelgröße "relative Feuchte der Probe" rH (hier: Sollwert <50 %, bzw. 58 % (siehe Kapitel 4.3 Feldtest)) und des Filtertemperatursensors (hier: Maximalwert 30 °C). Die Heizbedingungen können je nach Messnetzanforderung konfiguriert werden.

Abbildung 1 und Abbildung 5 zeigen den Weg einer Partikelprobe nach Passieren des Probenahmekopfes und des Probenahmerohres inkl. des DHS-Systems durch das Modell 5030i SHARP.

Seite 34 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 1: Weg der Probe durch das Modell 5030i SHARP

Abbildung 2: Hardwarekomponenten Modell 5030i SHARP – Optik Modul

Seite 35 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 3: Hardwarekomponenten Modell 5030i SHARP - Beta Modul

Abbildung 4: Foto Hardwarekomponenten Modell 5030i, SHARP - Beta Modul

Seite 36 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 5: Schematische Darstellung – Aufbau der Messeinrichtung Modell 5030i SHARP
TÜVRheinland® Genau. Richtig.

Seite 37 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Unterhalb des beheizten Rohres befindet sich die Nephelometer-Baugruppe Der Feinstaub passiert das isolierte Nephelometer in einer flächenhaften Bahn und gelangt dann in das radiale Rohr oberhalb der radiometrischen Baugruppe Das Nephelometer besteht aus einem auf Lichtstreuung basierenden Photometer mit einer gepulsten Nah-IR LED, die mit einer zentralen Wellenlänge von 880 nm arbeitet. Die Streuung wird in einem 1 cm³ Messvolumens über einen Winkelbereich von 60-80° in Vorwärtsrichtung erfasst. Durch das Design des Messkopfes kann ein niedriger interner Hintergrund durch optische Reflexion sichergestellt werden. Das analoge Rohsignal wird im Zeittakt von einer Sekunde ermittelt und zur weiteren Verarbeitung digitalisiert und über den Zeitraum von 1 min gemittelt. Die Nephelometer-Baugruppe bietet sechs Messbereiche, die automatisch gewählt werden, um die Messwerte möglichst genau anzuzeigen. Während der zeitlich festgelegten Nullabgleichsroutinen (im Zuge jedes Filterwechsels) wird ein rückseitig montiertes Nullabgleichs-Magnetventil aktiviert und dem Nephelometer HEPA-gefilterte (= schwebstaubfreie) Luft zugeführt, wobei jeder Bereich wiederum genullt wird. Die Ergebnisse des Nullabgleichs können am Display abgelesen werden bzw. sind als C-Link-Lesebefehle verfügbar.

An der Stelle, an der das Nephelometer am Gehäuse der Messeinrichtung angebracht ist, trifft ein radiales, isoliertes Rohr auf das Probenahmerohr. Die Nephelometer-Baugruppe lässt sich dabei leicht von der eigentlichen Messeinrichtung trennen. Somit kann die Messeinrichtung Modell 5030i SHARP (Kombination Nephelometermessung mit radiometrischer Messung) leicht zu der Messeinrichtung Modell 5014i BETA (siehe Prüfbericht 936/21209885/I) umgebaut werden.

Nach dem Durchgang der Partikelprobe durch das Nephelometer erfolgt das Abscheiden der Partikel auf dem Glasfaserfilterband der radiometrischen Messung. Auf dem Filterband werden die Partikel bis zu einem Schwellwert angesammelt (während der Prüfung: Vorspulen des Filterbands nach 8 h oder bei Masse >1500 µg auf Filterband bzw. wenn die aktuelle Durchflussrate um mehr als +/- 2,5 % von der nominalen Durchflussrate abweicht).

Das Filterband befindet sich zwischen dem Proportionaldetektor und dem 14C-Betastrahler. Der Beta-Strahl geht von unten nach oben durch das Filterband und der sich akkumulierenden Staubschicht. Die Intensität des Beta-Strahls wird durch die zunehmende Massenbeladung abgeschwächt, was wiederum zu einer verminderten Beta-Intensität führt, die vom Proportionaldetektor gemessen wird. Die Masse auf dem Filterband wird aus der kontinuierlich integrierten Zählrate errechnet. Die ermittelte Zählrate wird kontinuierlich hinsichtlich der Änderung der Luftdichte korrigiert.

Die radiometrische Massenbestimmung wird darüber hinaus durch die gleichzeitige Erfassung und Berücksichtigung der natürlichen α-Aktivität von Aerosolen optimiert. Diese zusätzliche α-Zählrate dient zur Messung der Anwesenheit von Radon, welche zu unerwünschten Interferenzen in der radiometrischen Massenbestimmung der Partikel führt und entsprechend kompensiert wird.

Um den Probenahmedurchfluss auf seinem Sollwert konstant zu halten, erfolgt eine kontinuierliche Messung des Durchflusses sowie die Regelung über ein Proportionalventil.

Die Ausgabe der PM-Konzentrationen erfolgt am Display auf der Vorderseite der Messeinrichtung als SHARP- (=Hybridwerte), PM (= radiometrische Messwerte (analog wie in Modell 5014 i BETA) und NEPH (=Streulichtmesswerte). Die Messwerte können als Daten über vielfältige Ausgabewege (analog, digital, Ethernet) zur Verfügung gestellt werden.

Seite 38 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

3.3 Umfang und Aufbau der Messeinrichtung

Die Messeinrichtung besteht aus dem PM₁₀-Probenahmekopf, dem beheizten Probenahmerohr (Dynamisches Heizungssystem DHS), dem (optionalen) Verlängerungsrohr, dem Umgebungsluftsensor (inkl. Strahlungsschutzschild), der Vakuumpumpe, der Nephelometer-Baugruppe (=SHARP Optik-Modul), der Zentraleinheit (=SHARP Beta Modul, baugleich mit 5014 i, siehe Prüfbericht 936/21209885/I) inkl. Glasfaserfilterband, den jeweils zugehörigen Anschlussleitungen und -kabeln sowie Adaptern, der Dachdurchführung inkl. Flansch sowie dem Handbuch in deutscher Sprache.

Abbildung 6: Darstellung Modell 5030 i SHARP (SHARP Optik Modul (oben) + SHARP Beta Modul (unten))

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Als Probenahmekopf wird ein PM_{10} Probeneinlass (Hersteller: Digitel, Typ: DPM10/01/00/16), der als Vorabscheider für den aus der Außenluft angesaugten Schwebstaub fungiert, eingesetzt. Dabei werden die Geräte mit einem konstanten, geregelten Volumenstrom von 16,67 l/min = 1,0 m³/h betrieben. Alternativ ist auch ein Einsatz von $PM_{2,5}$ sowie PM_1 Probeeinlässen möglich.

Abbildung 7: (europäischer) PM10-Probenahmekopf für Modell 5030 i SHARP

Das beheizte Probenahmerohr (ca. 0,9 m Länge) und das (optionale) Verlängerungsrohr (ca. 1,8 m Länge) bilden die Verbindung zwischen dem Probenahmekopf und dem eigentlichen Messgerät. Die Regelung der Probenahmeheizung (Dynamisches Heizungssystem DHS) erfolgt wie unter Punkt 3.2 Funktionsweise der Messeinrichtung beschrieben.

Seite 40 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 8: Beheiztes Probenahmerohr (DHS)

Abbildung 9: Messgerät Modell 5030i SHARP

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 10: Messgerät Modell 5030i SHARP – Optik-Modul

Abbildung 11: Messgerät Modell 5030i SHARP – Beta-Modul

Seite 42 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 12: Messgerät Modell 5030i SHARP (1. & 2. System von rechts) in Messstation

Abbildung 13: Vakuumpumpe (Typ: GAST Model 75R647, PN 110836-00)

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die Bedienung der Messeinrichtung erfolgt auf der Frontseite der Messeinrichtung über Drucktasten und ein LCD-Display. Der Benutzer kann Messdaten und Geräteinformationen abrufen, Parameter ändern sowie Tests zur Kontrolle der Funktionsfähigkeit der Messeinrichtung durchführen.

CONCENTRATION
SHARP 0.843
NEPH SMPL 12:43
RANGE AVG DIAGS ALARM

Abbildung 14: Hauptfenster der Benutzeranzeige

Seite 44 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Auf der obersten Ebene liegt das Hauptfenster der Benutzeranzeige. Hier wird normalerweise die SHARP-Konzentration angezeigt, es kann aber auch zu Screens zur Anzeige der PM-Konzentration (= BETA), der NEPH-Konzentration, der Umgebungsbedingungen, der Durchflussbedingungen oder der Massensensordaten per Pfeil-Tasten ↑↓ gescrollt werden.

Des Weiteren wird in diesem Fenster in einer Statusleiste die aktuelle Uhrzeit sowie verschiedene Statusmeldungen (z.B. den aktuellen Modus des Nephelometers) angezeigt sowie gegebenenfalls die folgenden Symbole:

(Schraubenschlusel) zeigt an, dass das Gerät im Service-Modus ist

Das Hauptmenü zur Bedienung der Messeinrichtung erreicht man über die Taste Durch Drücken dieser Taste erreicht man zudem immer das jeweilige vorige Untermenü.

Die vier Tasten direkt unterhalb des LCD-Displays stehen als programmierbare Softkeys zu r Verfügung – standardmäßig erreicht man hier direkt die Untermenüs "RANGE", "AVG", "DIAGS" und "ALARM".

Im Untermenü "Range" (=Messbereich) hat der Bediener die Möglichkeit, die Einheiten für die Konzentrationswerte, die Standardmessbereiche sowie die kundenspezifischen Messbereiche einzustellen.

Im Untermenü "Integration time" kann der Bediener die Mittelwertbildung der radiometrischen Messung im Bereich 15 min bis 60 min einstellen (Default: 20 min).

Im Untermenü "24-Hour Average" (=24 h-Mittel) kann der Bediener einen Startzeitpunkt festlegen für einen Zeitraum, in dem die Konzentrationsmessung über einen Zeitraum von 24 h gemittelt wird.

Im Untermenü "Calibration factors" (= Kalibrierfaktoren) werden die implementierten bzw. während manuellen und/oder automatischen Kalibrierungen ermittelten Kalibrierfaktoren der Messeinrichtung angezeigt bzw. können dort ggfs. eingestellt werden.

Im Untermenü "Instruments controls" (=Gerätesteuerung) können verschiedene Betriebsparameter der Messeinrichtung gesteuert werden. So wird über dieses Menü die Durchflussrate parametriert, die Pumpe ein- oder ausgeschaltet, die Probenahmeheizung DHS konfiguriert, die Filterbandsteuerung eingestellt (Manuelles Bewegen des Bandes, Festlegung eines zulässigen Massengrenzwertes (in Eignungsprüfung 1500 µg), Zeitpunkt und Intervall für den nächsten Filterbandwechsel...), die volumetrischen Bedingungen festgelegt, die interne Messwerterfassung und die Gerätekommunikation konfiguriert, der Bildschirmkontrast eingestellt, der Service-Modus ein- oder ausgeschaltet (wenn Service-Modus eingeschaltet ist, erscheint ein Schraubenschlüsselsymbol auf dem Hauptbildschirm) sowie Datum und Uhrzeit eingegeben.

Seite 45 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Im Untermenü "Diagnostics" (=Diagnose) erhält man Zugang zu Diagnoseinformationen und Funktionen, z.B. die Softwareversion, aktuelle Messwerte der versch. Sensoren, Status des radiometrischen Detektors und des Nephelometers, Status von Analog- und Digitaleingängeund -ausgänge etc.. Diese Informationen sind v.a. im Falle einer Fehlerbehebung sehr hilfreich.

Im Untermenü "Alarms" (=Alarm) wird der Status der Messeinrichtung bzgl. eventuell anstehender Alarmmeldungen angezeigt. Eine (oder mehrere) anstehende Alarmmeldungen werden über ein Glockensymbol auf dem Hauptbildschirm angezeigt.

Im Untermenü "Service" (= nur verfügbar, wenn im Untermenü "Instrument Controls" der Service-Modus eingeschaltet wurde (wenn Service-Modus eingeschaltet ist, erscheint ein Schraubenschlüsselsymbol auf dem Hauptbildschirm)) sind erweiterte Diagnosefunktionen verfügbar. Über dieses Menü können z.B. die Sensoren für Umgebungstemperatur, Durchflusstemperatur, Umgebungsluftfeuchte, Luftdruck und Durchfluss justiert werden. Des Weiteren kann eine Überprüfung / Justierung der radiometrischen Massenbestimmung / Massenkoeffizienten erfolgen, der Detektor selbst kalibriert (nur vom Servicepersonals des Herstellers), sowie das Nephelometer kalibriert werden sowie die Analogeingänge und -ausgänge eingestellt werden.

Im Untermenü "Password" (=Passwort) kann der Benutzer einen Passwortschutz zur Verriegelung des Gerätes definieren und aktivieren (Passwortschutz aktiv = Schlosssymbol auf dem Hauptbildschirm).

Seite 46 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 15 gibt einen Gesamtüberblick über die menügeführte Firmware.

Г	Password	Set Password C hange hars word Remove Password U nlock Password
Power-up Screen Screen Pun Screens Man Menu	Service	RHTEMP Calibration Ambient RH Ambient Temp Sumple Temp Sumple Temp Prevariation Baro Press VacRitow Fow Calibration Auto Manual Mass Calibration Auto Manual Neph RH Neph Tem Neph Tem Nep
-	Alarms	Alarms Detected Instrument Alarms Instrument Alarms Bench Bench Monthenboard Status VOE STATS Powden Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Beard Status Apha Ren Neph Alarms Beard Status Amblert RH Amblert RH Ambl
	Diagnostics	Program Versions Voltages Notages Macherboard Indrace Board Voltages Macherboard Indrace Board Macherboard Reformerte Ambient RH Ambient RH Ambient Temp Board Temp Flow Flow Flow Flow Flow Flow Flow Read Mass Alpha Beat Corr Beat Read Read Read Read Read Read Read Read
Power-up Saef Test Saef Test Run Screen Man Menu	Instrument Controls	Messurement Mode Set Fow/Pump Control Of RH Interestold Temp Threstold Temp Threstold Temp Threstold RH Inter Tape Control Marual Barch Control Control Content Conten
-	Calibration Factors	SHARP BKg SHARP BKg Neph Bkg Neph Bkg Stdby Stdby Cal Sam Values Restore Prev Values
-	24Hr Averages	Ачд тіте Ачд тіте
-	Integration Time	rge Ranges
Ĺ	Range	Cont Units Star P Ran Set Custom

Abbildung 15: Flussdiagramm – Übersicht der menügeführten Firmware

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Neben der direkten Kommunikation via Bedientasten/Display besteht weiterhin die Möglichkeit die Messeinrichtung, das Gerät komplett über die RS232/RS485 bzw. Ethernet zu steuern oder parametrieren – sowohl direkt über PC oder indirekt über Modem bzw. Netzwerk. Im Rahmen der Eignungsprüfung erfolgte der Zugriff der Messeinrichtungen insbesondere zum Download der intern gespeicherten Messdaten via Ethernet und der Terminal-Software iPort. Art und Umfang der intern gespeicherten Messdaten (Speicherintervall, aufzuzeichnende Parameter) können im Menü "Instrument Controls" konfiguriert werden. Das Gerät lässt sich über diesen Weg bedienen als ob man direkt vor dem Gerät steht.

Die Messeinrichtung unterstützt C-Link, MODBUS, Gesytech (Bayern-Hessen), ESM, Streaming Data und NTP Protokolle.

Zur externen Nullpunktüberprüfung der Messeinrichtung wird ein Nullfilter am Geräteinlass montiert. Der Einsatz dieses Filters ermöglicht die Bereitstellung von schwebstaubfreier Luft.

Abbildung 16: Nullfilter zur Erzeugung von schwebstaubfreier Luft, inkl. Anschlussadapter

Seite 48 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Zur Überprüfung und ggf. Kalibrierung der radiometrischen Messung stellt der Gerätehersteller einen Foliensatz mit Massentransferstandards zur Verfügung. Der Foliensatz besteht aus einer Nullfolie und 2 Messbereichsfolien. Die Nullfolie hat ungefähr die gleiche Masse wie ein sauberer Filterfleck und die Messbereichsfolie repräsentiert eine kalibrierte Massezunahme auf der Nullfolie. Aus diesem Grund werden die Folien als Foliensatz geliefert und dürfen nicht mit anderen Sätzen vertauscht werden.

Abbildung 17: Foliensatz mit Folienhalter und Prüffolien

Die Erzeugung eines reproduzierbaren Signals für die Empfindlichkeit des Nephelometers mittels eines externen Prüfstandards ist leider nicht möglich. Das Nephelometer wird allerdings im Betrieb regelmäßig mit Nullluft gespült (Auto-Zero-Funktion im Zuge jedes Filterwechsels) und somit der Nullpunkt ermittelt und dokumentiert. Da das Nephelometer kontinuierlich mittels der sehr stabilen radiometrischen Messung kalibriert wird, kann auf die gesonderte Untersuchungen der Stabilität des Nephelometersignals unter Betriebsbedingungen verzichtet werden.

Zur Dichtigkeitsprüfung der Messeinrichtung wird ein spezieller Adapter auf den Geräteinlass gesteckt und zusätzlich vor diesen Adapter ein externes Gerät zur Durchflussmessung installiert. Der Dichtigkeitsprüfadapter sorgt für den Aufbau eines hohen Vakuums im System. Durch Vergleich der vom Gerät gemessenen Durchflussrate (im hohen Vakuum) und der Durchflussrate am Inlet (=externes Gerät zur Durchflussmessung) kann die Dichtheit der Messeinrichtung beurteilt werden. Beträgt die Differenz gemäß Herstellerangabe mehr als 420 ml/min (= ca. 2,5 % der nominalen Durchflussrate), muss das System auf Undichtigkeiten geprüft werden

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 18: Adapter zur Dichtigkeitsprüfung

Seite 50 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 3 enthält eine Auflistung wichtiger gerätetechnischer Kenndaten des Schwebstaubimmissionsmessgerätes Modell 5030i SHARP.

Tabelle 3: Gerätetechnische Daten Modell 5030i SHARP (Herstellerangaben)

Abmessungen / Gewicht	Modell 5030i SHARP			
Messgerät	425 x 584 x 219 mm / 19 kg (ohne Pumpe)			
Probenahmerohr	ca. 0,9 m langes, isoliertes Heizrohr			
	+			
	1,8 m langes Verlängerungsrohr			
Probenahmekopf	je nach Hersteller, in Eignungsprüfung Digitel DPM10/01/00/16			
Energieversorgung	Analysator: 100-240 V, 50-60 Hz			
	Pumpe: 115 V, 50-60 Hz			
Leistungsaufnahme	ca. 880 W maximal			
Umgebungsbedingungen				
Temperatur	+5 bis +40 °C (in Eignungsprüfung)			
Feuchte	nicht kondensierend			
Probenflussrate (Inlet)	16,67 l/min = 1 m³/h			
Nephelometer Strahler	IR LED, 6 mW, 880 nm			
Detektor	Silikon-Hybridverstärker			
Radiometrie Strahler	¹⁴ C, <3,7 MBq (< 100 μCi)			
Detektor	Proportionaler Strahlungsdetektor			
Zeitliche Auflösung SHARP	1 min (bei 1 s Aktualisierung)			
Parameter Filterwechsel				
Filterwechselzeit (Zykluszeit)	0 h – 100 h Default: 8 h (3 Wechsel pro Tag)			
Filterwechsel Staubmasse	0 – 9999 μg Default: 1500 μg			
Parameter Heizung Probenahme				
maximale Heiztemperatur	30 °C (in Eignungsprüfung)			
Sollwert für relative Luftfeuchte	50 % bzw. 58 % (in Eignungsprüfung)			
Speicherkapazität Daten (intern)	Maximal 190.000 Datensätze (> 650 d be Speicherung im 5-Minuten-Intervall)			
Geräteeingänge und -ausgänge	Ausgänge:			
	Analog 0-20 mA bzw. 4-20 mA (optional)			
	Digital RS232, RS485, TCP/IP, 10-Status Re- lais			

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

	Eingänge: 16 Digitaleingänge 8 Analogeingänge (optional)
Protokolle	Kommunikation mit PC via Ethernet und iPort- Software C-Link, MODBUS, Gesytec, ESM, Data Streaming und NTP
	Standorten über Ethernet
Statussignale / Fehlermeldungen	vorhanden, Übersicht siehe Kapitel 6 des Be- dienungshandbuch

Seite 52 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030/ SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

4. Prüfprogramm

4.1 Allgemeines

Die Eignungsprüfung erfolgte an zwei identischen Geräten mit den Seriennummern SN 3 und SN 4.

Die Prüfung wurde im Jahr 2009 mit der Softwareversion V00.05.41.114 begonnen. Während der Prüfung wurde die Software beständig weiterentwickelt und optimiert.

Mit Beginn der Feldprüfungen im Januar 2011 wurde die Softwareversion V01.00.01.197 installiert und über den gesamten Feldtest beibehalten.

Ein Update zur Softwareversion V01.00.03.225 erfolgte nach Beenden des regulären Feldtests und vor der Durchführung der letzten Laboruntersuchungen. Diese Softwareversion wurde auch während der zusätzlichen Vergleichskampagne "Bornheim, Sommer 2013" eingesetzt.

In der Zwischenzeit erfolgte auf Grund der Abkündigung eines Prozessorboards erneut eine Anpassung der Softwareversion auf die aktuelle Version V02.00.00.232+.

Es erfolgten folgende Modifikationen der Software:

Tabelle 4: Übersicht der Softwarestände während der Eignungsprüfung

Version	Beschreibung der Änderungen	Status in Eignungsprüfung
V00.05.41.114	Startversion	Installiert während Labortest, Teil 1
V01.00.00.163	1. Support für Model 5030i eingefügt	Nicht installiert
	2. Verbesserung der Algorithmen zur Steue- rung der RH und TEMP	
	3. "Carriage return" zum ESM Protokoll ergänzt	
	4. Ausdruck "Zero" durch "Offset" ersetzt	
	5. Digitale Filter für "Mass" und "PM" auf 60 Mi- nuten gesetzt	
	6. Probentemperatur aus Bedienoberfläche entfernt	
	7. Grenzen für Temp Offsetwerte auf +/- 10 °C erhöht	
	8. Massenbestimmung ohne Durchfluss mög- lich im Service Mode zur Verbesserung der Kalibrierung der Massenmessung	
	9. Implementierung der "Infinite Mass Accumu- lation Method"	

Seite 53 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

V01.00.01.197	1. VÖ des Model 5030i codes	Installiert während
	2. Ergänzung einer Variablen für die Integrati- onszeit für die Massen- und die Konzentra- tionsbestimmung (Bereich 15min bis 60min)	Feldtest
	3. Anpassungen des Codes für den Verstärker notwendig, da die Aufrechterhaltung der Hochspannung für bis zu 2 h bei Stromaus- fall durch einen Kondensator anstelle von Batterien gepuffert wird.	
	4. Anzahl der Filterbandbewegungen pro Rolle um ca. 50 % erhöht	
	5. Filterbandwechsel nach 3 Fehlversuchen nicht mehr möglich	
	6. Kleinere Bugs beseitigt	
V01.00.02.199	 Einfrieren des Kalibrierfaktors bei c (BETA) < 2,5 μg/m³ und / oder c (NEPH) < 1 μg/m³ anstelle c (BETA) < 2,5 μg/m³ und / oder c (SHARP) < 1 μg/m³ 	Nicht installiert
	2. Flow temp durch Sample temp im Bayern- Hessen-Protokoll ersetzt	
	3. Präzision der "diag volts"-Befehle erhöht	
V01.00.03.225	1. Schlüsselvariablen und Soft Keys zum Sup- port für USB Keypad modifiziert	Installiert während Labortest, Teil 2 so-
	2. Alarme zur Liste der Digitalen Ausgänge er- gänzt	wie während der Zu- satzkampagne Bornheim, Sommer
	3. Zusätzliche Parameter zur Aufzeichnung er- gänzt	2013"
	 Timing nach Filterwechsel geändert – keine Berechnungen in den ersten 15 min nach Pumpenstop 	
	5. Berechnungsalgorithmen für Umgebungs- temp., Umgebungsfeuchte und der Flow- temp. upgedatet mit dem Ziel die Feuchte der Probe (Sample rH) exakter zu ermit- teln.	
	 Aufzeichnung der Verstärkung und des Mo- dus für NEPH ergänzt 	
	 Glättung der Druckberechnungen zur Ver- besserung der Durchflusskontrolle upgeda- tet 	
	8. Heizregelung upgedatet (PID-Regelung op- timiert).	

Seite 54 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

V02.00.00.232+	1. Anpassung auf neues iSerie-Prozessorboard 110570	Nicht installiert, begutachtet im
	 Menüführung "Service/Pres/Vacuum Calibra- tion/Vac/Flow" geändert. 	Rahmen der regel- mäßigen Produkt- überwachung
	 Diagnostics/Voltages/Detector board Menü nicht länger geschützt 	uberwachung
	 Titelzeile "Calibration factors/Neph BKG Val- ues/Restore Prev Values" verschoben 	
	5. Clink Befehl "Range" schreibt nun in jedem Fall eine Antwort	
	 Verschiedene Parameter werden nicht mehr angezeigt, wenn das Gerät passwortge- schützt ist. 	
	 7. Clink Befehl "sp field" – pauschale Abwei- sung für "set" beseitigt. 	

Die Betriebssicherheit der Messeinrichtung wird durch die Änderungen beständig erhöht. Es ist durch die durchgeführten Änderungen bis zur Version V02.00.00.232+ kein signifikanter Einfluss auf die Geräteperformance zu erwarten.

Die Prüfung umfasste einen Labortest zur Feststellung der Verfahrenskenngrößen sowie einen mehrmonatigen Feldtest an verschiedenen Feldteststandorten.

Alle ermittelten Konzentrationen werden in µg/m³ (Betriebsbedingungen) angegeben.

Im folgenden Bericht wird in der Überschrift zu jedem Prüfpunkt die Mindestanforderung gemäß den berücksichtigten Richtlinien [1, 2, 3, 4] mit Nummer und Wortlaut angeführt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

4.2 Laborprüfung

Die Laborprüfung wurde mit zwei identischen Geräten des Typs Modell 5030i SHARP mit den Seriennummern SN 3 und SN 4 durchgeführt. Nach den Richtlinien [1, 2] ergab sich folgendes Versuchsprogramm im Labor:

Labortest, Teil 1 (2009)

- Beschreibung der Gerätefunktionen
- Ermittlung der Abhängigkeit der Empfindlichkeit von der Umgebungstemperatur
- Ermittlung der Abhängigkeit der Empfindlichkeit von der Netzspannung

Labortest, Teil 2 (2012/2013)

- Ermittlung der Nachweisgrenze
- Ermittlung der Abhängigkeit des Nullpunktes / der Empfindlichkeit von der Umgebungstemperatur
- Untersuchung der Dichtheit des Probenahmesystems

Folgende Geräte kamen für den Labortest zur Ermittlung der Verfahrenskenngrößen zum Einsatz:

- Klimakammer (Temperaturbereich von –20 °C bis +50 °C, Genauigkeit besser als 1 °C)
- Trennstelltrafo
- Nullfilter zur externen Nullpunktüberprüfung
- Referenzfoliensätze

Die Aufzeichnung der Messwerte erfolgte geräteintern. Die gespeicherten Messwerte wurden via Ethernet mittels der Software iPort ausgelesen.

Die Ergebnisse der Laborprüfungen sind unter Punkt 6 zusammengestellt.

Seite 56 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

4.3 Feldtest

Der Feldtest wurde mit 2 baugleichen Messeinrichtungen durchgeführt. Dies waren:

Gerät 1: SN 3

Gerät 2: SN 4

Es ergab sich folgendes Prüfprogramm im Feldtest:

- Untersuchung der Vergleichbarkeit der Testgeräte gemäß Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods"
- Untersuchung der Vergleichbarkeit des Testgerätes mit dem Referenzverfahren gemäß Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods"
- Ermittlung der Kalibrierfähigkeit, Aufstellung der Analysenfunktion
- Bestimmung der Reproduzierbarkeit
- Ermittlung der zeitlichen Änderung des Nullpunktes und der Empfindlichkeit
- Betrachtung der Abhängigkeit der Messwerte von der im Messgut enthaltenen Luftfeuchte
- Ermittlung des Wartungsintervalls
- Bestimmung der Verfügbarkeit
- Überprüfung der Konstanz des Probenahmevolumenstroms
- Ermittlung der Gesamtunsicherheit der Testgeräte.

Für den Feldtest wurden folgende Geräte eingesetzt:

- Messcontainer des TÜV Rheinland, klimatisiert auf ca. 20 °C
- Messcontainer der DEFRA (UK) für die Kleinfiltergeräte, klimatisiert auf ca. 20 °C
- Wetterstation (WS 500 der Fa. ELV Elektronik AG, in Deutschland, bzw. MK III Series der Fa. Rainwise (US), in UK) zur Erfassung meteorologischer Kenngrößen wie Lufttemperatur, Luftdruck, Luftfeuchtigkeit, Windgeschwindigkeit, Windrichtung sowie der Regenmenge
- 2 Referenzmessgeräte LVS3 für PM₁₀ gemäß Punkt 5
- 1 Gasuhr, trockene Bauart
- 1 Massendurchflussmesser Model 4043 (Hersteller: TSI)
- 1 Massendurchflussmesser Typ BIOS volumeter (Hersteller BIOS), nur UK
- 1 Massendurchflussmesser Typ TetraCal venturi (Hersteller BGI), nur UK
- Messgerät zur Erfassung der Leistungsaufnahme Metratester 5 (Hersteller: Fa. Gossen Metrawatt)
- Nullfilter zur externen Nullpunktüberprüfung
- Referenzfoliensätze

Im Feldtest liefen jeweils für 24 h zeitgleich zwei Modelle 5030i SHARP – Systeme und zwei Referenzgeräte PM₁₀. Das Referenzgerät arbeitet diskontinuierlich, d. h. nach erfolgten Probenahmen muss das Filter manuell gewechselt werden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Die Impaktionsplatten der PM₁₀- Probenahmeköpfe der Referenzgeräte wurden in der Prüfung ca. alle 2 Wochen gereinigt und mit Silikonfett eingefettet, um eine sichere Trennung und Abscheidung der Partikel zu gewährleisten. Die PM₁₀- Probenahmeköpfe der Prüflinge wurden ca. alle 4 Wochen gereinigt. Der Probenahmekopf muss prinzipiell nach den Anweisungen des Herstellers gesäubert werden, wobei die örtlichen Schwebstaubkonzentrationen in Betracht zu ziehen sind.

Bei den Prüflingen sowie bei den Referenzgeräten wurde der Durchfluss vor und nach jedem Standortwechsel mit einer trockenen Gasuhr bzw. mit einem Massendurchflussmesser, der über eine Schlauchleitung an der Lufteintrittsöffnung des Gerätes angeschlossen ist, überprüft.

Messstandorte und Messgerätestandorte

Die Messgeräte wurden im Feldtest so installiert, dass nur die Probenahmeköpfe außerhalb des Messcontainers über dessen Dach eingerichtet sind. Die Zentraleinheiten der beiden Testgeräte waren im Innern des klimatisierten Messcontainers untergebracht. Die Referenzsysteme (LVS3) wurden komplett im Freien auf dem Dach installiert.

Der Feldtest wurde an folgenden Messstandorten durchgeführt:

Nr.	Messstandort	Zeitraum	Charakterisierung
1	Köln, Parkplatzge- lände, Winter	03/2011 – 05/2011	Städtischer Hintergrund
2	Bornheim, Auto- bahnparkplatz, Sommer	07/2011 – 11/2011	Ländliche Struktur + Verkehrseinfluss
3	Bornheim, Auto- bahnparkplatz, Winter	01/2012 – 03/2012	Ländliche Struktur + Verkehrseinfluss
4	Teddington, Sommer	07/2012 – 09/2012	Städtischer Hintergrund

Tabelle 5: Feldteststandorte

Seite 58 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 19 bis Abbildung 22 zeigen den Verlauf der PM₁₀-Konzentrationen an den Feldteststandorten, die mit den Referenzmesseinrichtungen aufgenommen wurden.

Abbildung 19: Verlauf der PM₁₀-Konzentrationen (Referenz) am Standort "Köln, Parkplatzgelände, Winter"

Abbildung 20: Verlauf der PM₁₀-Konzentrationen (Referenz) am Standort "Bornheim, Autobahnparkplatz, Sommer"

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 21: Verlauf der PM₁₀-Konzentrationen (Referenz) am Standort "Bornheim, Autobahnparkplatz, Winter"

Seite 60 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die folgenden Abbildungen zeigen den Messcontainer an den Feldteststandorten Köln (Parkplatzgelände, Bornheim (Autobahnparkplatz) sowie Teddington.

Abbildung 23: Feldteststandort Köln, Parkplatzgelände

Abbildung 24: Feldteststandort Bornheim, Autobahnparkplatz

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 25: Feldteststandort Teddington

Neben den Messgeräten zur Bestimmung der Schwebstaubimmissionen war eine Erfassungsanlage für meteorologische Kenndaten am Container/Messort angebracht. Es erfolgte eine kontinuierliche Erfassung von Lufttemperatur, Luftdruck, Luftfeuchtigkeit, Windgeschwindigkeit, Windrichtung sowie Niederschlagsmenge. Es wurden 30-min-Mittelwerte gespeichert.

Der Aufbau des Containers selbst sowie die Anordnung der Probenahmesonden wurden durch die folgenden Abmessungen charakterisiert:

- Höhe Containerdach:
- Höhe der Probenahme für Test-/
- Referenzgerät
- Höhe der Windfahne:

2,50 m 1,10 m / 0,51 m über Containerdach 3,61 / 3,01 m über Grund 4,5 m über Grund (Deutschland) 2,5 m über Grund (UK)

Die nachfolgende Tabelle 6 enthält daher neben einem Überblick über die wichtigsten meteorologischen Kenngrößen, die während der Messungen an den 4 Feldteststandorten ermittelt wurden, auch einen Überblick über die Schwebstaubverhältnisse während des Prüfzeitraumes. Alle Einzelwerte sind in den Anlagen 5 und 6 zu finden.

Seite 62 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

	Köln, Parkplatzgelände Winter	Bornheim, Autobahnparkplatz, Sommer	Bornheim, Autobahnparkplatz, Winter	Teddington (UK), Sommer
Anzahl Wertepaare Referenz	50	82	42	46
Anteil PM _{2,5} an PM ₁₀ [%]				
Bereich	38,8 - 86,3	27,1 – 88,1	43,1 – 91,1	36,2 - 70,5
Mittelwert	61,7	57,3	73,0	53,9
Anteil Volatile an PM ₁₀ [%]*				
Bereich	5,2 - 29,2	0,0-34,6	9,2 - 81,3	11,0 - 49,3
Mittelwert	15,4	14,3	20,7	21,9
Lufttemperatur [°C]				
Bereich	5,0-22,1	5,2 - 24,5	-8,9 – 10,4	11,7 – 24,2
Mittelwert	12,3	15,5	1,9	17,5
Luftdruck [hPa]				
Bereich	998 – 1031	995 – 1024	1003 – 1031	983 – 1010
Mittelwert	1012	1008	1018	998
Rel. Luftfeuchte [%]				
Bereich	34,7 - 90,4	53,8 – 91,1	50,2 - 90,5	47,1 – 88,3
Mittelwert	61,8	75,1	77,7	70,0
Windgeschwindigkeit [m/s]				
Bereich	0,3 - 5,3	0,3-4,1	0,6 - 5,7	0,1 - 1,9
Mittelwert	1,9	1,4	2,1	0,5
Niederschlagsmenge [mm/d]				
Bereich	0,0 – 11,1	0,0 – 51,7	0,0 – 12,8	0,0 - 27,9
Mittelwert	0,9	2,7	1,5	0,9

Tabelle 6: Umgebungsbedingungen an den Feldteststandorten, als Tagesmittelwerte

* Volatiler Anteil wurde mit parallel betriebenem TEOM-FDMS bestimmt

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Parametrierung des Schwellwertes für die rel. Luftfeuchte für das Dynamische Heizungssystem DHS

In der Messeinrichtung Modell 5030i SHARP wird ein beheiztes Probenahmesystem eingesetzt um möglichen Kondensationseffekten im System (insbesondere im Bereich des Nephelometers und des Filterbands) vorzubeugen. Dabei muss die Beheizung selbst so gestaltet sein, dass gleichzeitig ein möglicher Verlust an volatilen Staubbestandteilen minimiert wird. Durch das in der Messeinrichtung Modell 5030i SHARP eingesetzte sog. Dynamische Heizungssystem DHS wird gewährleistet, dass die relative Luftfeuchte der durch das Filterband der radiometrischen Stufe im Gerät passierenden Luft deutlich unter dem Punkt gehalten wird, an dem die gesammelten Partikel aneinander haften bleiben und es zu störenden Kondensationseffekten kommt. Weiterhin wird im Nephelometer eine relative Luftfeuchte unterhalb eines festgelegten Grenzwertes eingestellt. Das System minimiert den internen Temperaturanstieg, womit ein vernachlässigbarer Verlust an halbflüchtigen Partikelbestandteilen sichergestellt werden kann, wenn die relative Feuchte der Umgebungsluft unterhalb des Grenzwertes liegt, auf den die Heizung eingestellt ist. Überschreitet die relative Feuchte der Umgebungsluft den Grenzwert, so wird die eingeschaltete Heizung des Probenahmerohres optimiert um den Grenzwert für die relative Luftfeuchtigkeit über dem Filterband der radiometrischen Stufe aufrecht zu halten Die Regelung des DHS-Systems erfolgt mit Hilfe der Regelgröße rH (=,,rel. Luftfeuchte der Probe", (errechnet aus der rel. Feuchte der Umgebungsluft, der Umgebungstemperatur und der Probentemperatur)) und des Filtertemperatursensors. Die Heizbedingungen können je nach Messnetzanforderung konfiguriert werden.

Im Rahmen der Eignungsprüfung waren die Parameter wie folgt festgelegt:

Schwellwert für rel. Luftfeuchte: 50 %

Filtertemperatursensor: maximal 30 °C

Dies bedeutet, dass die Heizung eingeschaltet wird, sobald die relative Feuchte rH größer als 50 % ist, allerdings maximal bis zu einer Filtertemperatur von 30 °C. Der Schwellwert der rel. Luftfeuchte von 50 % wurde vom Gerätehersteller gewählt, da dieser Wert dem Filterkonditionierungswert bei der gravimetrischen Referenzmethode entspricht.

Während der Vergleichskampagnen an den Standorten Köln (Winter), Bornheim (Sommer) und Bornheim (Winter) war keine der aus dem Vergleich zur Referenzmethode ermittelten Steigungen und Offsetwerte auffällig. Alle ermittelten erweiterten Messunsicherheiten gemäß des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" [4] lagen ohne Anwendung von Korrekturfaktoren unter den zulässigen 25 %. Nach Abschluss der Untersuchungen in Deutschland wurde in 2012 die finale Vergleichskampagne in Teddington (Sommer) gestartet. Während dieser Kampagne wurde eine Unterschätzung der Schwebstaubmesswerte durch die Prüflinge im Vergleich zur Referenzmethode festgestellt. Die Auswertung der Kampagne führte zu folgenden Ergebnissen:

Tabelle 7: Auswertung der Kampagne Teddington, Sommer mit 50 % rH Einstellung

PM40 5020i Shorp	Dotopootz	Orthogonale Regression							Grenzw ert 50 µg m-3		
PW 10 50501 Sharp	Latensatz		r²	Steig	ung (b)	+/- ub	Achsabs	schnitt ((a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
SN3	Teddington (Sommer), mit 50% rH Einstellung	37	0,841	0,728	+/-	0,050	2,594	+/-	0,680	44,43	0,0
SN4	Teddington (Sommer), mit 50% rH Einstellung	37	0,902	0,723	+/-	0,039	1,364	+/-	0,525	50,12	0,0

Seite 64 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 26: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Teddington, Sommer, Schwellwert rel. Feuchte bei 50 %

Abbildung 27: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Teddington, Sommer, Schwellwert rel. Feuchte bei 50 %

Seite 65 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Da sich diese ermittelten Parameter von den in den Vorgängerkampagnen ermittelten Parametern unterscheiden, wurde eine Analyse der möglichen Ursachen für diese Abweichung durchgeführt. In diesem Rahmen wurde auch der volatile Anteil am Feinstaub näher betrachtet. Informationen über den Gehalt an Volatilen im Schwebstaub waren aus parallel durchgeführten Messungen mit TEOM-FDMS-Messsystemen verfügbar. Dabei wurde festgestellt, dass sich der Standort Teddington (Sommer) durch ein generell sehr niedriges Schwebstaubniveau zusammen mit einem auffällig hohen Anteil an volatilen Staubbestandteilen auszeichnet. Der mittlere Anteil der Volatilen am Schwebstaub PM₁₀ betrug während der durchgeführten Kampagne in Teddington (Sommer) ca. 33 % während er an den 3 vorangegangen Kampagnen zwischen ca. 15 und 20 % lag.

Basierend auf vergleichbaren Erfahrungen aus Messkampagnen in China schlug der Hersteller zur Problemlösung eine Änderung der Parametrierung des Schwellwertes für die rel. Luftfeuchte von 50 % auf 58% vor. Durch diese Änderung des Schwellwertes spricht die Heizungsregelung erst ab rel. Luftfeuchten >58 % anstelle von bislang >50 % an. Die Vergleichskampagne Teddington (Sommer) wurde anschließend mit der neuen Parametrierung wiederholt (mittlerer Anteil von Volatilen während dieser Kampagne: 21,9 %). Es konnten nach dieser Änderung keine Probleme mit dem Nachweis der Äquivalenz für diese Messkampagne festgestellt werden. Die Ergebnisse sind unter Punkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge umfangreich dargestellt.

Der Anteil der Volatilen am Schwebstaub PM₁₀ während der ausgewerteten Messkampagnen ist in Tabelle 6 bzw. Anlage 6 im Bericht zu finden.

Zur Qualifizierung der im Laufe der Prüfung auf Grund der Ergebnisse aus der Vergleichskampagne in Teddington (UK) notwendigen Änderung des Schwellwertes für die relative Luftfeuchte zur Regelung der Probenahmeheizung von ursprünglich 50 % auf 58 %, wurde gemäß Beschluss des 32. Fachgespräch "Prüfberichte" vom 14./15. Mai 2013 eine zusätzliche Vergleichskampagne an einem der deutschen Standorte mit zwei Prüflingen mit der Einstellung von je 50 % und 58 % durchgeführt.

Die Untersuchungen erfolgten am Standort Bornheim mit den zwei Prüflingen SN 3 und SN 4. Die Prüflinge waren für diesen Test wie folgt parametriert:

	Messkomponente	Schwellwert für Heizungsregelung
SN 3	PM ₁₀	58 %

SN 4 PM₁₀ 50 %

Es wurde folgendes Prüfprogramm durchgeführt:

- Durchführung einer Vergleichsmesskampagne mit mindestens 40 validen Messwertpaaren Referenz vs. Prüfling
- Bestimmung der Unsicherheit zwischen den Prüflingen ubs gemäß Leitfaden
- Berechnung der erweiterten Unsicherheit der Prüflinge gemäß Leitfaden
- Anwendung der unter Punkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge ermittelten Korrekturfaktoren/-termen
- Neuberechnung der Äquivalenz für die 4 Datensätze aus der vorliegenden Eignungsprüfung + zusätzlich Datensatz "Bornheim, Sommer 2013" mit unterschiedlichen Schwellwerten für die Heizungsregelung gemäß dem Ansatz aus Punkt "8.2 Suitability Testing" der CEN/TS 16450 [9]

Seite 66 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die zusätzliche Vergleichskampagne wurde zwischen dem 07.06.2013 und dem 25.07.2013 durchgeführt. Die Umgebungsbedingungen während der Kampagne stellten sich wie folgt dar:

Tabelle 8: Umgebungsbedingungen am zusätzlichen Standort "Bornheim, Sommer 2013", als Tagesmittelwerte

	Bornheim, Autobahnparkplatz.
	Sommer 2013
Anzahl Wertepaare Referenz	44
Anteil PM _{2,5} an PM ₁₀ [%]	
Bereich	39,1 – 75,1
Mittelwert	59,9
Anteil Volatile an PM _{2,5} [%]*	
Bereich	4,7 - 38,4
Mittelwert	17,4
Lufttemperatur [°C]	
Bereich	13,2 – 27,6
Mittelwert	19,8
Luftdruck [hPa]	
Bereich	1001 – 1020
Mittelwert	1010
Rel. Luftfeuchte [%]	
Bereich	52,2 - 86,1
Mittelwert	67,8
Windgeschwindigkeit [m/s]	
Bereich	0,2-3,5
Mittelwert	1,2
Niederschlagsmenge	
[mm/d]	0,0-34,6
Bereich	3,2
Mittelwert	

* Volatiler Anteil an PM_{2,5} wurde als Orientierungswert mit parallel betriebenem TEOM-FDMS bestimmt

Alle Einzelwerte sind in den Anlagen 7 (PM-Messwerte) und 8 (Umgebungsbedingungen) zu finden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Es wurden insgesamt 45 Messwertpaare ermittelt, wobei nach Ausreißertest nach Grubbs das Messwertpaar für die Referenz PM_{10} vom 12.07.2013 (Ref1: 28,7 µg/m³; Ref 2: 33,5 µg/m³) verworfen wurde. Somit stehen für die Auswertung 44 valide Messwertpaare zur Verfügung.

Die Auswertung der Vergleichsmessungen gemäß Leitfaden [4] führt zu folgendem Ergebnis:

Tabelle 9:Ergebnisse der Äquivalenzprüfung am Standort Bornheim, Sommer 2013,
SN 3 (58 %) & SN 4 (50 %), Messkomponente PM10, Rohdaten

SN2	Datansatz	Orthogonale Regression								Grenzw ert 50 µg m-3	
3163	Datensatz	n _{c-s}	r ²	Steigu	teigung (b) +/- ub Achsabschnitt (a) +/- ua			W _{CM} / %	% ≥ 28 µg m-3		
Einzeldatensätze	Bornheim (Sommer 2013)	44	0,920	1,007	+/-	0,044	0,187	+/-	0,847	8,84	9,1
SNA	Datensatz	Orthogonale Regression							Grenzw ert 50 µg m-3		
3144		n _{c-s}	r ²	Steigu	ung (b)	+/- ub	Achsab	schnitt	(a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
Einzeldatensätze	Bornheim (Sommer 2013)	44	0,920	1,026	+/-	0,045	0,125	+/-	0,866	10,49	9,1

Bewertung:

- Die Unsicherheit zwischen den Pr
 üflingen liegt bei 0,79 μg/m³ und ist damit kleiner als die zul
 ässigen 2,5 μg/m³.
- 2. Die erweiterte Messunsicherheit für die Rohdaten ist für SN 3 (58%) und SN 4 (50%) kleiner als die zulässigen 25 %.

Auf die ermittelten Rohdatensätze werden im Anschluss die in der Eignungsprüfung unter Punkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge ermittelten Korrekturfaktoren/-termen zur Anwendung gebracht.

Es erfolgt demgemäß eine Korrektur der Datensätze für SN 3 und SN 4 mit der Steigung von 1,009 (Unsicherheit der Steigung 0,013) und mit dem Achsabschnitt von -0,392 (Unsicherheit des Achsabschnitts 0,327). Es ergibt sich dann folgende Auswertung:

Tabelle 10: Ergebnisse der Äquivalenzprüfung am Standort Bornheim, Sommer 2013,

SN 3 (58 %) & SN 4 (50 %), Messkomponente PM₁₀, Steigungskorrektur um 1,009, Achsabschnittskorrektur um -0,392

SN2	Datansatz	Orthogonale Regression								Grenzw ert 50 µg m-3	
3163	Datensatz	n _{c-s}	r ²	Steigu	Steigung (b) +/- ub Achsabschnitt (a) +/- ua		W _{CM} / %	% ≥ 28 µg m-3			
Einzeldatensätze	Bornheim (Sommer 2013)	44	0,920	0,997	+/-	0,043	0,580	+/-	0,839	9,14	9,1
SN4	Datensatz	Orthogonale Regression							Grenzw ert 50 µg m-3		
3144		n _{c-s}	r ²	Steigu	ung (b)	+/- ub	Achsabs	schnitt	(a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
Einzeldatensätze	Bornheim (Sommer 2013)	44	0,920	1,016	+/-	0,044	0,519	+/-	0,858	10,59	9,1

Seite 68 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Bewertung:

1. Die erweiterte Messunsicherheit für die mit der Steigung 1,009 und dem Achsabschnitt -0,392 korrigierten Daten ist für SN 3 (58 %) und SN 4 (50 %) kleiner als die zulässigen 25 %.

Abschließend wurde gemäß dem Ansatz aus Punkt "8.2 Suitability Testing" der CEN/TS 16450 [9] der korrigierte Datensatz für Bornheim, Sommer 2013 als zusätzlicher fünfter Datensatz in die ursprüngliche Äquivalenzauswertung aus der Eignungsprüfung (siehe Tabelle 41) mit aufgenommen und es wurde überprüft, ob weiterhin die Kriterien einer Äquivalenzprüfung erfüllt werden.

Tabelle 11: Ergebnisse der Äquivalenzprüfung "Eignungsprüfung + Bornheim, Sommer 2013", SN 3 (58 %) & SN 4 (50 %), Messkomponente PM₁₀, Steigungskorrektur um 1,009, Achsabschnittskorrektur um -0,392

PM10 5030i Sharp Korrigiert um	21,1% ≥ 28 µg m-3	Orthogonale Regression						Unsicherheit zwischen den Geräten			
Steigung und Achsabschnitt	W _{CM} / %	n _{c-s}	r²	Steigu	ung (b)	+/- ub	Achsabschnitt (a) +/- ua			Referenz	Prüflinge
Alle Standorte	9,5	246	0,964	0,998	+/-	0,012	0,166	+/-	0,294	0,63	1,05
< 30 µg m-3	8,6	203	0,903	1,011	+/-	0,022	0,081	+/-	0,393	0,62	1,06
≥ 30 µg m-3	14,0	43	0,933	1,095	+/-	0,044	-4,566	+/-	1,926	0,63	1,19
010	Determente	Orthogonale Regression							Grenzw ert 50 µg m-3		
5N3	Datensatz	n _{c-s}	r²	Steigu	ung (b)	+/- ub	Achsabschnitt (a) +/- ua			W _{CM} / %	% ≥ 28 µg m-3
	Bornheim (Winter)	42	0,976	0,978	+/-	0,024	1,358	+/-	0,738	8,82	42,9
	Köln (Winter)	43	0,947	1,023	+/-	0,037	-1,159	+/-	1,244	13,10	53,5
Enzeldatensätze	Bornheim (Sommer)	71	0,952	0,976	+/-	0,026	0,850	+/-	0,529	9,12	9,9
	Teddington (Sommer)	46	0,855	0,965	+/-	0,055	1,048	+/-	0,805	7,89	0,0
	Bornheim (Sommer 2013)	44	0,920	0,997	+/-	0,043	0,580	+/-	0,839	9,14	9,1
	< 30 µg m-3	203	0,899	1,002	+/-	0,022	0,547	+/-	0,398	8,70	4,4
Gesamtdatensätze	≥ 30 µg m-3	43	0,934	1,085	+/-	0,043	-4,185	+/-	1,896	13,78	100,0
	Alle Standorte	246	0,963	0,985	+/-	0,012	0,690	+/-	0,295	9,49	21,1
014	Deleverate	Orthogonale Regression						Grenzw ert 50 µg m-3			
5114	Datensatz	n _{c-s}	r²	Steigu	ung (b)	+/- ub	Achsabs	schnitt (a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
	Bornheim (Winter)	42	0,981	1,018	+/-	0,022	0,318	+/-	0,683	9,37	42,9
	Köln (Winter)	45	0,944	1,039	+/-	0,037	-2,231	+/-	1,238	13,78	51,1
Einzeldatensätze	Bornheim (Sommer)	75	0,935	1,007	+/-	0,030	-0,785	+/-	0,618	10,70	9,3
	Teddington (Sommer)	46	0,833	0,911	+/-	0,057	0,701	+/-	0,823	16,69	0,0
	Bornheim (Sommer 2013)	44	0,920	1,016	+/-	0,044	0,519	+/-	0,858	10,59	9,1
	< 30 µg m-3	209	0,875	1,028	+/-	0,025	-0,602	+/-	0,447	9,87	4,3
Gesamtdatensätze	≥ 30 µg m-3	43	0,925	1,111	+/-	0,047	-5,158	+/-	2,067	15,11	100,0
	Alle Standorte	252	0,956	1,015	+/-	0,013	-0,519	+/-	0,324	10,53	20,6

Seite 69 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Zusammenfassende Bewertung:

Zum Nachweis der Gleichwertigkeit bzw. der Äquivalenz der Daten zwischen zwei Geräten mit der Einstellung für den Schwellwert der Heizungsregelung von 50 % bzw. 58 % wurde eine Vergleichskampagne an einem der deutschen Standorte aus der Eignungsprüfung durchgeführt und die gewonnenen Datensätze (SN 3 mit 58 % Setting, SN 4 mit 50 % Setting) einer Äquivalenzprüfung unterzogen. Die Auswertung führt zu folgenden Ergebnissen:

- Die Unsicherheit zwischen den Pr
 üflingen liegt bei 0,79 μg/m³ und ist damit kleiner als die zul
 ässigen 2,5 μg/m³.
- 2. Die erweiterte Messunsicherheit für die Rohdaten ist für SN 3 (58 %) und für SN 4 (50 %) kleiner als die zulässigen 25 %.
- 3. Die erweiterte Messunsicherheit ist nach Anwendung der Korrektur der Steigung von 1,009 und des Achsabschnitts von -0,392 (ermittelt in Eignungsprüfung) für SN 3 (58 %) und für SN 4 (50 %) kleiner als die zulässigen 25 %.
- 4. Die gemeinsame Auswertung der vier Ursprungsdatensätze aus der Eignungsprüfung mit dem zusätzlichen fünften Datensatz aus Bornheim, Sommer 2013 führt ebenfalls zur Erfüllung der Äquivalenzkriterien gemäß des Leitfadens [4].

Somit bleibt festzustellen, dass der Nachweis der Äquivalenz der Messeinrichtung mit einem Schwellwert für die rel. Luftfeuchte von 58 % auch an einem deutschen Standort erbracht werden konnte und daher die Messeinrichtung Modell 5030i SHARP alternativ auch mit einem Schwellwert für die rel. Luftfeuchte von 58 % betrieben werden kann, insbesondere für Standorte, bei denen mit signifikant hohen Anteilen an Volatilen zu rechnen ist.

Seite 70 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Dauer der Probenahmen

DIN EN 12341 legt die Probenahmedauer auf 24 h fest. Bei niedrigen Konzentrationen ist jedoch auch eine längere, bei höheren Konzentrationen eine kürzere Probenahmedauer zulässig.

Im Feldtest wurde immer eine Probenahmezeit von 24 h für alle Geräte eingestellt (von 10:00 – 10:00 (Teddington und Köln) und von 7:00 – 7:00 (Bornheim)).

Handhabung der Daten

Die ermittelten Messwertpaare der Referenzwerte aus den Felduntersuchungen wurden vor den jeweiligen Auswertungen für jeden Standort einem statistischen Ausreißertest nach Grubbs (99 %) unterzogen, um Auswirkungen von offensichtlich unplausiblen Daten auf das Messergebnis vorzubeugen. Als signifikante Ausreißer erkannte Messwertpaare dürfen dabei solange aus dem Wertepool entfernt, bis der kritische Wert der Prüfgröße unterschritten wurde. Die Version des Leitfadens [4] vom Januar 2010 verlangt, dass nur 2,5 % der Datenpaare als Ausreißer ermittelt und entfernt werden dürfen.

Im Rahmen des "Combined MCERTS and TUV PM Equivalence Testing" Programms, wurde mit den englischen Projektpartnern vereinbart, dass für die Prüflinge prinzipiell keine Messwerte verworfen werden, es sei denn, es liegen begründbare technische Ursachen für unplausible Werte vor. Es wurden in der gesamten Prüfung keine Messwerte der Prüflinge verworfen.

Tabelle 12 zeigt eine Übersicht über die für jeden Einzelstandort als signifikante Ausreißer erkannte und entfernte Anzahl an Messwertpaaren (Referenz).

Nummer	Standort	Sammler	Anzahl Datenpaare	Maximale Anzahl Werte, die gelöscht w erden dürfen	Gefundene Anzahl	Gelöschte Anzahl	Anzahl der verbliebenen Datenpaare
А	Bornheim (Winter)	PM10 Referenz	42	1	0	0	42
В	Köln (Winter)	PM10 Referenz	50	1	0	0	50
с	Bornheim (Sommer)	PM10 Referenz	84	2	3	2	82
D	Teddington (Sommer)	PM10 Referenz	47	1	2	1	46

Tabelle 12: Ergebnisse Grubbs-Ausreißertest – Referenz PM₁₀

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Es wurden folgende Wertepaare entfernt:

Tabelle 13: Entfernte Wertepaare Referenz PM₁₀ nach Grubbs

Standort	Datum	Referenz 1 [µg/m³]	Referenz 2 [µg/m³]		
Bornheim (Sommer)	19.10.2011	19,7	9,1		
Bornheim (Sommer)	22.10.2011	32,6	27,6		
Teddington (Sommer)	26.07.2012	33,7	32,1		

Abbildung 28: Grubbs Testergebnisse für das PM₁₀ Referenzverfahren, Köln (Winter)

Seite 72 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 29: Grubbs Testergebnisse für das PM₁₀ Referenzverfahren, Bornheim (Sommer)

Abbildung 30: Grubbs Testergebnisse für das PM_{10} Referenzverfahren, Bornheim (Winter)

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 31: Grubbs Testergebnisse für das PM₁₀ Referenzverfahren, Teddington (Sommer)

Seite 74 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Filterhandling - Massenbestimmung

Folgende Filter wurden in der Eignungsprüfung verwendet:

Tabelle 14: Eingesetzte Filtermaterialien

Messgerät	Filtermaterial, Typ	Hersteller
Referenzgeräte LVS3	Emfab™, Ø 47 mm	Pall

Im Rahmen des Testprogramms "Combined MCERTS and TUV PM Equivalence Testing Programme" wurde auf ausdrücklichen Wunsch der britischen Projektpartner das Filtermaterial Emfab[™] (teflonbeschichtete Glasfaserfilter) eingesetzt, da der britische Partner laut [8] dieses Filtermaterial als das für die Messaufgabe am besten geeignete betrachtet.

Die Behandlung der Filter für PM_{10} entspricht analog den Anforderungen der DIN EN 14907 für $PM_{2.5}$ Filter.

Die Verfahren zur Behandlung der Filter und zur Wägung sind im Detail im Anhang 2 zu diesem Bericht beschrieben.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

5. Referenzmessverfahren

Im Rahmen des Feldtestes wurden gemäß der DIN EN 12341 folgende Geräte eingesetzt:

1. als Referenzgerät PM₁₀: Kleinfiltergerät Low Volume Sampler LVS3 Hersteller: Ingenieurbüro Sven Leckel, Leberstraße 63, Berlin, Deutschland Herstelldatum: 2007 PM₁₀-Probenahmekopf

Während der Prüfung wurden parallel jeweils zwei Referenzgeräte für PM_{10} mit einem geregelten Durchsatz von 2,3 m³/h betrieben. Die Volumenstromregelgenauigkeit beträgt unter realen Einsatzbedingungen < 1 % des Nennvolumenstroms.

Die Probenahmeluft beim Kleinfiltergerät LVS3 wird von der Drehschieber-Vakuumpumpe über den Probenahmekopf gesaugt, der Probeluft-Volumenstrom wird hierbei zwischen Filter und Vakuumpumpe mit einer Messblende gemessen. Die angesaugte Luft strömt von der Pumpe aus über einen Abscheider für den Abrieb der Drehschieber zum Luftauslass.

Nach beendeter Probenahme zeigt die Messelektronik das angesaugte Probeluftvolumen in Norm- oder Betriebs-m³ an.

Die PM₁₀ Konzentration wurde ermittelt, in dem die im Labor gravimetrisch bestimmte Schwebstaubmenge auf dem jeweiligen Filter durch das zugehörige durchgesetzte Probeluftvolumen in Betriebs-m³ (bzw. Norm-m³ i.S. der DIN EN 12341) dividiert wurde.

Seite 76 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6. Prüfergebnisse

6.1 4.1.1 Messwertanzeige

Die Messeinrichtung muss eine Messwertanzeige besitzen.

6.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3 Durchführung der Prüfung

Es wurde überprüft, ob die Messeinrichtung eine Messwertanzeige besitzt.

6.4 Auswertung

Die Messeinrichtung besitzt eine Messwertanzeige. Es wird im Hauptfenster jederzeit die aktuelle SHARP-Konzentration (jede Sekunde aktualisiert) angezeigt. Es kann zudem leicht zu den Screens zur Anzeige der PM-Konzentration (= BETA), der NEPH-Konzentration, der Umgebungsbedingungen, der Durchflussbedingungen oder der Massensensordaten per Pfeil-Tasten ↑↓ gescrollt werden.

6.5 Bewertung

Die Messeinrichtung besitzt eine Messwertanzeige.

Mindestanforderung erfüllt? ja

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.6 Umfassende Darstellung des Prüfergebnisses

Abbildung 32 zeigt die Benutzeranzeige mit den aktuellen Konzentrationsmesswerten.

CONCENTRATION				
SHARP	0.8 ⁴⁹ ″			
NEPH SMPL 1	2:43			
RANGE AVG	DIAGS ALARM			

Abbildung 32: Messanzeige Konzentrationsmesswerte SHARP

Seite 78 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 4.1.2 Wartungsfreundlichkeit

Die notwendigen Wartungsarbeiten an der Messeinrichtung sollten ohne größeren Aufwand möglichst von außen durchführbar sein.

6.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3 Durchführung der Prüfung

Die notwendigen regelmäßigen Wartungsarbeiten wurden nach den Anweisungen der Betriebsanleitung ausgeführt.

6.4 Auswertung

Folgende Wartungsarbeiten sind vom Benutzer durchzuführen:

- Überprüfung des Gerätestatus Der Gerätestatus kann durch Kontrolle der Messeinrichtung selbst oder auch on-line überwacht und kontrolliert werden.
- 2. Der Probenahmekopf muss prinzipiell nach den Anweisungen des Herstellers gesäubert werden, wobei die örtlichen Schwebstaubkonzentrationen in Betracht zu ziehen sind (in der Eignungsprüfung alle 4 Wochen).
- 3. Kontrolle des Filterbandvorrates ein Filterband reicht dabei für ca. 650 Filterbandwechsel pro Rolle (bei einer Zykluszeit von 8 h entspricht dies ca. 215 Tage) - unter Normalbedingungen (keine außerplanmäßigen Filterwechsel wegen signifikant hoher Staubkonzentrationen) ist ein ca. halb- jährliches Austauschen des Filterbandes ausreichend. Über die Funktion des "Filter Tape Counter" kann die aktuelle Anzahl der Filterbandwechsel überwacht werden und es können Alarmwerte konfiguriert werden, die den Bediener an einen anstehenden Wechsel der Filterbandrolle erinnern.
- 4. Eine Überprüfung der Sensoren für Umgebungstemperatur und Umgebungsdruck soll gemäß den Angaben des Herstellers alle 3 Monate erfolgen.
- 5. Eine Überprüfung der Durchflussrate soll gemäß den Angaben Herstellers alle 3 Monate erfolgen.
- 6. Eine Überprüfung der Dichtigkeit soll gemäß den Angaben des Herstellers alle 3 Monate erfolgen.
- 7. Der externe Pumpenabgasfilter soll alle 6 Monate getauscht werden.
- 8. Einmal im Jahr sind im Rahmen einer jährlichen Grundwartung die Kohleschieber der Vakuumpumpe auszutauschen sowie die SHARP Optik Baugruppe zu reinigen. Letzteres sollte idealerweise von einem erfahrenen Servicetechniker durchgeführt werden. Darüber hinaus wird eine Überprüfung und ggfs. Neukalibrierung der radiometrischen Messung mit Hilfe des Foliensatzes einmal im Jahr empfohlen.
- 9. Während einer jährlichen Grundwartung ist auch auf die Reinigung des Probenahmerohres zu achten.

Zur Durchführung der Wartungsarbeiten sind die Anweisungen im Handbuch (Kapitel 4 und 5) zu beachten. Alle Arbeiten lassen sich grundsätzlich mit üblichen Werkzeugen durchführen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Wartungsarbeiten sind mit üblichen Werkzeugen und vertretbarem Aufwand von außen durchführbar. Der halbjährliche Tausch des Filterbandes sowie die Arbeiten gemäß den Punkten 7ff sind nur bei einem Stillstand des Gerätes durchzuführen. Diese Arbeiten fallen nur halbjährlich bzw. jährlich an. In der restlichen Zeit kann sich die Wartung im Wesentlichen auf die Kontrolle von Verschmutzungen, Plausibilitätschecks und etwaigen Status-/Fehlermeldungen beschränken.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die Arbeiten an den Geräten wurden während der Prüfung auf Basis der in den Handbüchern beschriebenen Arbeiten und Arbeitsabläufe durchgeführt. Bei Einhaltung der dort beschriebenen Vorgehensweise konnten keine Schwierigkeiten beobachtet werden. Alle Wartungsarbeiten ließen sich bisher problemlos mit herkömmlichen Werkzeugen durchführen.

Seite 80 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 4.1.3 Funktionskontrolle

Soweit zum Betrieb oder zur Funktionskontrolle der Messeinrichtung spezielle Einrichtungen erforderlich sind, sind diese als zum Gerät gehörig zu betrachten und bei den entsprechenden Teilprüfungen einzusetzen und mit in die Bewertung aufzunehmen. Zur Messeinrichtung gehörende Prüfgaserzeugungssysteme müssen der Messeinrichtung ihre Betriebsbereitschaft über ein Statussignal anzeigen und über die Messeinrichtung direkt sowie auch telemetrisch angesteuert werden können.

6.2 Gerätetechnische Ausstattung

Bedienungshandbuch, Nullfilter, Referenzfoliensatz.

6.3 Durchführung der Prüfung

Der Gerätestatus der Messeinrichtung wird kontinuierlich überwacht und Probleme über eine Reihe von verschiedenen Warnungsmeldungen angezeigt. Für die korrekte Performance wichtige Kenngrößen (z.B. NEPH-Nullabgleich, Durchflüsse, Pumpenvakuum) können zudem entweder am Gerät selbst eingesehen werden und/oder bei der Datenaufzeichnung kontinuierlich mitgeloggt werden.

Es besteht die Möglichkeit, den Nullpunkt der Messeinrichtung extern zu überprüfen. Hierzu wird ein Nullfilter am Geräteinlass montiert. Der Einsatz dieses Filters ermöglicht die Bereitstellung von schwebstaubfreier Luft.

Im Rahmen der Prüfung wurde ca. alle 4 Wochen eine Bestimmung des Nullpunktes auch mit Hilfe des Nullfilters durchgeführt.

Zur externen Überprüfung der Stabilität der Beta-Messung wird der Foliensatz "Massentransferstandards" benötigt. Der Foliensatz besteht aus einer Nullfolie und 2 Messbereichsfolien. Die Nullfolie hat ungefähr die gleiche Masse wie ein sauberer Filterfleck und die Messbereichsfolie repräsentiert eine kalibrierte Massezunahme auf der Nullfolie. Aus diesem Grund werden die Folien als Foliensatz geliefert und dürfen nicht mit anderen Sätzen vertauscht werden. Mit Hilfe des Foliensatzes können nur Massen bestimmt werden.

Im Rahmen der Prüfung wurde jeweils zu Beginn und zum Ende einer Vergleichskampagne eine Bestimmung des Massenkoeffizienten durchgeführt.

Die Erzeugung eines reproduzierbaren Signals für die Empfindlichkeit des Nephelometers mittels eines externen Prüfstandards ist leider nicht möglich. Das Nephelometer wird allerdings im Betrieb regelmäßig mit Nullluft gespült (Auto-Zero-Funktion im Zuge jedes Filterwechsels) und somit der Nullpunkt ermittelt und dokumentiert. Informationen über den aktuellen NEPH-Hintergrund wie auch über den vorherigen NEPH-Hintergrund können vom Gerät jederzeit abgefragt werden. Da das Nephelometer kontinuierlich mittels der sehr stabilen radiometrischen Messung kalibriert wird, kann auf die gesonderte Untersuchungen der Stabilität des Nephelometersignals unter Betriebsbedingungen verzichtet werden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.4 Auswertung

Alle im Bedienungshandbuch aufgeführten Gerätefunktionen sind vorhanden oder aktivierbar. Der aktuelle Gerätestatus wird kontinuierlich überwacht und Probleme über eine Reihe von verschiedenen Warnungsmeldungen angezeigt.

Eine externe Überprüfung des Nullpunktes ist mit Hilfe des Nullfilters jederzeit möglich. Eine externe Überprüfung der radiometrischen Messung ist mit Hilfe des Foliensatz "Massentransferstandards" ebenfalls jederzeit möglich.

Die Erzeugung eines reproduzierbaren Signals für die Empfindlichkeit des Nephelometers mittels eines externen Prüfstandards ist leider nicht möglich. Das Nephelometer wird allerdings im Betrieb regelmäßig mit Nullluft gespült (Auto-Zero-Funktion im Zuge jedes Filterwechsels) und somit der Nullpunkt ermittelt und dokumentiert. Informationen über den aktuellen NEPH-Hintergrund wie auch über den vorherigen NEPH-Hintergrund können vom Gerät jederzeit abgefragt werden. Da das Nephelometer kontinuierlich mittels der sehr stabilen radiometrischen Messung kalibriert wird, kann auf die gesonderte Untersuchungen der Stabilität des Nephelometersignals unter Betriebsbedingungen verzichtet werden.

6.5 Bewertung

Alle im Bedienungshandbuch beschriebenen Gerätefunktionen sind vorhanden, aktivierbar und funktionieren. Der aktuelle Gerätestatus wird kontinuierlich überwacht und Probleme über eine Reihe von verschiedenen Warnungsmeldungen angezeigt.

Die Ergebnisse der externen Nullpunktsüberprüfungen mit Nullfilter über die Dauer der Felduntersuchungen sowie der periodisch durchgeführten Überprüfungen des Massenkoeffizienten sind im Kapitel 6.1 5.3.12 Langzeitdrift in diesem Bericht dargestellt.

Mindestanforderung erfüllt? ja

Umfassende Darstellung des Prüfergebnisses

Siehe unter dem Punkt: 6.1 5.3.12 Langzeitdrift

Seite 82 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 4.1.4 Rüst- und Einlaufzeiten

Die Rüst- und Einlaufzeiten der Messeinrichtung sind in der Betriebsanleitung anzugeben.

6.2 Gerätetechnische Ausstattung

Für die Prüfung dieser Mindestanforderung wurde zusätzlich eine Uhr bereitgestellt.

6.3 Durchführung der Prüfung

Die Messinstrumente wurden nach den Beschreibungen des Geräteherstellers in Betrieb genommen. Die erforderlichen Zeiten für Rüst- und Einlaufzeit wurden getrennt erfasst.

Erforderliche bauliche Maßnahmen im Vorfeld der Installation, wie z. B. die Einrichtung eines Durchbruchs im Containerdach, wurden hier nicht bewertet.

6.4 Auswertung

Die Rüstzeit umfasst den Zeitbedarf für den Aufbau der Messeinrichtung bis zur Inbetriebnahme.

Das Messsystem muss witterungsunabhängig installiert werden, z. B. in einem klimatisierten Messcontainer. Zudem erfordert die Durchführung des Ansaugrohres durch das Dach umfangreichere bauliche Maßnahmen am Messort. Ein ortsveränderlicher Einsatz wird daher nur zusammen mit der zugehörigen Peripherie angenommen.

Folgende Schritte zum Aufbau der Messeinrichtung sind grundsätzlich erforderlich:

- Entpacken und Aufstellung der Messeinrichtung (in Rack oder auf Tisch)
- Installation Probenahmerohre, Dynamisches Heizsystem und PM₁₀-Probenahmekopf
- Anschluss der Pumpe
- Umgebungstemperatursensor montieren (in die Nähe des Probenahmekopfes)
- Anschluss aller Verbindungs-, Steuerungsleitungen
- Anschluss der Energieversorgung
- optional Anschluss von peripheren Erfassungs- und Steuerungssystemen (Datalogger, PC mit iPort) an die entsprechenden Schnittstellen
- Einschalten der Messeinrichtung
- Filterband einlegen

Die Durchführung dieser Arbeiten und damit die Rüstzeit beträgt ca. 1 Stunde.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 83 von 431

Die Einlaufzeit umfasst den Zeitbedarf von der Inbetriebnahme der Messeinrichtung bis zur Messbereitschaft.

Nach dem Einschalten des Systems befindet sich die Messeinrichtung zuerst in einer Äquilibrierphase bis sich der BETA-Detektor an die Umgebungsverhältnisse angepasst hat. Diese Phase sollte mindestens 12 h betragen. Nach der Äquilibrierphase sind folgende Schritte zur erstmaligen Inbetriebnahme vorzunehmen:

- Überprüfung der Geräteeinstellung bzgl. Durchflussregelung, Heizungssteuerung, Filterbandparameter, Messwerterfassung sowie Datum und Zeit
- Überprüfung / ggfs. Justierung der Temperatursensoren (Umgebungstemperatur, Nephelometertemperatur, Durchflusstemperatur)
- Überprüfung / ggfs. Justierung der rel. Luftfeuchte des Nephelometers
- Überprüfung / ggfs. Justierung der Messung für den Umgebungsluftdruck
- Überprüfung / ggfs. Justierung der Durchflussrate
- Durchführung einer Dichtigkeitsprüfung
- Überprüfung / ggfs. Abgleich des Nephelometer-Nullpunktes mit HEPA-Filter am Inlet.
- Ggfs. Überprüfung der radiometrischen Massenbestimmung Kalibrierung mit Massenfolie

Zeitbedarf: ca 1 Stunde

Im Falle einer Wiederinbetriebnahme nach kürzerer Stillstandsphase z.B. nach Stromausfall, können die genannten Schritte bis auf die Überprüfung der Geräteparametrierung, die Plausbilitätsüberprüfung der Sensorwerte sowie die Überprüfung von etwaigen Status-/Fehlermeldungen unterbleiben.

Falls erforderlich, können etwaige Änderungen der Grundparametrierungen der Messeinrichtungen ebenfalls in wenigen Minuten durch mit den Geräten vertrautes Personal durchgeführt werden.

6.5 Bewertung

Die Rüst- und Einlaufzeiten wurden ermittelt.

Die Messeinrichtung kann bei überschaubarem Aufwand an unterschiedlichen Messstellen betrieben werden. Die Rüstzeit beträgt ca. 1 Stunde und die Einlaufzeit mindestens ca. 12 h nach vollständiger Akklimatisierung der Messeinrichtung an die Umgebung.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 84 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 4.1.5 Bauart

Die Betriebsanleitung muss Angaben des Herstellers zur Bauart der Messeinrichtung enthalten. Im Wesentlichen sind dies: Bauform (z. B. Tischgerät, Einbaugerät, freie Aufstellung) Einbaulage (z. B. horizontaler oder vertikaler Einbau) Sicherheitsanforderungen Abmessungen Gewicht Energiebedarf.

6.2 Gerätetechnische Ausstattung

Für die Prüfung wird eine Messeinrichtung zur Erfassung des Energieverbrauchs und eine Waage eingesetzt.

6.3 Durchführung der Prüfung

Der Aufbau der übergebenen Geräte wurde mit der Beschreibung in den Handbüchern verglichen. Der angegebene Energieverbrauch wird über 24 h im Normalbetrieb während des Feldtests bestimmt.

6.4 Auswertung

Die Messeinrichtung muss in horizontaler Einbaulage (z.B. auf einem Tisch oder in einem Rack) witterungsunabhängig installiert werden. Die Temperatur am Aufstellungsort muss im Bereich von 5 °C bis 40 °C mit relativ geringen Temperaturschwankungen liegen (keine direkte Sonneneinstrahlung, keine unmittelbare Exposition zu Heizung oder Klimaanlage).

Die Abmessungen und Gewichte der Messeinrichtung stimmen mit den Angaben aus dem Bedienungshandbuch überein.

Der Energiebedarf der Messeinrichtung mit der eingesetzten Pumpe wird vom Hersteller mit maximal ca. 880 W angegeben. In einem 24stündigen Test wurde der Gesamtenergiebedarf der Messeinrichtung ermittelt. Zu keinem Zeitpunkt wurde bei dieser Untersuchung der angegebene Wert überschritten.

6.5 Bewertung

Die in der Betriebsanleitung aufgeführten Angaben zur Bauart sind vollständig und korrekt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 4.1.6 Unbefugtes Verstellen

Die Justierung der Messeinrichtung muss gegen unbeabsichtigtes und unbefugtes Verstellen gesichert werden können.

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Die Bedienung der Messeinrichtung erfolgt auf der Frontseite der Messeinrichtung über Drucktasten und ein LCD-Display.

Eine Veränderung von Parametern oder die Justierung von Sensoren ist nur über mehrere Tastenfolgen möglich.

Die Messeinrichtung verfügt zudem über die Möglichkeit des Passwortschutzes. Bei aktiviertem Schutz (Symbol: Vorhängeschloss) können über die Benutzeroberfläche an der Gerätefrontseite Daten, Geräteparameter und Einstellungen eingesehen werden, aber nicht verändert werden.

Da eine Aufstellung des Messgerätes im Freien nicht möglich ist, erfolgt ein zusätzlicher Schutz durch die Aufstellung an Orten, zu denen Unbefugte keinen Zutritt haben (z. B. verschlossener Messcontainer).

6.4 Auswertung

Unbeabsichtigtes und unbefugtes Verstellen von Geräteparametern kann durch den Passwortschutz verhindert werden. Auch ohne Passwortschutz kann eine Veränderung von Parametern oder die Justierung von Sensoren nur über mehrere Tastenfolgen erfolgen. Ferner ergibt sich ein zusätzlicher Schutz vor unbefugtem Eingriff durch die Installation in einem verschlossenen Messcontainer.

6.5 Bewertung

Die Messeinrichtung ist gegen unbeabsichtigtes und unbefugtes Verstellen von Geräteparametern gesichert. Die Messeinrichtung ist darüber hinaus in einem Messcontainer zu verschließen.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 86 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 4.1.7 Messsignalausgang

Die Messsignale müssen digital (z. B. RS 232) und/oder analog (z. B. 4 mA bis 20 mA) angeboten werden.

6.2 Gerätetechnische Ausstattung

PC mit Software "iPort"

6.3 Durchführung der Prüfung

Die Prüfung erfolgte unter Verwendung eines PC mit Software "iPort" (via Ethernet).

Die Messeinrichtung wurde über Ethernet an einen PC angeschlossen und die Daten auf einen PC downgeloaded.

Die Messeinrichtung verfügt darüber hinaus auch über die Möglichkeit der Ausgabe von Analogsignalen sowie über die Ausgabe der Messsignale / Kommunikation via serielle Schnittstelle RS 232/RS 485.

6.4 Auswertung

Die Messsignale werden auf der Geräterückseite folgendermaßen angeboten:

Analog:	0-0,1, 0-1, 0-5 und 0-10 V 0-20 bzw. 4-20 mA	Konzentrationsbereich wählbar Konzentrationsbereich wählbar
Digital:	Ethernet mit Software "iPort"	
	RS 232 / RS 485-Schnittstelle	

6.5 Bewertung

Die Messsignale werden analog (in V oder in mA) und digital (über Ethernet, RS 232, RS 485) angeboten.

Der Anschluss von zusätzlichen Mess- und Peripheriegeräten ist über entsprechende Anschlüsse an den Geräten möglich (z.B. Analogeingänge).

Mindestanforderung erfüllt? ja

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.6 Umfassende Darstellung des Prüfergebnisses

Abbildung 33 zeigt eine Ansicht der Geräterückseite mit den jeweiligen Messwertausgängen.

Abbildung 33: Ansicht Geräterückseite Modell 5030i SHARP

Seite 88 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.1 Allgemeines

Herstellerangaben der Betriebsanleitung dürfen den Ergebnissen der Eignungsprüfung nicht widersprechen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Ergebnisse der Prüfungen werden mit den Angaben im Handbuch verglichen.

6.4 Auswertung

Die gefundenen Abweichungen zwischen dem ersten Handbuchsentwurf und der tatsächlichen Geräteausführung wurden behoben.

6.5 Bewertung

Differenzen zwischen Geräteausstattung und Handbüchern wurden nicht beobachtet.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Siehe Punkt 6.4 zu diesem Modul.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 5.2.1 Zertifizierungsbereiche

Der für die Prüfung vorgesehene Zertifizierungsbereich ist zu ermitteln.

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Der für die Prüfung vorgesehene Zertifizierungsbereich ist zu ermitteln.

6.4 Auswertung

Die Richtlinie VDI 4202, Blatt 1 enthält folgende Mindestanforderungen für die Zertifizierungsbereiche von Schwebstaubimmissionsmesseinrichtungen:

Tabelle 15: Zertifizierungsbereiche

Messkomponente	Untere Grenze ZB	Obere Grenze ZB	Grenzwert	Beurteilungszeitraum
	in µg/m³	in µg/m³	in µg/m³	
PM ₁₀	0	100	50	24 h

Die Zertifizierungsbereiche orientieren sich am Grenzwert für den kleinsten Beurteilungszeitraum und diesen zur Beurteilung der Messeinrichtung im Bereich dieses Grenzwerts. Diese Beurteilung der Messeinrichtung im Bereich des Grenzwertes erfolgt im Rahmen der Bestimmung der erweiterten Unsicherheit der Prüflinge gemäß Leitfaden [4]. Hierzu werden als Bezugswerte gemäß Leitfaden die folgenden Werte herangezogen:

PM₁₀: 50 µg/m³

Es wird auf den Prüfpunkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge im Bericht verwiesen.

6.5 Bewertung

Die Beurteilung der Messeinrichtung im Bereich der relevanten Grenzwerte ist möglich.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Siehe unter dem Prüfpunkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge im Bericht.

Seite 90 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.2 Messbereich

Der Messbereichsendwert der Messeinrichtung muss größer oder gleich der oberen Grenze des Zertifizierungsbereichs sein.

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Es wurde geprüft, ob der Messbereichsendwert der Messeinrichtung größer oder gleich der oberen Grenze des Zertifizierungsbereiches ist.

6.4 Auswertung

An der Messeinrichtung ist standardmäßig ein Messbereich von 0 – 10.000 μ g/m³ eingestellt.

Als zweckmäßige Standardeinstellung des Analogausgangs für europäische Verhältnisse wird ein Messbereich 0 - 200 oder $0 - 1.000 \mu g/m^3$ empfohlen.

(empfohlener) Messbereich: $0 - 200 \text{ oder } 0 - 1.000 \mu g/m^3$

Obere Grenze des Zertifizierungsbereichs: PM₁₀: 100 µg/m³

6.5 Bewertung

Es ist standardmäßig ein Messbereich von 0 – 10.000 μ g/m³ eingestellt. Andere Messbereiche sind möglich.

Der Messbereichsendwert der Messeinrichtung ist größer als die jeweilige obere Grenze des Zertifizierungsbereichs.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 5.2.3 Negative Messsignale

Negative Messsignale oder Messwerte dürfen nicht unterdrückt werden (lebender Nullpunkt).

6.2 Gerätetechnische Ausstattung

Zur Prüfung dieser Mindestanforderung sind keine weiteren Hilfsmittel erforderlich.

6.3 Durchführung der Prüfung

Es wurde im Labor- wie auch Feldtest geprüft, ob die Messeinrichtung auch negative Messwerte ausgeben kann.

6.4 Auswertung

Die Messeinrichtung kann sowohl über Display wie auch über die Datenausgänge negative Werte ausgeben.

6.5 Bewertung

Negative Messsignale werden von der Messeinrichtung direkt angezeigt und über die entsprechenden Messsignalausgänge korrekt ausgegeben.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 92 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030/ SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.4 Stromausfall

Bei Gerätestörungen und bei Stromausfall von bis zu 72 h muss ein unkontrolliertes Ausströmen von Betriebs- und Kalibriergas unterbunden sein. Die Geräteparameter sind durch eine Pufferung gegen Verlust durch Netzausfall zu schützen. Bei Spannungswiederkehr muss das Gerät automatisch wieder den messbereiten Zustand erreichen und gemäß der Betriebsvorgabe die Messung beginnen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Es wurde ein Stromausfall simuliert und geprüft, ob das Gerät unbeschädigt bleibt und nach Wiedereinschalten der Stromversorgung wieder messbereit ist.

6.4 Auswertung

Da die Messgeräte zum Betrieb weder Betriebs- noch Kalibriergase benötigen, ist ein unkontrolliertes Ausströmen von Gasen nicht möglich.

Im Falle eines Netzausfalles startet die Messeinrichtung selbstständig wieder den Messbetrieb. Die ersten mindestens 12 h an Messwerten nach Wiederkehr der Stromversorgung sollten allerdings verworfen werden, da sich die Messeinrichtung nach dem Wiedereinschalten zuerst in einer Äquilibrierphase befindet, bis sich der BETA-Detektor an die Umgebungsverhältnisse angepasst hat (siehe unter Punkt 6.1 4.1.4 Rüst- und Einlaufzeiten).

6.5 Bewertung

Alle Geräteparameter sind gegen Verlust durch Pufferung geschützt. Die Messeinrichtung befindet sich bei Spannungswiederkehr in störungsfreier Betriebsbereitschaft und führt selbstständig den Messbetrieb fort. Die ersten mindestens 12 h an Messwerten nach Wiederkehr der Stromversorgung sollten allerdings verworfen werden, da sich die Messeinrichtung nach dem Wiedereinschalten zuerst in einer Äquilibrierphase befindet, bis sich der BETA-Detektor an die Umgebungsverhältnisse angepasst hat.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 5.2.5 Gerätefunktionen

Die wesentlichen Gerätefunktionen müssen durch telemetrisch übermittelbare Statussignale zu überwachen sein.

6.2 Gerätetechnische Ausstattung

PC zur Datenerfassung.

6.3 Durchführung der Prüfung

An die Messeinrichtung wurde lokal über Ethernet ein PC angeschlossen und der Datentransfer inkl. Gerätestatus geprüft.

Es bestehen darüber hinaus auch Möglichkeiten der Geräteüberwachung und -steuerung via serieller Schnittstelle.

Über entsprechende Router oder Modems ist eine Fernüberwachung- und -steuerung leicht möglich.

6.4 Auswertung

Die Messeinrichtung ermöglicht eine umfassende telemetrische Kontrolle und Steuerung der Messeinrichtung über verschiedene Wege (Ethernet, RS232, RS485).

6.5 Bewertung

Die Messeinrichtungen können über ein Modem bzw. einen Router von einem externen Rechner aus umfassend überwacht und gesteuert werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 94 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.6 Umschaltung

Die Umschaltung zwischen Messung und Funktionskontrolle und/oder Kalibrierung muss telemetrisch durch rechnerseitige Steuerung und manuell auslösbar sein.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Messeinrichtung kann durch den Bediener am Gerät oder aber durch die telemetrische Fernbedienung überwacht sowie teilweise gesteuert werden.

Einige Funktionen wie z.B. die Durchführung eines Referenzfolientests zur Überprüfung des Massenkoeffizienten der radiometrischen Messung können nur am Gerät direkt durchgeführt werden.

6.4 Auswertung

Alle Bedienprozeduren, die keine praktischen Handgriffe vor Ort bedingen, können sowohl vom Bedienpersonal am Gerät als auch durch telemetrische Fernbedienung überwacht werden.

6.5 Bewertung

Grundsätzlich können alle notwendigen Arbeiten zur Funktionskontrolle direkt am Gerät oder aber per telemetrischer Fernbedienung überwacht werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 95 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.7 Wartungsintervall

Das Wartungsintervall der Messeinrichtung ist in der Feldprüfung zu ermitteln und anzugeben. Das Wartungsintervall sollte möglichst drei Monate, muss jedoch mindestens zwei Wochen betragen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Bei dieser Mindestanforderung wurde untersucht, welche Wartungsarbeiten in welchen Zeitabständen für eine einwandfreie Funktionsfähigkeit der Messeinrichtung erforderlich sind. Weiterhin wurden die Ergebnisse der Driftbestimmung für Null- und Referenzpunkt gemäß 6.1 5.3.12 Langzeitdrift zur Ermittlung des Wartungsintervalls berücksichtigt.

6.4 Auswertung

Es konnten für die Messeinrichtungen über den gesamten Feldtestzeitraum keine unzulässigen Driften festgestellt werden. Das Wartungsintervall wird daher durch die anfallenden Wartungsarbeiten bestimmt (siehe hierzu auch Modul 4.1.2).

Innerhalb der Betriebszeit kann die Wartung auf die Kontrolle von Verschmutzungen, Plausibilitätschecks und etwaigen Status-/Fehlermeldungen beschränkt werden.

6.5 Bewertung

Das Wartungsintervall wird durch die notwendigen Wartungsarbeiten bestimmt und beträgt 1 Monat.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die notwendigen Wartungsarbeiten können dem Modul 4.1.2 dieses Berichtes und dem Kapitel 5 des Bedienhandbuchs entnommen werden.

Seite 96 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.8 Verfügbarkeit

Die Verfügbarkeit der Messeinrichtung ist in der Feldprüfung zu ermitteln und muss mindestens 95 % betragen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Start- und Endzeitpunkt der Verfügbarkeitsuntersuchungen werden durch den Start- bzw. Endzeitpunkt an jedem der vier Feldteststandorte bestimmt. Dazu werden alle Unterbrechungen der Prüfung, z. B. durch Störungen oder Wartungsarbeiten erfasst.

6.4 Auswertung

Tabelle 16 und Tabelle 17 zeigen eine Aufstellung der Betriebs-, Wartungs- und Störungszeiten. Die Messeinrichtungen wurden im Feldtest über einen Zeitraum von insgesamt 294 Messtagen betrieben (siehe Anhang 5). Dieser Zeitraum beinhaltet insgesamt 22 Tage mit Nullfilterbetrieb, Audits sowie Tagen, die durch den Wechsel auf Nullfilter verworfen werden mussten (siehe auch Anlage 5).

Ausfälle durch externe Einflüsse, die nicht dem Gerät angelastet werden können, wurden am 10.03.2011 und am 14.03.2011 (Stromausfall) registriert. Da die Messeinrichtung nach Stromwiederkehr einige Stunden zur Stabilisierung benötigt, mussten an dieser Stelle auch die beiden Folgetage verworfen werden. Des Weiteren wurde SN 3 am 26.04.2011 durch Unachtsamkeit versehentlich ausgeschaltet. Dadurch reduziert sich die Gesamtbetriebszeit auf 290 (SN 3) bzw. 290 (SN 4) Messtage.

Es wurden folgende Gerätestörungen beobachtet:

SN 3:

Am Standort Köln, Winter kam es am 01.05.2011 zu einem Defekt am Motor, welcher die Messkammer öffnet und schließt. Der Defekt konnte direkt am 02.05.2011 behoben werden, so dass es nur zum Ausfall von 2 Tagen kam.

Am Standort Bornheim, Sommer kam es zwischen dem 26.07.2011 und dem 29.07.2011 zum Ausfall der Messeinrichtung auf Grund einer defekten Heizplatine. Diese wurde am 29.07.2011 ausgetauscht.

Ansonsten wurden keine weiteren Gerätestörungen beobachtet.

SN 4:

Es wurden keine Gerätestörungen bei SN 4 beobachtet.

Die üblichen Wartungszeiten (ohne Nullfilterbetrieb) z.B. zur Pflege der Probenahmeköpfe oder zur Überprüfung der Durchflussrate / Dichtigkeit führen in der Regel zu Ausfällen von ca. 1 h pro Tag. Die betroffenen Tagesmittelwerte wurden daher nicht verworfen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die Verfügbarkeit betrug für SN 3 97,9 % und für SN 4 100 % ohne prüfungsbedingte Ausfälle bzw. 90,3 % für SN 3 sowie 92,4 % für SN 4 inkl. prüfungsbedingter Ausfälle.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 16: Ermittlung der Verfügbarkeit (ohne prüfungsbedingte Ausfälle)

		Gerät 1 (SN 3)	Gerät 2 (SN 4)
Einsatzzeit	d	290	290
Ausfallzeit (Störung)	d	6	0
Wartungszeit	d	0	0
Tatsächliche Betriebszeit	d	284	290
Verfügbarkeit	%	97,9	100

Tabelle 17: Ermittlung der	Verfügbarkeit ((inkl. prüfungsbedingte	Ausfälle)
----------------------------	-----------------	-------------------------	-----------

		Gerät 1 (SN 3)	Gerät 2 (SN 4)
Einsatzzeit	d	290	290
Ausfallzeit (Störung)	d	6	0
Wartungszeit inkl. Nullfilterbetrieb	d	22	22
Tatsächliche Betriebszeit	d	262	268
Verfügbarkeit	%	90,3	92,4

Seite 98 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.2.9 Gerätesoftware

Die Version der zu testenden Gerätesoftware muss beim Einschalten der Messeinrichtung angezeigt werden. Funktionsbeeinflussende Änderungen der Gerätesoftware sind dem Prüfinstitut mitzuteilen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Es wurde überprüft, ob die Gerätesoftware am Gerät angezeigt werden kann. Der Gerätehersteller wurde darauf hingewiesen, dass jegliche Änderungen der Gerätesoftware dem Prüfinstitut mitgeteilt werden müssen.

6.4 Auswertung

Die aktuelle Software wird nicht beim Einschalten des Gerätes im Display angezeigt aber sie kann zudem jederzeit im Menü "Diagnostics" unter dem Punkt "Program Versions" eingesehen werden.

Die Prüfung wurde im Jahr 2009 mit der Softwareversion V00.05.41.114 begonnen. Während der Prüfung wurde die Software beständig weiterentwickelt und optimiert.

Mit Beginn der Feldprüfungen im Januar 2011 wurde die Softwareversion V01.00.01.197 installiert und über den gesamten Feldtest beibehalten.

Ein Update zur Softwareversion V01.00.03.225 erfolgte nach Beenden des regulären Feldtests und vor der Durchführung der letzten Laboruntersuchungen. Diese Softwareversion wurde auch während der zusätzlichen Vergleichskampagne "Bornheim, Sommer 2013" eingesetzt.

In der Zwischenzeit erfolgte auf Grund der Abkündigung eines Prozessorboards erneut eine Anpassung der Softwareversion auf die aktuelle Version V02.00.00.232+.

Eine Übersicht der durchgeführten Änderungen ist unter Punkt 4.1 Allgemeines dargestellt.

Die Betriebssicherheit der Messeinrichtung wird durch die Änderungen beständig erhöht. Es ist durch die durchgeführten Änderungen bis zur Version V02.00.00.232+ kein signifikanter Einfluss auf die Geräteperformance zu erwarten.

6.5 Bewertung

Die Version der Gerätesoftware wird im Display angezeigt. Änderungen der Gerätesoftware werden dem Prüfinstitut mitgeteilt.

Mindestanforderung erfüllt? ja

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

AVG

6.6 Umfassende Darstellung des Prüfergebnisses

RANGE

Abbildung 34: Anzeige der Softwareversion (hier V02.00.00.232+) im Menü "Diagnostics/ Program Versions"

DIAGS ALARM

Hinweis:

Die untergeordneten Softwareversionen FIRMWARE (Allgemeine Parameter der i-Serie), B/AMPL (Beta / Amplifier) und NEPH (Nephelometer) sind im dargestellten Softwarestand fix mit der Hauptsoftwareversion verbunden. Eine Änderung in den Unterversionen FIRMWARE (Allgemeine Parameter der i-Serie), B/AMPL (Beta / Amplifier) und NEPH (Nephelometer) bewirkt zwangsläufig eine Änderung der Hauptsoftwareversion.

Seite 100 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.1 Allgemeines

Die Prüfung erfolgen auf Basis der Mindestanforderungen der Richtlinie VDI 4202, Blatt 1 (September 2010).

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung erfolgt auf Basis der Mindestanforderungen der Richtlinie VDI 4202 Blatt 1 (September 2010).

6.4 Auswertung

Die Richtlinien VDI 4202, Blatt 1 und VDI 4203, Blatt 3 wurden nach umfangreicher Revision mit Stand September 2010 neu veröffentlicht. Leider bestehen nach dieser Revision im Hinblick zur Prüfung von Staub-Immissionsmesseinrichtungen einige Unklarheiten und Widersprüche bezüglich konkreter Mindestanforderungen auf der einen Seite und der generellen Sinnhaftigkeit von Prüfpunkten auf der anderen Seite. Es besteht konkret Klärungsbedarf bei den folgenden Prüfpunkten:

6.1	5.3.2 W	iederholstandardabweichung am Nullpunkt	→ keine Mindestan- forderung definiert
6.1	5.3.3 W	iederholstandardabweichung am Referenzpunkt	→ nicht sinnvoll für Staubgeräte
6.1	5.3.4 Lir	nearität (Lack-of-fit)	→ nicht sinnvoll für Staubgeräte
6.1	5.3.7 Er	npfindlichkeitskoeffizient der Umgebungstemperatur	→ keine Mindestan- forderung definiert
6.1	5.3.8 Er	npfindlichkeitskoeffizient der elektrischen Spannung	→ keine Mindestan- forderung definiert
6.1	5.3.11	Standardabweichung aus Doppelbestimmungen	→ keine Mindestan- forderung definiert
6.1	5.3.12	Langzeitdrift	→ keine Mindestan- forderung definiert
6.1	5.3.13	Kurzzeitdrift	→ nicht sinnvoll für Staubgeräte
6.1	5.3.18	Gesamtunsicherheit	→ nicht sinnvoll für Staubgeräte

Aus diesem Grunde wurde eine offizielle Anfrage an die zuständige Stelle in Deutschland gestellt, um eine abgestimmte Vorgehensweise zum Umgang mit den Inkonsistenzen der Richtlinie festzulegen.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Es wurde folgende Vorgehensweise vorgeschlagen:

Die Prüfpunkte 5.3.2, 5.3.7, 5.3.8, 5.3.11 und 5.3.12 werden wie bisher auf Basis der Mindestanforderungen aus VDI 4202 Blatt 1 von 2002 bewertet (d.h. unter Verwendung der Bezugswerte B_0 , B_1 und B_2).

Auf die Prüfung der Prüfpunkte 5.3.3, 5.3.4, 5.3.13 und 5.3.18 wird verzichtet, da diese Prüfpunkte für Staubmesseinrichtungen nicht relevant sind.

Die zuständige deutsche Stelle hat dieser vorgeschlagenen Vorgehensweise per Entscheidung vom 27.06.2011 bzw. 07.10.2011 zugestimmt.

6.5 Bewertung

Die Prüfung erfolgte auf Basis der der Mindestanforderungen der Richtlinie VDI 4202 Blatt 1 (September 2010). Die Prüfpunkte 5.3.2, 5.3.7, 5.3.8, 5.3.11 und 5.3.12 werden daher auf Basis der Mindestanforderungen aus VDI 4202 Blatt 1 von 2002 bewertet (d.h. unter Verwendung der Bezugswerte B₀, B₁ und B₂). Auf die Prüfung der Prüfpunkte 5.3.3, 5.3.4, 5.3.13 und 5.3.18 wird verzichtet, da diese Prüfpunkte für Staubmesseinrichtungen nicht relevant sind.

Mindestanforderung erfüllt? ja

Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Seite 102 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030/ SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.2 Wiederholstandardabweichung am Nullpunkt

Die Wiederholstandardabweichung am Nullpunkt darf im Zertifizierungsbereich nach Tabelle 1 der Richtlinie VDI 4202 Blatt 1 (September 2010) die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.

Bei abweichenden Zertifizierungsbereichen darf die Wiederholstandardabweichung am Nullpunkt höchstens 2 % der oberen Grenze dieses Zertifizierungsbereichs betragen.

Hinweis:

Dieser Prüfpunkt ist für Staubmesseinrichtungen auf Basis der aktuell gültigen Richtlinienversionen der Richtlinie VDI 4202 Blatt 1 (September 2010) sowie VDI 4203 Blatt 3 (September 2010) aufgrund nicht definierter Mindestanforderungen nicht auswertbar. Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) wird daher alternativ auf die nachfolgende Anforderung der Vorgängerversion der Richtlinie VDI 4202 Blatt 1 (Juni 2002) verwiesen:

Die Nachweisgrenze der Messeinrichtung darf den Bezugswert B₀ nicht überschreiten. Die Nachweisgrenze ist im Feldtest zu ermitteln.

6.2 Gerätetechnische Ausstattung

Nullfilter zur Nullpunktüberprüfung

6.3 Durchführung der Prüfung

Die Bestimmung der Nachweisgrenze erfolgten bei den Testgeräten SN 3 und SN 4 durch den Betrieb der Messeinrichtung mit jeweils an beiden Messgeräteeinlässen installierten Null-Filtern. Die Aufgabe von schwebstaubfreier Probenluft erfolgte über 15 Tage für die Dauer von jeweils 24 h. Die Ermittlung der Nachweisgrenze erfolgte im Labor, da unter Feldbedingungen eine Bereitstellung von schwebstaubfreier Luft über den langen Zeitraum nicht möglich war.

6.4 Auswertung

Die Nachweisgrenze X wird aus der Standardabweichung s_{x0} der SHARP-Messwerte bei Ansaugung von schwebstaubfreier Probenluft durch beide Testgeräte ermittelt. Sie entspricht der mit Studentfaktor multiplizierten Standardabweichung des Mittelwertes x_0 der Messwerte x_{0i} für das jeweilige Testgerät:

$$X = t_{n-1;0,95} \cdot S_{x0} \qquad \text{mit} \cdot S_{x0} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1,n} (x_{0i} - \overline{x_0})^2}$$

Bezugswert: $B_0 = 2 \mu g/m^3$

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die Nachweisgrenze ermittelte sich aus den Untersuchungen zu 0,01 μ g/m³ für Gerät 1 (SN 3) und zu 0,16 μ g/m³ für Gerät 2 (SN 4).

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 18: Nachweisgrenze PM₁₀

		Gerät SN 3	Gerät SN 4
Anzahl der Werte n		15	15
Mittelwert der Leerwerte $\overline{x_0}$	µg/m³	0,01	0,04
Standardabweichung der Werte s_{x0}	µg/m³	0,01	0,07
Student-Faktor t _{n-1;0,95}		2,14	2,14
Nachweisgrenze x	µg/m³	0,01	0,16

Die Einzelmesswerte zur Bestimmung der Nachweisgrenze können der Anlage 1 im Anhang entnommen werden.

Seite 104 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.3 Wiederholstandardabweichung am Referenzpunkt

Die Wiederholstandardabweichung am Referenzpunkt darf im Zertifizierungsbereich nach Tabelle der Richtlinie VDI 4202 Blatt 1 (September 2010) die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist der Grenzwert bzw. die Alarmschwelle zu verwenden.

Bei abweichenden Zertifizierungsbereichen darf die Wiederholstandardabweichung am Referenzpunkt höchstens 2 % der oberen Grenze dieses Zertifizierungsbereichs betragen. Als Referenzpunkt ist in diesem Fall ein Wert c_t bei 70 % bis 80 % der oberen Grenze dieses Zertifizierungsbereichs zu verwenden.

Hinweis:

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Nicht zutreffend.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.4 Linearität (Lack-of-fit)

Der Zusammenhang zwischen dem Ausgangssignal und dem Wert des Luftbeschaffenheitsmerkmals muss mithilfe einer linearen Analysenfunktion darstellbar sein.

Die Linearität gilt als gesichert, wenn die Abweichung der Gruppenmittelwerte der Messwerte von der Kalibrierfunktion im Zertifizierungsbereich nach Tabelle der Richtlinie VDI 4202 Blatt 1 (September 2010) die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) einhält.

Für die anderen Zertifizierungsbereiche darf die Abweichung der Gruppenmittelwerte der Messwerte von der Kalibrierfunktion nicht mehr als 5 % der oberen Grenze des entsprechenden Zertifizierungsbereichs betragen.

Hinweis:

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Für Staubmesseinrichtungen für PM_{10} ist diese Prüfung nach der Mindestanforderung 5.4.2 "Gleichwertigkeit des Probenahmesystems" durchzuführen.

6.2 Gerätetechnische Ausstattung

Siehe Modul 5.4.2 (PM₁₀)

6.3 Durchführung der Prüfung

Für Staubmesseinrichtungen für PM₁₀ ist diese Prüfung nach der Mindestanforderung 5.4.2 "Gleichwertigkeit des Probenahmesystems" durchzuführen.

6.4 Auswertung

Siehe Modul 5.4.2 (PM₁₀)

6.5 Bewertung

Für Staubmesseinrichtungen für PM₁₀ ist diese Prüfung nach der Mindestanforderung 5.4.2 "Gleichwertigkeit des Probenahmesystems" durchzuführen.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Siehe Modul 5.4.2 (PM₁₀)

Seite 106 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.5 Empfindlichkeitskoeffizient des Probengasdrucks

Der Empfindlichkeitskoeffizient des Probengasdrucks am Referenzpunkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Nicht zutreffend.

Seite 107 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.6 Empfindlichkeitskoeffizient der Probengastemperatur

Der Empfindlichkeitskoeffizient der Probengastemperatur am Referenzpunkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Nicht zutreffend.

Seite 108 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.7 Empfindlichkeitskoeffizient der Umgebungstemperatur

Der Empfindlichkeitskoeffizient der Umgebungstemperatur am Nullpunkt und am Referenzpunkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Dieser Prüfpunkt ist für Staubmesseinrichtungen auf Basis der aktuell gültigen Richtlinienversionen der Richtlinie VDI 4202 Blatt 1 (September 2010) sowie VDI 4203 Blatt 3 (September 2010) aufgrund nicht definierter Mindestanforderungen nicht auswertbar. Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1), wird daher alternativ auf die nachfolgende Anforderungen der Vorgängerversion der Richtlinie VDI 4202 Blatt 1 (Juni 2002) verwiesen:

Die Temperaturabhängigkeit des Nullpunkt-Messwertes darf bei einer Änderung der Umgebungstemperatur um 15 K im Bereich zwischen +5 °C und +20 °C bzw. 20 K im Bereich zwischen +20 °C und +40 °C den Bezugswert B_0 nicht überschreiten.

Die Temperaturabhängigkeit des Messwertes im Bereich des Bezugswertes B₁ darf nicht mehr als ± 5 % des Messwertes bei einer Änderung der Umgebungstemperatur um 15 K im Bereich zwischen +5 °C und +20 °C bzw. 20 K im Bereich zwischen +20 °C und +40 °C betragen.

6.2 Gerätetechnische Ausstattung

Klimakammer für den Temperaturbereich +5 bis +40 °C, Nullfilter zur Nullpunktüberprüfung, Referenzfoliensatz zur Referenzpunktüberprüfung.

6.3 Durchführung der Prüfung

Zur Untersuchung der Abhängigkeit des Nullpunktes und der Messwerte von der Umgebungstemperatur wurden die vollständigen Messeinrichtungen in der Klimakammer betrieben.

Für die Nullpunktuntersuchungen wurde den beiden Testgeräten SN 3 und SN 4 durch Montage von Null-Filtern an jeweils beiden Geräteeinlässen schwebstaubfreie Probenluft zugeführt.

Für die Referenzpunktuntersuchungen wurde bei den Testgeräten SN 3 und SN 4 zur Überprüfung der Stabilität der Empfindlichkeit der Massenkoeffizient überprüft.

Die Erzeugung eines reproduzierbaren Signals für die Empfindlichkeit des Nephelometers mittels eines externen Prüfstandards ist leider nicht möglich. Da das Nephelometer kontinuierlich mittels der sehr stabilen radiometrischen Messung kalibriert wird, kann auf die gesonderte Untersuchungen der Stabilität des Nephelometersignals am Referenzpunkt verzichtet werden. Die potentielle Abhängigkeit des Nephelometersignals von der Umgebungstemperatur wird explizit am Nullpunkt untersucht.
Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die Umgebungstemperaturen in der Klimakammer wurden in der Reihenfolge 20 °C – 5 °C – 20 °C – 40 °C – 20 °C variiert. Nach einer Äquilibrierzeit von ca. 24 h pro Temperaturstufe erfolgte die Aufnahme der Messwerte am Nullpunkt (pro Temperaturstufe je 3 x 24h) sowie der Messwerte am Referenzpunkt (pro Temperaturstufe je 3 x).

6.4 Auswertung

Nullpunkt:

Es wurden die Messwerte für die Konzentration der jeweils 24-stündigen Einzelmessungen ausgelesen und ausgewertet. Betrachtet wird die absolute Abweichung in μ g/m³ pro Temperaturschritt bezogen auf den Ausgangspunkt von 20 °C.

Bezugswert: $B_0 = 2 \mu g/m^3$

Referenzpunkt:

Betrachtet wird die prozentuale Änderung des ermittelten Messwertes für den Massenkoeffizienten für jeden Temperaturschritt bezogen auf den Ausgangspunkt bei 20 °C.

Als Anmerkung sei erwähnt, dass mit Hilfe der Überprüfung des Massenkoeffizienten keine Konzentrationswerte simuliert werden konnten, eine Betrachtung im Bereich des B₁ war aus diesem Grunde nicht möglich.

6.5 Bewertung

Es konnte ein maximaler Einfluss der Umgebungstemperatur im Bereich 5 °C bis 40 °C auf den Nullpunkt von -1,1 μ g/m³ festgestellt werden.

Am Referenzpunkt konnten keine Abweichungen > 0,9 % zum Ausgangswert bei 20 °C ermittelt werden.

Mindestanforderung erfüllt? ja

Seite 110 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 19: Abhängigkeit des Nullpunktes (SHARP) von der Umgebungstemperatur, Abweichung in µg/m³, Mittelwert aus drei Messungen

Tem	peratur	Abweichung		
Anfangstemperatur	Endtemperatur	SN 3	SN 4	
°C	°C	µg/m³	µg/m³	
20	5	0.0	-0.5	
5	20	0.1	-0.5	
20	40	0.0	-1.1	
40 20		0.0	-1.0	

Tabelle 20: Abhängigkeit der Empfindlichkeit (Massenkoeffizient) von der Umgebungstemperatur, Abweichung in %, Mittelwert aus drei Messungen

Tem	peratur	Abweichung		
Anfangstemperatur	Endtemperatur	SN 3	SN 4	
°C	°C	[%]	[%]	
20	5	0,0	0,3	
5	20	0,6	-0,3	
20	40	0,3	0,9	
40 20		0,3	0,3	

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 21: Abhängigkeit des Nullpunktes (NEPH) von der Umgebungstemperatur, Abweichung in µg/m³, Mittelwert aus drei Messungen

Tem	peratur	Abweichung		
Anfangstemperatur	Endtemperatur	SN 3	SN 4	
°C	°C	µg/m³	µg/m³	
20	5	-0.1	-0.5	
5	20	0.8	-0.5	
20	40	-0.2	-1.0	
40	40 20		-0.9	

Die jeweiligen Ergebnisse der 3 Einzelmessungen können der Anlage 2 und Anlage 3 im Anhang entnommen werden.

Seite 112 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.8 Empfindlichkeitskoeffizient der elektrischen Spannung

Der Empfindlichkeitskoeffizient der elektrischen Spannung darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Dieser Prüfpunkt ist für Staubmesseinrichtungen auf Basis der aktuell gültigen Richtlinienversionen der Richtlinie VDI 4202 Blatt 1 (September 2010) sowie VDI 4203 Blatt 3 (September 2010) aufgrund nicht definierter Mindestanforderungen nicht auswertbar. Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1), wird daher alternativ auf die nachfolgende Anforderungen der Vorgängerversion der Richtlinie VDI 4202 Blatt 1 (Juni 2002) verwiesen:

Die Änderung des Messwertes beim Bezugswert B_1 durch die im elektrischen Netz üblicherweise auftretende Änderung der Spannung im Intervall (230 +15/-20) V darf nicht mehr als B_0 betragen.

6.2 Gerätetechnische Ausstattung

Trennstelltrafo, Referenzfoliensatz zur Referenzpunktüberprüfung.

6.3 Durchführung der Prüfung

Zur Untersuchung der Abhängigkeit des Messsignals von der Netzspannung wurde die Netzspannung ausgehend von 230 V auf 210 V reduziert und anschließend über die Zwischenstufe 230 V auf 245 V erhöht.

Für die Referenzpunktuntersuchungen wurde bei den Testgeräten SN 3 und SN 4 zur Überprüfung der Stabilität der Empfindlichkeit der Massenkoeffizient überprüft.

Da der mobile Einsatz der Messeinrichtung nicht vorgesehen ist, wurde auf die gesonderte Untersuchung der Abhängigkeit des Messsignals von der Netzfrequenz verzichtet.

6.4 Auswertung

Am Referenzpunkt wird die prozentuale Änderung des ermittelten Messwertes für den Massenkoeffizienten für jeden Prüfschritt bezogen auf den Ausgangspunkt bei 230 V betrachtet.

Als Anmerkung sei erwähnt, dass mit Hilfe der Überprüfung des Massenkoeffizienten keine Konzentrationswerte simuliert werden konnten, eine Betrachtung im Bereich des B₁ war aus diesem Grunde nicht möglich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Durch Netzspannungsänderungen konnten keine Abweichungen > 0,8 % für PM_{10} , bezogen auf den Startwert von 230 V, festgestellt werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 22 zeigt eine zusammenfassende Darstellung der Prüfergebnisse.

Tabelle 22: Abhängigkeit des Messwertes von der Netzspannung, Abweichung in %

Netzs	pannung	Abweichung		
Anfangsspannung	Endspannung	SN 3	SN 4	
V	V	[%]	[%]	
230	190	-0,4	-0,2	
190	230	-0,3	0,0	
230	245	0,0	-0,1	
245	230	-0,2	0,8	

Die Einzelergebnisse können der Anlage 4 im Anhang entnommen werden.

Seite 114 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.9 Querempfindlichkeit

Die Änderung des Messwerts aufgrund von Störeinflüssen durch die Querempfindlichkeit gegenüber im Messgut enthaltenen Begleitstoffen darf am Nullpunkt und am Referenzpunkt die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant. Es gilt die Mindestanforderung 5.4.5. Die Ergebnisse dieser Untersuchungen finden sich deshalb im Modul 5.4.5.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.10 Mittelungseinfluss

Für gasförmige Messkomponenten muss die Messeinrichtung die Bildung von Stundenmittelwerten ermöglichen.

Der Mittelungseinfluss darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 116 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.11 Standardabweichung aus Doppelbestimmungen

Die Standardabweichung aus Doppelbestimmungen ist mit zwei baugleichen Messeinrichtungen in der Feldprüfung zu ermitteln. Sie darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.

Hinweis:

Dieser Prüfpunkt ist für Staubmesseinrichtungen auf Basis der aktuell gültigen Richtlinienversionen der Richtlinie VDI 4202 Blatt 1 (September 2010) sowie VDI 4203 Blatt 3 (September 2010) aufgrund nicht definierter Mindestanforderungen nicht auswertbar. Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) wird daher alternativ auf die nachfolgende Anforderungen der Vorgängerversion der Richtlinie VDI 4202 Blatt 1 (Juni 2002) verwiesen:

Die Reproduzierbarkeit R_D der Messeinrichtung ist aus Doppelbestimmungen mit zwei baugleichen Messeinrichtungen zu ermitteln und darf den Wert 10 nicht unterschreiten. Als Bezugswert ist B_1 zu verwenden.

6.2 Gerätetechnische Ausstattung

Bei der Ermittlung der Reproduzierbarkeit kamen zusätzlich die in Kapitel 5 genannten Messeinrichtungen zum Einsatz.

6.3 Durchführung der Prüfung

Die Reproduzierbarkeit ist definiert als der Betrag, um den sich zwei zufällig ausgewählte Einzelwerte, die unter Vergleichsbedingungen gewonnen wurden, höchstens unterscheiden. Die Reproduzierbarkeit wurde mit zwei identischen und parallel betriebenen Geräten im Feldtest bestimmt. Dazu wurden Messdaten aus der gesamten Felduntersuchung herangezogen.

6.4 Auswertung

Die Reproduzierbarkeit berechnet sich wie folgt:

$$R = \frac{B_1}{U} \ge 10 \qquad \text{mit} \qquad U = \pm s_D \cdot t_{(n;0,95)} \quad \text{und} \quad s_D = \sqrt{\frac{1}{2n} \cdot \sum_{i=1}^n (x_{1i} - x_{2i})^2}$$

- R = Reproduzierbarkeit bei B₁
- U = Unsicherheit
- $B_1 = 40 \,\mu g/m^3 \, f \ddot{u} r \, P M_{10}$
- s_D = Standardabweichung aus Doppelbestimmungen
- n = Anzahl der Doppelbestimmungen
- $t_{(n;0,95)}$ = Studentfaktor für 95% ige Sicherheit
- x_{1i} = Messsignal des Gerätes 1 (z.B. SN 3) bei der i-ten Konzentration
- x_{2i} = Messsignal des Gerätes 2 (z.B. SN 4) bei der i-ten Konzentration

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die Reproduzierbarkeit für PM₁₀ betrug im Feldtest für den Gesamtdatensatz 20.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Die Ergebnisse der Untersuchungen sind in Tabelle 23 zusammenfassend dargestellt. Die grafische Darstellung erfolgt für PM_{10} in Abbildung 56 bis Abbildung 60.

Anmerkung: Die ermittelten Unsicherheiten werden auf den Bezugswert B₁ für jeden Standort bezogen.

Tabelle 23: Konzentrationsmittelwerte, Standardabweichung, Unsicherheitsbereich und Reproduzierbarkeit im Feld, Messkomponente PM_{10}

Standort	Anzahl	<u>с</u> (SN 3)	<u>с</u> (SN 4)	c _{ges}	S _D	t	U	R
		µg/m³	µg/m³	µg/m³	µg/m³		µg/m³	
Köln (Winter)	53	30,0	29,3	29,6	1,040	2,006	2,09	19
Bornheim (Sommer)	96	18,2	17,4	17,8	1,028	1,985	2,04	20
Bornheim (Winter)	49	27,0	27,1	27,1	1,039	2,010	2,09	19
Teddington (Sommer)	64	13,4	12,5	13,0	1,158	1,998	2,31	17
Alle Standorte	262	21,0	20,4	20,7	1,039	1,969	2,05	20

- c (SN 3): Mittelwert der Konzentrationen Gerät SN 3
- c (SN 4): Mittelwert der Konzentrationen Gerät SN 4
- \overline{c}_{qes} : Mittelwert der Konzentrationen der Geräte SN 3 & SN 4

Einzelwerte können der Anlage 5 des Anhangs entnommen werden.

Seite 118 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.12 Langzeitdrift

Die Langzeitdrift am Nullpunkt und am Referenzpunkt darf in der Feldprüfung die die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Dieser Prüfpunkt ist für Staubmesseinrichtungen auf Basis der aktuell gültigen Richtlinienversionen der Richtlinie VDI 4202 Blatt 1 (September 2010) sowie VDI 4203 Blatt 3 (September 2010) aufgrund nicht definierter Mindestanforderungen nicht auswertbar. Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) wird daher alternativ auf die nachfolgende Anforderungen der Vorgängerversion der Richtlinie VDI 4202 Blatt 1 (Juni 2002) verwiesen:

Die zeitliche Änderung des Nullpunkt-Messwertes darf in 24 h und im Wartungsintervall den Bezugswert B_0 nicht überschreiten.

Die zeitliche Änderung des Messwertes im Bereich des Bezugswertes B_1 darf in 24 Stunden und im Wartungsintervall $\pm 5 \%$ von B_1 nicht überschreiten.

6.2 Gerätetechnische Ausstattung

Nullfilter zur Nullpunktüberprüfung, Referenzfoliensatz zur Referenzpunktüberprüfung

6.3 Durchführung der Prüfung

Die Prüfung erfolgte im Rahmen des Feldtestes über einen Gesamtzeitraum von insgesamt ca. 19 Monaten.

Die Messeinrichtungen wurden im Rahmen eines regelmäßigen Checks ca. einmal pro Monat (inkl. zu Beginn und zum Ende jedes Standortes) mit Null-Filter an den Geräteeinlässen für einen Zeitraum jeweils mindestens 24 h betrieben und die gemessenen Nullwerte ausgewertet.

Darüber hinaus wurden zu Beginn und zum Ende eines jeden Standorts zur Referenzpunktüberprüfung die Stabilität des Massenkoeffizienten überprüft und ausgewertet.

Die Erzeugung eines reproduzierbaren Signals für die Empfindlichkeit des Nephelometers mittels eines externen Prüfstandards ist leider nicht möglich. Da das Nephelometer kontinuierlich mittels der sehr stabilen radiometrischen Messung kalibriert wird, kann auf die gesonderte Untersuchungen der Stabilität des Nephelometersignals am Referenzpunkt verzichtet werden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.4 Auswertung

Eine Beurteilung der Drift des Nullpunktes und des Messwertes in 24 h ist gerätebedingt nicht möglich.

Die Auswertung am Nullpunkt erfolgt auf Basis der Messergebnisse der regelmäßigen externen Nullpunktmessung durch Vergleich der jeweiligen Werte mit den jeweiligen "Messwerten" des vorherigen Tests und mit dem "Messwert" des ersten Tests.

Die Auswertung am Referenzpunkt erfolgt auf Basis der Messergebnisse für den Massenkoeffizienten durch Vergleich der jeweiligen Werte mit den jeweiligen "Messwerten" des vorherigen Tests und mit dem "Messwert" des ersten Tests.

Als Anmerkung sei erwähnt, dass mit Hilfe der Überprüfung des Massenkoeffizienten keine Konzentrationswerte simuliert werden konnten, eine Betrachtung im Bereich des B₁ war aus diesem Grunde nicht möglich.

6.5 Bewertung

Die maximal gefundene Abweichung am Nullpunkt lag bei 1,8 μ g/m³ bezogen auf den Vorgängerwert und bei 1,9 μ g/m³ bezogen auf den Startwert und damit innerhalb der erlaubten Grenzen von B₀ = 2 μ g/m³.

Die im Rahmen der Untersuchung ermittelten Werte für die Drift der Empfindlichkeit betrugen, bezogen auf den Vorgängerwert, maximal -2,1 % für PM₁₀.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 24 enthält die ermittelten Messwerte für den Nullpunkt und die errechneten Abweichungen bezogen auf den Vorgängerwert und bezogen auf den Startwert in µg/m³. Abbildung 35 bis Abbildung 36 zeigen eine grafische Darstellung der Nullpunktdrift über den Untersuchungszeitraum.

In Tabelle 25 sind die Abweichungen der Messwerte in % vom jeweiligen Vorgängerwert aufgeführt. Abbildung 37 und Abbildung 38 zeigen eine grafische Darstellung der Drift der Messwerte (bezogen auf den Vorgängerwert).

Seite 120 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

		SN 3				SN 4	
	Messwort	Abweichung zum	Abweichung zum		Messwort	Abweichung zum	Abweichung zum
Datum	Messwert	Vorgängerwert	Startwert	Datum	INESSWEIT	Vorgängerwert	Startwert
	µg/m³	µg/m³	µg/m³		µg/m³	µg/m³	µg/m³
05.03.2011	-0,1	-	-	05.03.2011	-0,1	-	-
06.03.2011	0,1	0,1	0,1	06.03.2011	0,0	0,1	0,0
07.03.2011	0,0	-0,1	0,1	07.03.2011	-0,1	-0,1	0,0
08.04.2011	0,1	0,1	0,2	08.04.2011	0,7	0,8	0,7
09.04.2011	-0,1	-0,2	0,0	09.04.2011	0,0	-0,7	0,0
10.04.2011	0,0	0,1	0,0	10.04.2011	0,0	0,0	0,1
10.05.2011	0,1	0,1	0,2	10.05.2011	0,0	0,0	0,1
11.05.2011	0,1	0,0	0,2	11.05.2011	0,0	0,0	0,1
22.07.2011	-0,2	-0,3	-0,2	22.07.2011	0,2	0,2	0,3
23.07.2011	-0,1	0,1	-0,1	23.07.2011	0,3	0,1	0,4
24.07.2011	-0,6	-0,5	-0,5	24.07.2011	0,0	-0,4	0,0
17.09.2011	-0,2	0,4	-0,1	17.09.2011	0,0	0,0	0,0
18.09.2011	-0,2	0,0	-0,1	18.09.2011	0,2	0,2	0,3
22.10.2011	-0,2	0,0	-0,1	22.10.2011	0,0	-0,2	0,0
23.10.2011	-0,1	0,1	0,0	23.10.2011	0,1	0,1	0,1
11.11.2011	0,0	0,0	0,0	11.11.2011	1,0	1,0	1,1
12.11.2011	0,1	0,1	0,2	12.11.2011	0,0	-1,0	0,1
13.11.2011	0,0	-0,1	0,0	13.11.2011	0,0	0,0	0,1
11.02.2012	0,0	0,0	0,0	11.02.2012	0,1	0,1	0,1
12.02.2012	0,0	0,0	0,1	12.02.2012	0,0	-0,1	0,1
09.03.2012	0,0	0,0	0,0	09.03.2012	0,0	0,0	0,0
10.03.2012	-0,1	0,0	0,0	10.03.2012	0,0	0,1	0,1
08.09.2012	-0,1	0,0	0,0	08.09.2012	1,8	1,8	1,9
09.09.2012	0,0	0,1	0,0	09.09.2012	0,0	-1,8	0,1

Tabelle 24: Nullpunktdrift SN 3 & SN 4, mit Nullfilter

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 35: Nullpunktdrift SN 3, Messkomponente PM₁₀

Abbildung 36: Nullpunktdrift SN 4, Messkomponente PM₁₀

Seite 122 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

		SN 3				SN 4	
Datum	Messwert	Abweichung zum Vorgängerwert	Abweichung zum Startwert	Datum	Messwert	Abweichung zum Vorgängerwert	Abweichung zum Startwert
		%	%			%	%
27.01.2011	7138,1	-	-	27.01.2011	7203,2	-	-
12.05.2011	7108,0	-0,4	-0,4	12.05.2011	7050,4	-2,1	-2,1
19.07.2011	7251,0	2,0	1,6	19.07.2011	7201,1	2,1	0,0
14.11.2011	7129,7	-1,7	-0,1	14.11.2011	7175,2	-0,4	-0,4
08.03.2012	7149,4	0,3	0,2	08.03.2012	7147,8	-0,4	-0,8
18.06.2012	7176,1	0,4	0,5	18.06.2012	7004,6	-2,0	-2,8
10.09.2012	7118,5	-0,8	-0,3	10.09.2012	7068,7	0,9	-1,9

Tabelle 25: Empfindlichkeitsdrift SN 3 & SN 4

Abbildung 37: Drift des Messwertes SN 3, Messkomponente PM₁₀

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 38: Drift des Messwertes SN 4, Messkomponente PM₁₀

Seite 124 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.13 Kurzzeitdrift

Die Kurzzeitdrift am Nullpunkt und am Referenzpunkt darf die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) in der Laborprüfung in 12 h (für Benzol in 24 h) und in der Feldprüfung in 24 h nicht überschreiten. Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.14 Einstellzeit

Die Einstellzeit (Anstieg) der Messeinrichtung darf höchstens 180 s betragen.

Die Einstellzeit (Abfall) der Messeinrichtung darf höchstens 180 s betragen.

Die Differenz zwischen der Einstellzeit (Anstieg) und der Einstellzeit (Abfall) der Messeinrichtung darf maximal 10 % der Einstellzeit (Anstieg) oder 10 s betragen, je nachdem, welcher Wert größer ist.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 126 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.15 Differenz zwischen Proben- und Kalibriereingang

Die Differenz zwischen den Messwerten bei Aufgabe am Proben- und Kalibriereingang darf den Wert der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten Als Referenzpunkt ist ein Wert c_t bei 70 % bis 80 % der oberen Grenze des Zertifizierungsbereichs zu verwenden.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.16 Konverterwirkungsgrad

Bei Messeinrichtungen mit einem Konverter muss dessen Wirkungsgrad mindestens 98 % betragen.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 128 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030/ SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.17 Anstieg der NO₂-Konzentration durch Verweilen im Messgerät

Bei NO_x-Messeinrichtungen darf der Anstieg der NO₂-Konzentration durch Verweilen im Messgerät die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) nicht überschreiten.

Die Anforderungen der Tabelle 2 der Richtlinie VDI 4202 Blatt 1 (September 2010) gelten für die Zertifizierungsbereiche nach Tabelle 1 der Richtlinie VDI 4202 Blatt 1 (September 2010). Für abweichende Zertifizierungsbereiche sind die Anforderungen entsprechend linear umzurechnen.

Hinweis:

Für Staubmesseinrichtungen ist dieser Punkt nicht relevant.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Seite 129 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.3.18 Gesamtunsicherheit

Die erweiterte Messunsicherheit der Messeinrichtung ist zu ermitteln. Dieser ermittelte Wert darf die in Anhang A, Tabelle A1 der Richtlinie VDI 4202 Blatt 1 (September 2010) aufgeführten Vorgaben der anzuwendenden EU-Richtlinien zur Luftqualität nicht überschreiten.

Hinweis:

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

6.2 Gerätetechnische Ausstattung

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

6.3 Durchführung der Prüfung

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

6.4 Auswertung

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

Bewertung

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Gemäß Beschluss der zuständigen Stelle in Deutschland (siehe Modul 5.3.1) ist dieser Prüfpunkt für Staubmesseinrichtungen nicht relevant. Es wird auf das Modul 5.4.10 verwiesen.

Seite 130 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.1 Allgemeines

Die Prüfung für Staubmesseinrichtungen erfolgen gemäß der Mindestanforderungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1 (September 2010). Partikelmassenkonzentrationen müssen auf ein definiertes Volumen bezogen sein. Der Volumenbezug hinsichtlich Druck und Temperatur muss nachvollziehbar angegeben werden.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung erfolgte gemäß der Mindestanforderungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1 (September 2010).

Es wurde geprüft, ob die gemessenen Partikelmassenkonzentrationen auf ein definiertes Volumen bezogen sind.

6.4 Auswertung

Die Prüfung erfolgte gemäß der Mindestanforderungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1 (September 2010).

Die Messeinrichtung Modell 5030i SHARP ist ein Messgerät, welches zwei verschiedene Messmethoden (Nephelometrie + Radiometrie) verknüpft, wobei die hochempfindliche, aber potentiell ungenaue Messtechnik (NEPH) kontinuierlich mit einer unempfindlichen, aber sehr genauen Messtechnik (BETA) kalibriert wird. Die auf dem Filterband abgeschiedene Masse wird von der radiometrischen Messung bestimmt. Die ermittelte Masse wird auf ein definiertes und aktiv geregeltes Probenahmevolumen bezogen und somit die Partikelmassenkonzentration bestimmt.

6.5 Bewertung

Die Prüfung erfolgte gemäß der Mindestanforderungen der Tabelle 5 der Richtlinie VDI 4202, Blatt 1 (September 2010).

Die ermittelte Partikelmasse wird auf ein definiertes und aktiv geregeltes Probenahmevolumen bezogen und somit die Partikelmassenkonzentration bestimmt.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Bei dieser Mindestanforderung nicht erforderlich.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.2 Gleichwertigkeit des Probenahmesystems

Für das PM₁₀-Probenahmesystem ist die Gleichwertigkeit zum Referenzverfahren nach DIN EN 12341 [T5] nachzuweisen.

6.2 Gerätetechnische Ausstattung

Für diesen Prüfpunkt kamen zusätzlich die Geräte entsprechend Punkt 5 des vorliegenden Berichts zum Einsatz.

6.3 Durchführung der Prüfung

Die Prüfung wurde im Feldtest an mehreren Standorten gemäß Punkt 4 des vorliegenden Berichtes durchgeführt. Dabei wurden verschiedene Jahreszeiten und unterschiedlich hohe PM₁₀ Konzentrationen berücksichtigt.

Es wurden an jedem Standort mindestens 15 valide Wertepaare ermittelt.

6.4 Auswertung

Forderung aus der DIN EN 12341:

Der errechnete funktionale Zusammenhang y = f(x) zwischen den mit dem Testgerät (y) und den mit dem Referenzgerät (x) gemessenen Konzentrationswerten soll durch einen beidseitigen Akzeptanzbereich begrenzt sein. Dieser Akzeptanzbereich ist gegeben durch:

 $y = (x \pm 10) \ \mu g/m^3$ für Konzentrationsmittelwerte $\leq 100 \ \mu g/m^3$ und

 $y = 0.9x \mu g/m^3 bzw. 1.1x \mu g/m^3$ für Konzentrationsmittelwerte > 100 $\mu g/m^3$

Des Weiteren soll der Variationskoeffizient R² der berechneten Referenz-Äquivalenz-Funktion den Wert 0,95 nicht unterschreiten.

Die Prüfung richtet sich auf den funktionalen Zusammenhang zwischen den Konzentrationswerten, die durch Doppelbestimmungen mit dem Testgerät und dem Referenzgerät ermittelt wurden. Im Idealfall erfassen beide Geräte dieselbe Schwebstaubfraktion, so dass y = x gilt. Die Vorgehensweise bei der Auswertung ist wie folgt:

Es wurde eine lineare Regressionsanalyse aus den Messdaten für alle vier Standorte einzeln sowie nach Zusammenfassung aller Messdaten, für alle vier Standorte zusammen durchgeführt.

Man erhält für jeden Messwert y_i des jeweiligen Testgerätes und der mit dem Referenzgerät gemessenen Konzentration x – beide in $\mu g/m^3$ - eine Referenz-Äquivalenz-Funktion entsprechend der allgemeinen Beziehung:

 $y_i = m \cdot x + b$ mit i = Prüfling Modell 5030i SHARP

Seite 132 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die Referenz-Äquivalenzfunktionen liegen mit Ausnahme der Kampagne "Teddington, Sommer" in den Grenzen des jeweiligen Akzeptanzbereiches. Weiterhin ist der Variationskoeffizient R² der berechneten Referenz-Äquivalenzfunktionen im betreffenden Konzentrationsbereich für die Datensätze "Gesamtdatensatz", "Köln, Winter" (nur SN 3), Bornheim, Sommer (nur SN 3) und "Bornheim, Winter" \geq 0,95. Für die Datensätze "Köln, Winter" (nur SN 4), Bornheim, Sommer (nur SN 4) und "Teddington, Sommer" liegt der Variationskoeffizient R² bei < 0,95. Die Äquivalenzprüfung gemäß 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge wird dennoch für alle Standorte erfüllt.

Mindestanforderung erfüllt? nein

6.6 Umfassende Darstellung des Prüfergebnisses

Die Ergebnisse der Regressionsanalysen sind in Tabelle 26 bis Tabelle 27 zusammengestellt. Die grafischen Darstellungen erfolgen in Abbildung 39 bis Abbildung 48. In den Diagrammen sind neben den Ausgleichsgeraden der beiden Testgeräte die als Idealfall anzusehende Kurve y = x und der beiderseitige Akzeptanzbereich eingezeichnet. Alle Einzelwerte für die Testgeräte und das Referenzgerät können, nach Standort getrennt, der Anlage 5 im Anhang entnommen werden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 26: Ergebnisse der linearen Regressionsanalyse der Messungen mit den beiden Testgeräten SN 3 und SN 4 an den vier Standorten

SN 3	Anzahl Messwertpaare N	Steigung m	Ordinaten abschnitt b	R²
Köln, Winter	43	0,995	-0,487	0,95
Bornheim, Sommer	71	0,967	0,967	0,95
Bornheim, Winter	42	0,970	1,439	0,98
Teddington, Sommer	46	0,895	1,983	0,85

SN 4	Anzahl Messwertpaare N	Steigung m	Ordinaten abschnitt b	R²
Köln, Winter	45	1,011	-1,632	0,94
Bornheim, Sommer	75	0,980	-0,550	0,93
Bornheim, Winter	42	1,002	0,378	0,98
Teddington, Sommer	46	0,838	1,641	0,83

Tabelle 27: Ergebnisse der linearen Regressionsanalyse der Messungen mit den beiden Testgeräten SN 3 und SN 4 (gesamt)

Testgerät	Anzahl Messwertpaare N	Steigung m	Ordinatenabschnitt b	R²
SN 3	202	0,969	0,909	0,96
SN 4	208	0,996	-0,587	0,96

Genau. mentig

Seite 134 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 39: Referenz-Äquivalenzfunktion SN 3, Standort Köln, Winter

Abbildung 40: Referenz-Äquivalenzfunktion SN 4, Standort Köln, Winter

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 41: Referenz-Äquivalenzfunktion SN 3, Standort Bornheim, Sommer

Abbildung 42: Referenz-Äquivalenzfunktion SN 4, Standort Bornheim, Sommer

Seite 136 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 43: Referenz-Äquivalenzfunktion SN 3, Standort Bornheim, Winter

Abbildung 44: Referenz-Äquivalenzfunktion SN 4, Standort Bornheim, Winter

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 45: Referenz-Äquivalenzfunktion SN 3, Standort Teddington, Sommer

Abbildung 46: Referenz-Äquivalenzfunktion SN 4, Standort Teddington, Sommer

Seite 138 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 47: Referenz-Äquivalenzfunktion SN 3, alle Standorte

Abbildung 48: Referenz-Äquivalenzfunktion SN 4, alle Standorte

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 5.4.3 Vergleichbarkeit der Probenahmesysteme

Die PM₁₀-Probenahmesysteme zweier baugleicher Prüflinge müssen untereinander nach DIN EN 12 341 [T5] vergleichbar sein. Dies ist während der Feldprüfung nachzuweisen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung wurde im Feldtest an mehreren Standorten durchgeführt. Dabei wurden verschiedene Jahreszeiten und unterschiedlich hohe PM₁₀ Konzentrationen berücksichtigt.

Es wurden an jedem Standort mindestens 15 valide Wertepaare ermittelt.

6.4 Auswertung

Der aus den mit den Testgeräten gemessenen Konzentrationsmittelwerten berechnete zweiseitige Vertrauensbereich Cl_{95} darf den Wert von 5 $\mu g/m^3$ für Konzentrationsmittelwerte $\leq 100 \mu g/m^3$ und von 0,05 für Konzentrationsmittelwerte $> 100 \mu g/m^3$ nicht überschreiten.

Der Nachweis der Vergleichbarkeit von Testgeräten konzentriert sich auf die Differenzen D_i der Konzentrationswerte Y_i der Testgeräte. Idealerweise sind beide Testgeräte gleich und erfassen demzufolge dieselbe Schwebstaubfraktion, so dass sich $D_i = 0$ ergibt. Die Vorgehensweise bei der Auswertung der Messdaten ist folgende:

Es werden zunächst die Konzentrationsmittelwerte Y_i aus den parallel mit den beiden Testgeräten gemessenen Konzentrationswerten berechnet. Im Anschluss daran werden die Konzentrationsmittelwerte Y_i in zwei getrennte Datensätze gespalten:

- a) Datensatz mit $Y_i \leq 100 \; \mu g/m^3$ mit der Anzahl der Wertepaare n_{\leq} und
- b) Datensatz mit $Y_i > 100 \ \mu g/m^3$ mit der Anzahl der Wertepaare n_>

zu a):

Aus den Wertepaaren des Datensatzes mit $Y_i \leq 100~\mu\text{g}/\text{m}^3$ wird die absolute Standardabweichung s_a berechnet:

$$s_a = \sqrt{\left(\sum D_i^2 / 2n_{\leq}\right)}$$

Es wird der Studentfaktor $t_{f_{\leq};0,975}$, definiert als 0,975-Quantil des zweiseitigen 95%-Vertrauensbereichs der t-Verteilung nach Student mit $f_{\leq} = n_{\leq} - 2$ Freiheitsgraden herangezogen.

Seite 140 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Der zweiseitige 95%-Vertrauensbereich CI_{95} für Konzentrationsmittelwerte \leq 100 $\mu g/m^3$ ergibt sich dann wie folgt:

$$CI_{95} = s_a \cdot t_{f_{<};0,975}$$

zu b):

Aus den Wertepaaren des Datensatzes mit $Y_i > 100 \ \mu g/m^3$ wird die relative Standardabweichung s_r berechnet:

$$s_r = \sqrt{(\sum (D_i / Y_i)^2 / 2n_{>})}$$

Es wird wiederum der Student-Faktor $t_{f_{>};0,975}$, definiert als 0,975-Quantil des zweiseitigen 95%-Vertrauensbereiches der t-Verteilung nach Student mit $f_{>} = n_{>} - 2$ Freiheitsgraden herangezogen.

Der zweiseitige Vertrauensbereich CI_{95} für Konzentrationsmittelwerte > 100 µg/m³ ergibt sich dann wie folgt:

$$CI_{95} = s_r \cdot t_{f_{>};0,975}$$

Während der Felduntersuchungen wurden keine Konzentrationswerte > 100 μ g/m³ gemessen Eine statistische Auswertung für diesen Konzentrationsbereich ist aus diesem Grund nicht möglich. Somit entfällt die Betrachtung gemäß b).

6.5 Bewertung

Es gilt für alle untersuchten Standorte:

Der zweiseitige Vertrauensbereich Cl₉₅ liegt mit maximal 2,51 μ g/m³ unterhalb des geforderten Wertes von 5 μ g/m³.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 28 führt die berechneten Werte für die Standardabweichung s_a und den zweiseitigen Vertrauensbereich Cl_{95} auf. Die grafische Darstellung erfolgt in Abbildung 49 bis Abbildung 53. In den Diagrammen ist neben der Ausgleichsgerade der beiden Testgeräte (ermittelt durch lineare Regressionsanalyse) die als Idealfall anzusehende Kurve y = x und der beiderseitige Akzeptanzbereich eingezeichnet. Alle Einzelwerte für die Testgeräte können der Anlage 5 entnommen werden.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Testgeräte	Standort	Anzahl Werte	Standard- abweichung s _a	Student- Faktor t _f	Vertrauens- bereich Cl ₉₅
SN			µg/m³		µg/m³
3 / 4	Köln, W	53	1,15	2,008	2,31
3 / 4	Bornheim, S	96	1,18	1,986	2,35
3 / 4	Bornheim, W	49	1,01	2,012	2,04
3 / 4	Teddington, S	64	1,25	1,999	2,51
3 / 4	Gesamt	262	1,16	1,969	2,29

Tabelle 28: Zweiseitiger 95%-Vertrauensbereich Cl₉₅ für die Testgeräte SN 3 und SN 4

Abbildung 49: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Standort Köln, Winter

Seite 142 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 50: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Standort Bornheim, Sommer

Abbildung 51: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Standort Bornheim, Winter

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 52: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Standort Teddington, Sommer

Abbildung 53: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, alle Standorte

Seite 144 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.4 Kalibrierung

Die Prüflinge sind in der Feldprüfung mit dem Referenzverfahren durch Vergleichsmessungen zu kalibrieren. Hierbei ist der Zusammenhang zwischen dem Messsignal und der gravimetrisch bestimmten Referenzkonzentration als stetige Funktion zu ermitteln.

6.2 Gerätetechnische Ausstattung

Siehe Modul 5.4.2.

6.3 Durchführung der Prüfung

Für PM₁₀:

Die Vergleichbarkeit der Messeinrichtungen wurde im Rahmen der Prüfung nachgewiesen (siehe Modul 5.4.2).

Zur Bestimmung der Kalibrier- bzw. Analysenfunktion wird auf den gesamten Datensatz (202 valide Messwertpaare für SN 3, 208 valide Messwertpaare für SN 4) zurückgegriffen.

Die Kennwerte der Kalibrierfunktion

y = m * x +b

wurden durch lineare Regression ermittelt. Die Analysenfunktion ist die Umkehrung der Kalibrierfunktion. Sie lautet:

$$x = 1/m * y - b/m$$

Die Steigung m der Regressionsgeraden charakterisiert die Empfindlichkeit des Messgerätes, der Ordinatenabschnitt b den Nullpunkt.

Es ergeben sich die in Tabelle 29 aufgeführten Kennwerte.

6.4 Auswertung

Tabelle 29: Ergebnisse der Kalibrier- und Analysenfunktion, Messkomponente PM₁₀

Geräte-Nr.	Kalibrie	funktion	Analysenfunktion	
	Y = m	* x + b	x = 1/m *	y - b/m
	m b		1/m	b/m
	μg/m³ / μg/m³	µg/m³	μg/m³ / μg/m³	µg/m³
Gerät 1 (SN 3)	0,969	0,909	1,032	0,938
Gerät 2 (SN 4)	0,996	-0,587	1,004	-0,589
Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Ein statistisch gesicherter Zusammenhang zwischen dem Referenzmessverfahren und der Geräteanzeige konnte nachgewiesen werden.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Siehe Modul 5.4.2.

Seite 146 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.5 Querempfindlichkeit

Der Störeinfluss durch die im Messgut enthaltene Feuchte darf im Bereich des Grenzwertes nicht mehr als 10 % des Grenzwerts betragen.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht notwendig.

6.3 Durchführung der Prüfung

Die Ermittlung des Störeinflusses durch die im Messgut enthaltene Luftfeuchte erfolgte unter Feldbedingungen.

Hierzu wurden aus den Felduntersuchungen für Tage mit einer relativen Feuchte > 70 % die Differenzen zwischen dem ermittelten Referenzwert (= Sollwert) und dem Messwert des jeweiligen Prüfling errechnet und die mittlere Differenz als konservative Abschätzung für den Störeinfluss durch die im Messgut enthaltene Feuchte angesetzt.

Zusätzlich wurden aus den Felduntersuchungen für Tage mit einer relativen Feuchte > 70 % die Referenz-Äquivalenzfunktionen für beide Testgeräte bestimmt.

6.4 Auswertung

Es wurde aus den Felduntersuchungen für Tage mit einer relativen Feuchte > 70 % die mittlere Differenz zwischen dem ermittelten Referenzwert (= Sollwert) und dem Messwert des jeweiligen Prüfling errechnet und die relative Abweichung zur mittleren Konzentration ermittelt.

Jahresgrenzwert $PM_{10} = 40 \ \mu g/m^3$

10 % von JGW = 4 μ g/m³

Es wurde weiterhin untersucht, ob die Vergleichbarkeit der Prüflinge mit dem Referenzverfahren gemäß Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods" [4] auch für den Fall, dass die Messwerte an Tagen mit einer relativen Feuchte > 70 % gewonnen wurden, gegeben ist.

Genau. Richtig.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Es konnte kein Störeinfluss > 0,4 μ g/m³ Abweichung vom Sollwert für PM₁₀ durch die im Messgut enthaltene Luftfeuchte auf das Messsignal festgestellt werden. Während des Feldtestes konnte bei wechselnden relativen Luftfeuchten kein negativer Einfluss auf die Messwerte beobachtet werden. Die Vergleichbarkeit der Prüflinge mit dem Referenzverfahren gemäß Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods" [4] ist auch für Tage mit einer relativen Luftfeuchte > 70 % gegeben.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 30 zeigt eine zusammenfassende Darstellung.

Tabelle 30: Abweichung zwischen Referenzmessung und Prüfling an Tagen mit einer relativen Luftfeuchte > 70 %, Messkomponente PM_{10}

Feld	Feldtest, Tage mit relativer Feuchte >70 %									
		Referenz	SN 3	SN 4						
Mittelwert	µg/m³	19,6	20,0	19,2						
Abweichung zu Mittelwert Referenz in µg/m ³	µg/m³	-	0,4	-0,4						
Abweichung in % von Mittelwert Referenz	%	-	2,3	-1,8						
Abweichung in % von JGW	%	-	1,1	-0,9						

Einzelwerte können den Anlagen 5 und 6 im Anhang entnommen werden.

Die Darstellung und Bewertung der Messunsicherheiten W_{CM} an Tagen mit einer relativen Luftfeuchte > 70 % erfolgt in Tabelle 31 und in Tabelle 32. Einzelwerte können den Anlagen 5 und 6 im Anhang entnommen werden.

Seite 148 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 31: Vergleich Testgerät SN 3 mit Referenzgerät, rel. Luftfeuchte > 70 %, alle Standorte, Messkomponente PM_{10}

Vergleich Testgerät mit Referenzgerät gemäß											
Leitfaden "Demonstration of Equivalence Of Ambient Air Monitoring Methods", 2010											
Prüfling	SN 3										
Standort	Alle Standorte, rF>70%	Grenzwert	50	µg/m³							
Status Messwerte	Rohwerte	erlaubte Unsicherheit	25	%							
	Ergebnisse der Regress	ionsrechnung									
Steigung b	1,01	nicht signifikant									
Unsicherheit von b	0,02										
Achsabschnitt a	0,42	nicht signifikant									
Unsicherheit von a	0,38										
	Ergebnisse der Vergleich	barkeitsprüfung									
Abweichung am Grenzwert	0,77	µg/m³									
Unsicherheit u _{c_s} am Grenzwert	2,28	µg/m³									
Kombinierte Messunsicherheit w _{CM}	4,57	%									
Erweiterte Messunsicherheit W_{CM}	9,13	%									
Status Vergleichbarkeitsprüfung	bestanden										

Tabelle 32: Vergleich Testgerät SN 4 mit Referenzgerät, rel. Luftfeuchte > 70 %, alle Standorte, Messkomponente PM_{10}

	/										
	vergleich Testgerat mit Rei	erenzgerat gemais									
Leitfaden "Demonstration of Equivalence Of Ambient Air Monitoring Methods", 2010											
Prüfling	SN 4										
Standort	Alle Standorte, rF>70%	Grenzwert	50	µg/m³							
Status Messwerte	Rohwerte	erlaubte Unsicherheit	25	%							
	Ergebnisse der Regres	sionsrechnung									
Steigung b	1,03	nicht signifikant									
Unsicherheit von b	0,02										
Achsabschnitt a	-0,91	signifikant									
Unsicherheit von a	0,41										
	Ergebnisse der Vergleich	nbarkeitsprüfung									
Abweichung am Grenzwert	0,60	µg/m³									
Unsicherheit u _{c_s} am Grenzwert	2,45	µg/m³									
Kombinierte Messunsicherheit w _{CM}	4,91	%									
Erweiterte Messunsicherheit W _{CM}	9,82	%									
Status Vergleichbarkeitsprüfung	bestanden										

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.6 Mittelungseinfluss

Die Messeinrichtung muss die Bildung von 24 h-Mittelwerten ermöglichen.

Die Summe aller Filterwechsel darf innerhalb von 24 h nicht mehr als 1 % dieser Mittelungszeit betragen.

6.2 Gerätetechnische Ausstattung

Für die Prüfung wurde zusätzlich eine Uhr bereitgestellt.

6.3 Durchführung der Prüfung

Es wurde geprüft, ob die Messeinrichtung die Bildung eines Tagesmittelwertes ermöglicht.

6.4 Auswertung

Die Messeinrichtung legt die Messwerte standardmäßig im geräteinternen Speicher als 5 min-Mittelwerte oder 1 h-Mittelwerte ab (Konfiguration in der Eignungsprüfung). Diese können z.B. über die Software iPort ausgelesen werden und mit einer Tabellenkalkulation beliebig weiterverarbeitet werden. Darüber hinaus besteht auch die Möglichkeit die Messeinrichtung so zu parametrieren, dass 24 h-Mittelwerte direkt intern berechnet werden und ausgegeben werden können.

Der Filterbandtransport selbst benötigt ca. 1 min. Nach dem Filterbandwechsel erfolgt die Nullung sowohl der radiometrischen Messung als auch der Nephelometermessung. Die Nullung der Nephelometermessung erfolgt dabei innerhalb von 10 Minuten nach Pumpenstop, die Nullung der radiometrischen Messung erfolgt innerhalb von 15 Minuten nach Pumpenstop. Es ist allerdings zu beachten, dass die Messeinrichtung lediglich während der ersten 10 Minuten nach Filterwechsel keinen neuen SHARP-Messwert ermittelt. Nach Abschluss der Nullung des Nephelometer-Konzentration und dem Autokalibrierfaktor berechnet wird. Allerdings ist bis zum Abschluss der Nullungsphase der radiometrischen Messung der Autokalibrierfaktor eingefroren und wird erst danach wieder aktualisiert.

Der Zeitbedarf für den Filterbandtransport selbst beträgt demnach 1 min dies entspricht bei einer 24-stündigen Messzeit und 3 Wechseln pro Tag einer Totzeit von ca. 0,21 %.

Die verfügbare Messzeit für das SHARP-Messsignal liegt bei 8 h Zykluszeit demnach bei 470 min (=480 min – 10min), was einer zeitlichen Abdeckung von 97,9 % entspricht.

6.5 Bewertung

Mit der beschriebenen Gerätekonfiguration und einem Messzyklus von 8 h ist die Bildung von validen Tagesmittelwerten auf Basis der 3 Messzyklen möglich.

Die ermittelte Filterwechselzeit selbst ist mit maximal 0,21 % deutlich kleiner als die zulässigen 1 % der Probenahmedauer.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Hier nicht erforderlich.

Seite 150 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.7 Konstanz des Probenahmevolumenstroms

Der über der Probenahmedauer gemittelte Probenahmevolumenstrom muss auf \pm 3 % vom Sollwert konstant sein. Alle Momentanwerte des Probenahmevolumenstroms müssen während der Probenahmedauer innerhalb der Schwankungsbreite von \pm 5 % des Sollwertes liegen.

6.2 Gerätetechnische Ausstattung

Für die Prüfung wurden zusätzlich ein Durchflussmesser gemäß Punkt 4 bereitgestellt.

6.3 Durchführung der Prüfung

Der Probenahmevolumenstrom wurde vor dem ersten Feldteststandort kalibriert und dann vor den Feldteststandorten mit Hilfe einer trockenen Gasuhr bzw. eines Massendurchflussmessers auf Korrektheit überprüft und falls erforderlich nachjustiert.

Die Konstanz des Probenahmevolumenstroms wird geräteintern mit einer zulässigen Abweichung von +/-2,5 % vom Sollwert überwacht. Wird dieses Kriterium während des Betriebs verletzt, so führt die Messeinrichtung einen Filterwechsel durch.

Um die Konstanz des Probenahmevolumenstroms zu ermitteln, wurden für den Standort Köln, Winter, welcher sich zeitweise durch hohe Konzentrationen ausgezeichnet hatte, die internen Daten für die Durchflussrate und das Pumpenvakuum (=Information zu Filterbelegung) aufgezeichnet und die Durchflussraten auf 24-h-Basis ausgewertet.

6.4 Auswertung

Aus den ermittelten Messwerten für den Durchfluss wurden Mittelwert, Standardabweichung sowie Maximal- und Minimalwert bestimmt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die Ergebnisse der vor den Feldteststandorten durchgeführten Überprüfung der Durchflussrate sind in Tabelle 33 dargestellt.

Tabelle 33: Ergebnisse Kontrolle Durchflussrate

Durchflussüberprüfung vor	S	SN 3	SN 4		
Standort:	[l/min]	Abw. vom Soll [%]	[l/min]	Abw. vom Soll [%]	
Köln, Winter	16,33	-2,04	16,34	-1,98	
Bornheim, Sommer	16,56	-0,66	16,75	0,48	
Bornheim, Winter	16,63	-0,24	16,66	-0,06	
Teddington, Sommer	16,64	-0,18	16,76	0,54	

Die grafischen Darstellungen der Durchflüsse aus dem Praxisbeispiel (Standort, Köln, Winter; Soll: 16,67 l/min) zeigen, dass alle während der Probenahme ermittelten Messwerte weniger als ± 5 % vom jeweiligen Sollwert abweichen. Die Abweichung der 24h-Mittelwerte für den Gesamtdurchfluss von 16,67 l/min ist ebenfalls deutlich kleiner als die geforderten ± 3 % vom Sollwert.

Alle ermittelten Tagesmittelwerte weichen weniger als ± 3 %, alle Momentanwerte weniger als ± 5 % vom Sollwert ab.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

In Tabelle 34 bis Tabelle 35 sind die ermittelten Kenngrößen für den Durchfluss aufgeführt. Abbildung 54 bis Abbildung 55 zeigen die grafische Darstellung der Durchflussmessungen an den beiden Testgeräten SN 3 und SN 4.

Seite 152 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 34: Kenngrößen für die Durchflussmessung (24h-Mittel), SN 3 (Feld)

Anzahl 24h-Werte	Mittelwert [l/min]	Abw. vom Sollwert [%]	Std.Abw. [l/min]	Max [l/min]	Min [l/min]
102	16,67	0,00	0,01	16,71	16,62

Tabelle 35: Kenngrößen für die Durchflussmessung (24h-Mittel), SN 4 (Feld)

Anzahl 24h-Werte	Mittelwert [l/min]	Abw. vom Sollwert [%]	Std.Abw. [l/min]	Max [l/min]	Min [l/min]
103	16,67	0,00	0,01	16,73	16,59

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 54: Durchfluss am Testgerät SN 3 (Feld)

Abbildung 55: Durchfluss am Testgerät SN 4 (Feld)

Seite 154 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.8 Dichtheit des Probenahmesystems

Die gesamte Messeinrichtung ist auf Dichtheit zu prüfen. Die Undichtigkeit darf nicht mehr als 1 % vom durchgesaugten Probenahmevolumen betragen.

6.2 Gerätetechnische Ausstattung

Adapter für Dichtigkeitsprüfung, Massendurchflussmesser

6.3 Durchführung der Prüfung

Bei der Messeinrichtung Modell 5030i SHARP kann eine Dichtigkeitsprüfung mit Hilfe des Dichtigkeitsprüfadapters durchgeführt werden.

Das Gerät wird hierzu in den Servicemodus geschaltet. Im ersten Schritt installiert man einen externen Durchflussmesser am Inlet und nimmt die beiden Durchflussraten vom Gerät selbst als auch von der externen Messung sowie den angezeigten Unterdruck (VAC in mmHg) auf. Die Durchflussrate am Gerät wird durch Abgleich das Gerät auf die Durchflussrate des externen Durchflussmessers justiert. Danach wird der Dichtigkeitsprüfadapter direkt auf den Einlass gesteckt und vor den Adapter wird erneut das externe Durchflussmessegerät angeschlossen. Der Durchflussadapter sorgt geräteseitig durch die Querschnittsverkleinerung der Ansaugöffnung für ein deutlich erhöhtes Vakuum. Man vergleicht in diesem Zustand erneut die angezeigte Durchflussrate am Gerät mit der extern gemessenen Durchflussrate. Idealerweise (d.h. bei absoluter Dichtheit) unterscheiden sich die beiden aufgenommenen Durchflussrate) zulässig, bei größeren Abweichungen ist das System auf Leckagen zu untersuchen, insbesondere in dem man die zahlreichen Anschlussstücke oberhalb des radiometrischen Messkopfes überprüft. Kann die Ursache nicht gefunden werden, so ist der Hersteller zu kontaktieren.

Die Dichtigkeitsprüfung darf ausdrücklich nur unter Verwendung des Dichtigkeitsprüfadapters und der beschriebenen Prozedur durchgeführt werden, da es ansonsten zu Schäden am Gerät kommen kann.

Es wird empfohlen, die Dichtigkeit der Messeinrichtung mit Hilfe der beschriebenen Prozedur einmal pro Quartal zu überprüfen.

6.4 Auswertung

Die Dichtigkeitsprüfung mittels Dichtigkeitsprüfadapter wurde im Labortest durchgeführt.

Die vom Gerätehersteller implementierten Kriterien zum Bestehen der Dichtigkeitsprüfung – maximale Differenz der Durchflusswerte Gerät vs. Externe Durchflussmessung bei Anwendung des Prüfadapters darf 0,42 l/min (= 2,5 % der Durchflussrate) – erwiesen sich in der Prüfung als geeignete Kenngrößen zur Überwachung der Gerätedichtigkeit. Im Rahmen der Untersuchungen im Labor konnte für beide Prüflinge eine maximale Undichtigkeit von < 1% der nominalen Durchflussrate von 16,67 l/min ermittelt werden.

Die Dichtigkeitsprüfung darf ausdrücklich nur unter Verwendung des Dichtigkeitsprüfadapters und der beschriebenen Prozedur durchgeführt werden, da es ansonsten zu Schäden am Gerät kommen kann.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.5 Bewertung

Die vom Gerätehersteller implementierten Kriterien zum Bestehen der Dichtigkeitsprüfung – maximale Differenz der Durchflusswerte Gerät vs. Externe Durchflussmessung bei Anwendung des Prüfadapters darf ± 0.42 l/min (= ± 2.5 % der Durchflussrate) nicht überschreiten – erwiesen sich in der Prüfung als geeignete Kenngrößen zur Überwachung der Gerätedichtigkeit. Im Rahmen der Untersuchungen im Labor konnte für beide Prüflinge eine maximale Undichtigkeit von < 1 % der nominalen Durchflussrate von 16,67 l/min ermittelt werden.

Die Dichtigkeitsprüfung darf ausdrücklich nur unter Verwendung des Dichtigkeitsprüfadapters und der beschriebenen Prozedur durchgeführt werden, da es ansonsten zu Schäden am Gerät kommen kann.

Mindestanforderung erfüllt? ja

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 36 enthält die ermittelten Werte aus der Dichtigkeitsprüfung.

Tabelle 36: Ergebnisse der Dichtigkeitsprüfungen

		Messwert Gerät, ohne Adapter	Pumpen- vakuum, ohne Adapter	Messwert Gerät, mit Adapter	Pumpen- vakuum, mit Adapter	Messwert externe Durchflussmes- sung, mit Adapter	Differenz Durchflüsse mit Adapter	Bez. auf nominale Durchflussrate
		l/min	mm Hg	l/min	mm Hg	l/min	l/min	%
SN	1	16,68	77	16,57	115	16,49	-0,08	-0,5
3	2	16,64	77	16,48	115	16,57	0,09	0,5
	3	16,58	77	16,46	115	16,59	0,13	0,8
	Mittel	16,63	77	16,50	115	16,55	0,05	0,3
SN	1	16,65	80	16,60	126	16,59	-0,01	-0,1
4	2	16,72	81	16,63	126	16,54	-0,09	-0,5
	3	16,67	81	16,57	126	16,63	0,06	0,4
	Mittel	16,68	81	16,60	126	16,59	-0,02	-0,1

Seite 156 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 Methodik der Äquivalenzprüfung (Module 5.4.9 – 5.4.11)

Gemäß der Version des Leitfadens vom Januar 2010 [4] müssen zum Nachweis der Äquivalenz die folgenden 5 Kriterien erfüllt werden:

- Vom Gesamtdatensatz müssen mindestens 20 % der Konzentrationswerte (ermittelt mit Referenzmethode) größer sein als die in 2008/50/EG [7] festgelegte obere Beurteilungsschwelle für Jahresgrenzwerte, d.h. 28 μg/m³ für PM₁₀ und 17 μg/m³ für PM_{2,5}.
- 2. Die Unsicherheit zwischen den Prüflingen muss kleiner sein als 2,5 μ g/m³ für alle Daten sowie für einen Datensatz mit Daten größer/gleich 30 μ g/m³ für PM₁₀ und 18 μ g/m³ für PM_{2,5}.
- 3. Die Unsicherheit zwischen den Referenzgeräten muss kleiner sein als 2,0 µg/m³.
- 4. Die erweiterte Unsicherheit (W_{CM}) wird berechnet bei 50 µg/m³ für PM₁₀ und bei 30 µg/m³ für PM₁₀ für jeden einzelnen Prüfling gegen den Mittelwert der Referenzmethode. Für jeden der folgenden Fälle muss die erweiterte Unsicherheit kleiner 25 % sein:
 - Gesamtdatensatz;
 - Datensatz mit PM-Konzentrationen größer/gleich 30 μg/m³ für PM₁₀ oder größer/gleich 18 μg/m³ für PM_{2,5}, vorausgesetzt der Datensatz enthält 40 oder mehr gültige Datenpaare;
 - Datensätze für jeden einzelnen Standort.
- 5. Voraussetzung für die Akzeptanz des Komplettdatensatzes ist, dass die Steigung b insignifikant verschieden ist von 1: |b-1| ≤ 2 ⋅ u(b) und der Achsabschnitt a insignifikant verschieden ist von 0: |a| ≤ 2 ⋅ u(a). Wenn diese Voraussetzungen nicht erfüllt werden, dann können die Prüflinge mit den Werten des Gesamtdatensatzes für die Steigung und/oder für den Achsabschnitt kalibriert werden.

In den nachfolgenden Kapiteln wird die Erfüllung der 5 Kriterien geprüft:

Unter Punkt 6.1 5.4.9 Ermittlung der Unsicherheit zwischen den Prüflingen u_{bs} werden die Kriterien 1 und 2 geprüft.

Unter Punkt 6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge werden die Kriterien 3, 4 und 5 geprüft.

Unter Punkt 6.1 5.4.11 Anwendung von Korrekturfaktoren/-termen erfolgt eine Auswertung für den Fall, dass Kriterium 5 nicht ohne Anwendung von Korrekturfaktoren/-termen erfüllt werden kann.

Seite 157 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

6.1 5.4.9 Ermittlung der Unsicherheit zwischen den Prüflingen ubs

Bei der Prüfung von PM_{2,5}-Messeinrichtungen ist die Unsicherheit zwischen den Prüflingen nach Kapitel 9.5.3.1 des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" im Feldtest an mindestens vier für den späteren Einsatz repräsentativen Probenahmeorten zu ermitteln.

Die Untersuchungen werden auch für die Komponente PM₁₀ durchgeführt.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Die Prüfung wurde im Feldtest in vier verschiedenen Vergleichskampagnen durchgeführt. Dabei wurden verschiedene Jahreszeiten sowie unterschiedlich hohe PM₁₀ Konzentrationen berücksichtigt.

Vom gesamten Datensatz müssen mindestens 20 % der mit der Referenzmethode ermittelten Konzentrationswerte größer sein als die obere Beurteilungsschwelle gemäß 2008/50/EG [7]. Für PM₁₀ liegt die obere Beurteilungsschwelle bei 28 μ g/m³.

Es wurden für jede Vergleichskampagne mindestens 40 valide Wertepaare ermittelt. Vom gesamten Datensatz (4 Vergleiche, 202 valide Messwertpaare für SN 3, 208 valide Messwertpaare für SN 4) liegen insgesamt 23,8 % der Messwerte über der oberen Beurteilungsschwelle von 28 μ g/m³ für PM₁₀. Die gemessenen Konzentrationen wurden auf Umgebungsbedingungen bezogen.

6.4 Auswertung

Gemäß **Punkt 9.5.3.1** des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" gilt:

Die Unsicherheit zwischen den Prüflingen u_{bs} muss $\leq 2,5 \ \mu g/m^3$ liegen. Eine Unsicherheit über 2,5 $\mu g/m^3$ zwischen den beiden Prüflingen ist ein Hinweis, dass die Leistung eines oder beider Systeme unzureichend ist und die Gleichwertigkeit nicht erklärt werden kann.

Die Unsicherheit wird dabei ermittelt für:

- Alle Standorte bzw. Vergleiche gemeinsam (Kompletter Datensatz)
- 1 Datensatz mit Messwerten ≥ 30 µg/m³ für PM₁₀ (Basis: Mittelwerte Referenzmessung)

Seite 158 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Darüber hinaus erfolgt in diesem Bericht auch eine Auswertung für die folgenden Datensätze:

- Jeden Standort bzw. Vergleich einzeln
- 1 Datensatz mit Messwerten < 30 μg/m³ f
 ür PM₁₀ (Basis: Mittelwerte Referenzmessung)

Die Unsicherheit zwischen den Prüflingen u_{bs} wird aus den Differenzen aller Tagesmittelwerte (24 h-Werte) der Prüflinge, die parallel betrieben werden, nach folgender Gleichung berechnet:

$$u_{bs}^{2} = \frac{\sum_{i=1}^{n} (y_{i,1} - y_{i,2})^{2}}{2n}$$

mit $y_{i,1}$ und $y_{i,2}$ = Ergebnisse der parallelen Messungen einzelner 24h-Werte i n = Anzahl der 24h-Werte

6.5 Bewertung

Die Unsicherheit zwischen den Prüflingen u_{bs} liegt mit maximal 1,22 μ g/m³ für PM₁₀ unterhalb des geforderten Wertes von 2,5 μ g/m³.

Mindestanforderung erfüllt? ja

TÜVRheinland[®] Genau. Richtig. Seite 159 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 37 führt die berechneten Werte für die Unsicherheit zwischen den Prüflingen u_{bs} auf. Die grafische Darstellung erfolgt in Abbildung 56 bis Abbildung 62.

Tabelle 37: Unsicherheit zwischen den Prüflingen u_{bs} für die Testgeräte SN 3 und SN 4, Messkomponente PM₁₀

Testgeräte	Standort	Anzahl Werte	Unsicherheit u _{bs}
SN			µg/m³
SN 3 / SN 4	Alle Standorte	262	1,10
	Einzelstan	dorte	
SN 3 / SN 4	Köln, Winter	53	1,11
SN 3 / SN 4	Bornheim, Sommer	96	1,07
SN 3 / SN 4	Bornheim, Winter	49	1,05
SN 3 / SN 4	Teddington, Sommer	64	1,17
	Klassierung über R	eferenzwe	erte
SN 3 / SN 4	Werte ≥ 30 µg/m³	41	1,22
SN 3 / SN 4	Werte < 30 µg/m ³	161	1,13

Seite 160 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 56: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , alle Standorte

Abbildung 57: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , Standort Köln, Winter

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 58: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , Standort Bornheim, Sommer

Seite 162 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 60: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , Standort Teddington, Sommer

Abbildung 61: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , alle Standorte, Werte \geq 30 µg/m³

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 62: Ergebnis der Parallelmessungen mit den Testgeräten SN 3 / SN 4, Messkomponente PM_{10} , alle Standorte, Werte < 30 μ g/m³

Seite 164 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.10 Berechnung der erweiterten Unsicherheit der Prüflinge

Bei der Prüfung von PM_{2,5}-Messeinrichtungen ist die Gleichwertigkeit zum Referenzverfahren gemäß Kapitel 9.5.3.2 bis 9.6 des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" im Feldtest an mindestens vier für den späteren Einsatz repräsentativen Probenahmeorten zu nachzuweisen. Die höchste errechnete erweiterte Unsicherheit der Prüflinge ist mit den Anforderungen an die Datenqualität nach Anhang A der Richtlinie VDI 4202 Blatt 1 (September 2010) zu vergleichen.

Die Untersuchungen werden auch für die Komponente PM₁₀ durchgeführt.

6.2 Gerätetechnische Ausstattung

Für diesen Prüfpunkt kamen zusätzlich die Geräte entsprechend Punkt 5 des vorliegenden Berichts zum Einsatz.

6.3 Durchführung der Prüfung

Die Prüfung wurde im Feldtest in vier verschiedenen Vergleichskampagnen durchgeführt. Dabei wurden verschiedene Jahreszeiten sowie unterschiedlich hohe PM₁₀ Konzentrationen berücksichtigt.

Vom gesamten Datensatz müssen mindestens 20 % der mit der Referenzmethode ermittelten Konzentrationswerte größer sein als die obere Beurteilungsschwelle gemäß 2008/50/EG [7]. Für PM₁₀ liegt die obere Beurteilungsschwelle bei 28 μ g/m³.

Es wurden für jede Vergleichskampagne mindestens 40 valide Wertepaare ermittelt. Vom gesamten Datensatz (4 Vergleiche, 202 valide Messwertpaare für SN 3, 208 valide Messwertpaare für SN 4) liegen insgesamt 23,8 % der Messwerte über der oberen Beurteilungsschwelle von 28 μ g/m³ für PM₁₀. Die gemessenen Konzentrationen wurden auf Umgebungsbedingungen bezogen.

6.4 Auswertung

[Punkt 9.5.3.2] Der Berechnung der erweiterten Unsicherheit der Prüflinge wird die Überprüfung der Unsicherheit zwischen den parallel betriebenen Referenzgeräten u_{ref} vorangestellt.

Die Unsicherheit zwischen den parallel betriebenen Referenzgeräten u_{ref} wird analog der Unsicherheit zwischen den Prüflingen bestimmt und muss $\leq 2 \ \mu g/m^3$ sein.

Die Ergebnisse der Auswertung sind unter "Umfassende Darstellung der Prüfergebnisse" zu diesem Prüfpunkt dargestellt.

Um die Vergleichbarkeit der Prüflinge y mit dem Referenzverfahren x zu beurteilen, wird ein linearer Zusammenhang $y_i = a + bx_i$ zwischen den Messergebnissen beider Methoden angenommen. Der Zusammenhang zwischen den Mittelwerten der Referenzgeräte und den jeweils einzeln zu betrachtenden Prüflingen wird mittels orthogonaler Regression hergestellt.

Die Regression wird berechnet für:

- Alle Standorte bzw. Vergleiche gemeinsam
- Jeden Standort bzw. Vergleich einzeln

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

• 1 Datensatz mit Messwerten $PM_{10} \ge 30 \ \mu g/m^3$ (Basis: Mittelwerte Referenzmessung)

Zur weiteren Auswertung wird die Ergebnisunsicherheit u_{c_s} der Prüflinge aus dem Vergleich mit dem Referenzverfahren gemäß der folgenden Gleichung beschrieben, welche u_{CR} als eine Funktion der Feinstaubkonzentration x_i beschreibt.

$$u_{CR}^{2}(y_{i}) = \frac{RSS}{(n-2)} - u^{2}(x_{i}) + [a + (b-1)x_{i}]^{2}$$

Mit RSS = Summe der (relativen) Residuen aus der orthogonalen Regression

- u(x_i) = zufällige Unsicherheit des Referenzverfahrens, sofern der Wert von u_{bs}, der für den Einsatz der Prüflinge berechnet wird, in diesem Test verwendet werden kann
 - (siehe Punkt 6.1 5.4.9 Ermittlung der Unsicherheit zwischen den Prüflingen ubs)

Algorithmen zur Berechnung des Achsabschnitts a sowie der Steigung b und ihrer Varianzen mittels orthogonaler Regression sind im Anhang B von [4] ausführlich beschrieben.

Die Summe der (relativen) Residuen RSS wird nach folgender Gleichung berechnet:

$$RSS = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Die Unsicherheit u_{CR} wird berechnet für:

- Alle Standorte bzw. Vergleiche gemeinsam
- Jeden Standort bzw. Vergleich einzeln
- 1 Datensatz mit Messwerten $PM_{10} \ge 30 \ \mu g/m^3$ (Basis: Mittelwerte Referenzmessung)

Voraussetzung für die Akzeptanz des Gesamtdatensatzes ist gemäß Leitfaden:

• Die Steigung b ist insignifikant verschieden von 1: $|b-1| \le 2 \cdot u(b)$

und

• Der Achsabschnitt a ist insignifikant verschieden von 0: $|a| \le 2 \cdot u(a)$

Wobei u(b) und u(a) die Standardunsicherheiten der Steigung und des Achsabschnitts beschreiben, berechnet als Wurzel der Varianz. Wenn diese Vorbedingungen nicht erfüllt sind, dann können die Prüflinge gemäß Punkt 9.7 des Leitfadens kalibriert werden (siehe auch 6.1

5.4.11 Anwendung von Korrekturfaktoren/-termen. Die Kalibrierung darf nur für den Gesamtdatensatz durchgeführt werden.

Seite 166 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

[Punkt 9.5.4] Für alle Datensätze wird die kombinierte Unsicherheit der Prüflinge $w_{c,CM}$ durch Kombination der Beiträge aus 9.5.3.1 und 9.5.3.2 gemäß der folgenden Gleichung berechnet:

$$w_{c,CM}^{2}(y_{i}) = \frac{u_{CR}^{2}(y_{i})}{y_{i}^{2}}$$

Für jeden Datensatz wird die Unsicherheit $w_{c,CM}$ auf einem Level von $y_i = 30 \ \mu g/m^3$ für PM_{10} berechnet.

[Punkt 9.5.5] Für jeden Datensatz wird die erweiterte relative Unsicherheit der Ergebnisse der Prüflinge durch Multiplizieren von $w_{c,CM}$ mit einem Erweiterungsfaktor k nach folgender Gleichung berechnet:

$$W_{CM} = \mathbf{k} \cdot \mathbf{w}_{CM}$$

In der Praxis wird bei großen n für k=2 eingesetzt.

[Punkt 9.6]

Die größte resultierende Unsicherheit W_{CM} wird mit den Anforderungen an die Datenqualität von Immissionsmessungen nach EU-Richtlinie [7] verglichen und bewertet. Es sind zwei Fälle möglich:

1. $W_{CM} \leq W_{dqo} \rightarrow$ Prüfling wird als gleichwertig zum Referenzverfahren betrachtet.

2. $W_{CM} > W_{dqo} \rightarrow$ Prüfling wird nicht als gleichwertig zum Referenzverfahren betrachtet.

Die festgelegte erweiterte relative Unsicherheit W_{dqo} beträgt für Feinstaub 25 % [7].

6.5 Bewertung

Die ermittelten Unsicherheiten W_{CM} liegen ohne Anwendung von Korrekturfaktoren für alle betrachteten Datensätze unter der festgelegten erweiterten relativen Unsicherheit W_{dqo} von 25 % für Feinstaub.

Mindestanforderung erfüllt? ja

Nachfolgende Tabelle 38 zeigt einen Überblick über alle Ergebnisse der Äquivalenzprüfung für den Prüfling Modell 5030i SHARP für PM₁₀. Für den Fall, dass ein Kriterium erfüllt wird oder nicht, ist der Text in den Zellen in grüner oder roter Farbe dargestellt. Darüber hinaus sind entsprechend den fünf Prüfkriterien aus Punkt 6.1 Methodik der Äquivalenzprüfung die zugehörigen Zellen selbst farblich hinterlegt.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 38: Übersicht Äquivalenzprüfung Modell 5030i SHARP für PM₁₀

PM10 5020i Sharp	23,8% ≥ 28 µg m-3			Orth	ogonale Reg	gression		Unsicherheit zwischen den Geräten	
PM TO SUSUI Sharp	WCM/%	nc-s	r2	Steigung	g (b) +/- ub	Achsabschr	nitt (a) +/- ua	Referenz	Prüflinge
Alle Standorte	9,2	202	0,967	1,009	+/- 0,013	-0,392	+/- 0,327	0,63	1,10
< 30 µg m-3	8,0	161	0,903	0,986	+/- 0,024	0,109	+/- 0,431	0,63	1,13
≥ 30 µg m-3	13,7	41	0,938	1,112	+/- 0,044	-5,181	+/- 1,940	0,63	1,22

										Kriterium 3
Chip	Detereste			Orth	nogonale Re	gression		Grenzwert 50 µg m-3		
5113	Datensatz	nc-s r2 Steigung (b) +/- ub		Achsabschnitt (a) +/- ua		WCM/%	% ≥ 28 µg m-3	Kriterium 4		
	Bornheim (Winter)	42	0,976	0,987	+/- 0,024	0,975	+/- 0,745	8,46	42,9	
Enzeldetene ätze	Köln (Winter)	43	0,947	1,033	+/- 0,037	-1,570	+/- 1,256	12,91	53,5	Kriterium 5
Enzeidatensatze	Bornheim (Sommer)	71	0,952	0,986	+/- 0,026	0,461	+/- 0,534	8,69	9,9	
	Teddington (Sommer)	46	0,855	0,975	+/- 0,056	0,655	+/- 0,813	7,25	0,0	Weitere
	< 30 µg m-3	161	0,899	0,982	+/- 0,025	0,625	+/- 0,439	7,85	4,3	
Gesamtdatensätze	≥ 30 µg m-3	41	0,938	1,102	+/- 0,044	-4,835	+/- 1,911	13,38	100,0	
	Alle Standorte	202	0,966	0,994	+/- 0,013	0,286	+/- 0,329	9,29	23,8	

SNA	Datensatz			Orth	nogonale Reg	Grenzw ert 50 µg m-3			
5114	Datensatz	nc-s	r2	Steigung	g (b) +/- ub	Achsabsch	nitt (a) +/- ua	WCM/%	% ≥ 28 µg m-3
	Bornheim (Winter)	42	0,981	1,027	+/- 0,022	-0,073	+/- 0,689	9,19	42,9
Finzaldatana ätza	Köln (Winter)	45	0,944	1,049	+/- 0,038	-2,653	+/- 1,250	13,58	51,1
Enzeluatensatze	Bornheim (Sommer)	75	0,935	1,017	+/- 0,030	-1,191	+/- 0,623	10,35	9,3
	Teddington (Sommer)	46	0,833	0,921	+/- 0,057	0,304	+/- 0,831	16,19	0,0
	< 30 µg m-3	167	0,876	0,996	+/- 0,027	-0,601	+/- 0,485	9,32	4,2
Gesamtdatensätze	≥ 30 µg m-3	41	0,929	1,128	+/- 0,048	-5,747	+/- 2,091	14,88	100,0
	Alle Standorte	208	0,960	1,029	+/- 0,014	-1,242	+/- 0,359	10,32	23,1

Die Überprüfung der fünf Kriterien aus Punkt 6.1 Methodik der Äquivalenzprüfung ergab folgendes Bild:

- Kriterium 1: Mehr als 20 % der Daten sind größer als 28 µg/m³.
- Kriterium 2: Die Unsicherheit zwischen den Prüflingen ist kleiner als 2,5 µg/m³.
- Kriterium 3: Die Unsicherheit zwischen den Referenzgeräten ist kleiner als 2,0 µg/m³

Seite 168 von 431

TÜV Rheinland Energie und Umwelt GmbH Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Kriterium 4: Alle erweiterten Unsicherheiten liegen unter 25%.

Kriterium 5: Die Steigung und der Achsabschnitt bei der Auswertung des Gesamtdaten satzes für SN 4 sind signifikant größer als erlaubt.

Weitere: Die Auswertung des Gesamtdatensatzes für beide Prüflinge gemeinsam zeigt, dass die Messeinrichtung eine sehr gute Korrelation mit der Referenzmethode aufweist mit einer Steigung von 1,009 und einem Achsabschnitt von -0,392 bei einer erweiterten Gesamtunsicherheit von 9,2 %

Die Version vom Januar 2010 des Leitfadens ist nicht eindeutig darin, welche Steigung und welcher Achsabschnitt konkret zur Korrektur eines Prüflings verwendet werden sollen, falls dieser Prüfling die Äquivalenzprüfung nicht besteht. Nach Rücksprache mit dem Vorsitzenden der für die Erstellung des Leitfadens verantwortlichen EU-Arbeitsgruppe (Herr Theo Hafkenscheid) wurde entschieden, dass die Anforderung aus der Version vom November 2005 des Leitfadens weiterhin gültig ist und dass die Steigung und der Achsabschnitt aus der orthogonalen Regression für den Gesamtdatensatz herangezogen werden. Diese sind in Tabelle 38 golden hinterlegt und in der Legende mit "Weitere" bezeichnet.

Der UK Equivalence Report aus 2006 [8] hat diesen Punkt als Schwachstelle in der Statistik für den Äquivalenznachweis in der November 2005 Version des Leitfadens beschrieben, da "präzisere" Geräte dadurch benachteiligt werden (Anhang E Abschnitt 4.2). Die gleiche Schwachstelle wurde 1:1 in die Januar 2010 Version des Leitfadens übernommen. Sowohl der TÜV Rheinland als auch die englischen Partner sind der Meinung, dass das Modell 5030i SHARP für PM₁₀ in der Tat durch die Statistik für seine Präzision benachteiligt wird. Es wird daher vorgeschlagen, denselben pragmatischen Ansatz zu wählen, der in der Vergangenheit in früheren Studien schon zur Anwendung kam.

Gemäß der Tabelle 38 muss daher aufgrund der ermittelten Signifikanz bei SN 4 eine Korrektur der Steigung und des Achsabschnitts für PM_{10} erfolgen. Es ist an dieser Stelle zu beachten, dass die ermittelten Unsicherheiten W_{CM} ohne Anwendung von Korrekturfaktoren für alle betrachteten Datensätze unter der festgelegten erweiterten relativen Unsicherheit W_{dqo} von 25 % für Feinstaub liegen.

In diesem konkreten Fall liegt die Steigung für den Gesamtdatensatz bei 1,009 und der Achsabschnitt für den Gesamtdatensatz bei -0392. Es erfolgt daher unter Punkt 6.1

5.4.11 Anwendung von Korrekturfaktoren/-termen eine zusätzliche Auswertung unter Anwendung des entsprechenden Kalibrierfaktors auf die Datensätze.

Die überarbeitete Fassung des Leitfadens von Januar 2010 enthält die Forderung, dass für eine richtlinienkonforme Überwachung fortlaufend stichprobenweise Überprüfungen bei einer gewissen Anzahl von Geräten in einem Messnetz durchgeführt werden müssen und dass die Anzahl der betroffenen Messorte abhängig ist von der erweiterten Messunsicherheit des Gerätes. Die entsprechende Umsetzung liegt in der Verantwortung des Messnetzbetreibers oder der zuständigen Behörde des Mitgliedstaates. Allerdings empfehlen der TÜV Rheinland wie auch die englischen Partner, dass die erweiterte Unsicherheit des Gesamtdatensatzes hierzu herangezogen wird, nämlich 9,2 %, was wiederum eine jährliche Überprüfung an 2 Messorten erfordern würde (Leitfaden [4], Kapitel 9.9.2, Tabelle 6).

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Umfassende Darstellung des Prüfergebnisses

Tabelle 39 zeigt einen Überblick über die Unsicherheiten zwischen den Referenzgeräten u_{ref} aus den Felduntersuchungen. In Tabelle 40 erfolgt eine zusammenfassende Darstellung der Ergebnisse der Äquivalenzprüfung inkl. der ermittelten erweiterten Messunsicherheiten W_{CM} aus den Feldtestuntersuchungen.

Tabelle 39: Unsicherheit zwischen den Referenzgeräten u_{ref} für PM₁₀

Referenz- Geräte	Standort	Anzahl Werte	Unsicherheit u _{bs}
Nr.			µg/m³
1 / 2	Köln, Winter	50	0,58
1 / 2	Bornheim, Sommer	82	0,66
1 / 2	Bornheim, Winter	42	0,85
1 / 2	Teddington, Sommer	46	0,32
1 / 2	Alle Standorte	220	0,63

Die Unsicherheit zwischen den Referenzgeräten u_{ref} ist an allen Standorten < 2 μ g/m³.

Seite 170 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 40: Zusammenstellung der Ergebnisse der Äquivalenzprüfung, SN 3 & SN 4, Messkomponente PM₁₀, Rohdaten

PM10 5030i Sharp	23,8% ≥ 28 µg m-3	Orthogonale Regression							Unsicherheit zw ischen den Geräten		
	W _{CM} / %	n _{c-s}	r²	Steigung (b) +/- ub		Achsabschnitt (a) +/- ua			Referenz	Prüflinge	
Alle Standorte	9,2	202	0,967	1,009	+/-	0,013	-0,392	+/-	0,327	0,63	1,10
< 30 µg m-3	8,0	161	0,903	0,986	+/-	0,024	0,109	+/-	0,431	0,63	1,13
≥ 30 µg m-3	13,7	41	0,938	1,112	+/-	0,044	-5,181	+/-	1,940	0,63	1,22
SN3	Datensatz	Orthogonale Regression							Grenzw ert 50 µg m-3		
		n _{c-s}	r²	Steigung (b) +/- ub			Achsabschnitt (a) +/- ua			W _{CM} / %	% ≥ 28 µg m-3
Enzeldatensätze	Bornheim (Winter)	42	0,976	0,987	+/-	0,024	0,975	+/-	0,745	8,46	42,9
	Köln (Winter)	43	0,947	1,033	+/-	0,037	-1,570	+/-	1,256	12,91	53,5
	Bornheim (Sommer)	71	0,952	0,986	+/-	0,026	0,461	+/-	0,534	8,69	9,9
	Teddington (Sommer)	46	0,855	0,975	+/-	0,056	0,655	+/-	0,813	7,25	0,0
Gesamtdatensätze	< 30 µg m-3	161	0,899	0,982	+/-	0,025	0,625	+/-	0,439	7,85	4,3
	≥ 30 µg m-3	41	0,938	1,102	+/-	0,044	-4,835	+/-	1,911	13,38	100,0
	Alle Standorte	202	0,966	0,994	+/-	0,013	0,286	+/-	0,329	9,29	23,8
SN4	Datensatz		Orthogonale Regression							Grenzw ert 50 µg m-3	
		n _{c-s}	r²	Steigung (b) +/- ub		Achsabschnitt (a) +/- ua			W _{CM} / %	% ≥ 28 µg m-3	
Enzeldatensätze	Bornheim (Winter)	42	0,981	1,027	+/-	0,022	-0,073	+/-	0,689	9,19	42,9
	Köln (Winter)	45	0,944	1,049	+/-	0,038	-2,653	+/-	1,250	13,58	51,1
	Bornheim (Sommer)	75	0,935	1,017	+/-	0,030	-1,191	+/-	0,623	10,35	9,3
	Teddington (Sommer)	46	0,833	0,921	+/-	0,057	0,304	+/-	0,831	16,19	0,0
Gesamtdatensätze	< 30 µg m-3	167	0,876	0,996	+/-	0,027	-0,601	+/-	0,485	9,32	4,2
	≥ 30 µg m-3	41	0,929	1,128	+/-	0,048	-5,747	+/-	2,091	14,88	100,0
	Alle Standorte	208	0,960	1,029	+/-	0,014	-1,242	+/-	0,359	10,32	23,1

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 63: Referenz vs. Testgerät, SN 3 & SN 4, Messkomponente PM₁₀, alle Standorte

Seite 172 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 64: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, alle Standorte

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 65: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, alle Standorte

Abbildung 66: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Köln, Winter

Abbildung 67: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Köln, Winter

0

Seite 174 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 68: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Bornheim, Sommer

Abbildung 69: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Bornheim, Sommer

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 70: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Bornheim, Winter

Abbildung 71: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Bornheim, Winter

Seite 176 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 72: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Teddington, Sommer

Abbildung 73: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Teddington, Sommer

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 74: Referenz vs. Testgerät, SN 3, Messkomponente PM₁₀, Werte ≥ 30 µg/m³

Abbildung 75: Referenz vs. Testgerät, SN 4, Messkomponente PM₁₀, Werte ≥ 30 µg/m³

Seite 178 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.4.11 Anwendung von Korrekturfaktoren/-termen

Ist bei der Prüfung von PM_{2,5}-Messeinrichtungen die höchste errechnete erweiterte Unsicherheit der Prüflinge größer als die in den Anforderungen an die Datenqualität nach Anhang B der Richtlinie VDI 4202 Blatt 1 (September 2010) festgelegte erweiterte relative Unsicherheit, ist eine Anwendung von Korrekturfaktoren/-termen zulässig. Die korrigierten Werte müssen die Anforderungen gemäß den Punkten 9.5.3.2ff. des Leitfadens "Demonstration of Equivalence of Ambient Air Monitoring Methods" erfüllen.

Die Untersuchungen werden auch für die Komponente PM₁₀ durchgeführt.

6.2 Gerätetechnische Ausstattung

Bei dieser Mindestanforderung nicht erforderlich.

6.3 Durchführung der Prüfung

Siehe Modul 5.4.10

6.4 Auswertung

Tritt bei der Auswertung der Rohwerte gemäß Modul 5.4.10 der Fall $W_{CM} > W_{dqo}$ auf, d.h. Prüfling wird nicht als gleichwertig zum Referenzverfahren betrachtet, dann ist es zulässig, einen Korrekturfaktor oder -term anzuwenden, der aus der Regressionsgleichung für den <u>gesamten Datensatz</u> resultiert. Die korrigierten Werte müssen die Anforderungen für alle Datensätze oder Teildatensätze erfüllen (siehe Modul 5.4.10). Darüber hinaus kann eine Korrektur auch für den Fall, dass $W_{CM} \le W_{dqo}$ ist, genutzt werden, um die Genauigkeit der Prüflinge zu verbessern.

Es können drei verschiedene Fälle auftreten:

a) Steigung b nicht signifikant von 1 verschieden: $|b-1| \le 2u(b)$,

Achsenabschnitt a signifikant von 0 verschieden: |a| > 2u(a)

b) Steigung b signifikant von 1 verschieden: |b-1| > 2u(b),

Achsenabschnitt a nicht signifikant von 0 verschieden: $|a| \le 2u(a)$

c) Steigung b signifikant von 1 verschieden: |b - 1| > 2u(b)

Achsenabschnitt a signifikant von 0 verschieden: |a| > 2u(a)

zu a)

Der Wert des Achsenabschnittes a kann als Korrekturterm verwendet werden, um alle Eingangswerte y_i gemäß folgender Gleichung zu korrigieren.

 $y_{i,corr} = y_i - a$

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Die resultierenden Werte von $y_{i,corr}$ können dazu dienen, mit einer linearen Regression die folgenden neuen Terme zu berechnen:

$$y_{i,corr} = c + dx_i$$

und

$$u_{c_s}^2(y_{i,corr}) = \frac{RSS}{(n-2)} - u^2(x_i) + [c + (d-1)x_i]^2 + u^2(a)$$

mit $u(a) = Unsicherheit des Originalachsenabschnittes a, deren Wert benutzt wurde, um <math>y_{i,corr}$ zu ermitteln.

Algorithmen zur Berechnung von Achsabschnitten sowie Steigungen und ihrer Varianzen mittels orthogonaler Regression sind im Anhang B von [4] ausführlich beschrieben. RSS wird analog zur Berechnung in Modul 5.4.10 ermittelt.

zu b)

Der Wert der Steigung b kann als Korrekturterm verwendet werden, um alle Eingangswerte y_i gemäß folgender Gleichung zu korrigieren.

$$y_{i,corr} = \frac{y_i}{b}$$

Die resultierenden Werte von $y_{i,corr}$ können dazu dienen, mit einer neuen linearen Regression die folgenden neuen Terme zu berechnen:

$$y_{i,corr} = c + dx_i$$

und

$$u_{c_{-}s}^{2}(y_{i,corr}) = \frac{RSS}{(n-2)} - u^{2}(x_{i}) + [c + (d-1)x_{i}]^{2} + x_{i}^{2}u^{2}(b)$$

mit u(b) = Unsicherheit der Originalsteigung b, deren Wert benutzt wurde, um $y_{i,corr}$ zu ermitteln.

Algorithmen zur Berechnung von Achsabschnitten sowie Steigungen und ihrer Varianzen mittels orthogonaler Regression sind im Anhang B von [4] ausführlich beschrieben. RSS wird analog zur Berechnung in Modul 5.4.10 ermittelt.

zu c)

Die Werte der Steigung b und des Achsenabschnittes a können als Korrekturterme verwendet werden, um alle Eingangswerte y_i gemäß folgender Gleichung zu korrigieren.

$$y_{i,corr} = \frac{y_i - a}{b}$$

Die resultierenden Werte von y_{i,corr} können dazu dienen, mit einer neuen linearen Regression die folgenden neuen Terme zu berechnen:

$$y_{i,corr} = c + dx_i$$

Seite 180 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

und

$$u_{c_{s}}^{2}(y_{i,corr}) = \frac{RSS}{(n-2)} - u^{2}(x_{i}) + [c + (d-1)x_{i}]^{2} + x_{i}^{2}u^{2}(b) + u^{2}(a)$$

mit u(b) = Unsicherheit der Originalsteigung b, deren Wert benutzt wurde, um $y_{i,corr}$ zu ermitteln und mit u(a) = Unsicherheit des Originalachsenabschnittes a, deren Wert benutzt wurde, um $y_{i,corr}$ zu ermitteln.

Algorithmen zur Berechnung von Achsabschnitten sowie Steigungen und ihrer Varianzen mittels orthogonaler Regression sind im Anhang B von [4] ausführlich beschrieben. RSS wird analog zur Berechnung in Modul 5.4.10 ermittelt.

Die Werte für u_{c_s,corr} werden dann zur Berechnung der kombinierten relativen Unsicherheit der Prüflinge nach der Korrektur gemäß der folgenden Gleichung herangezogen:

$$w_{c,CM,corr}^{2}(y_{i}) = \frac{u_{c_{s,corr}}^{2}(y_{i})}{y_{i}^{2}}$$

Für den korrigierten Datensatz wird die Unsicherheit $w_{c,CM,corr}$ am 24 h-Grenzwert berechnet, wobei y_i als Konzentration am Grenzwert eingesetzt wird.

Die erweiterte relative Unsicherheit $W_{CM,corr}$ wird entsprechend der folgenden Gleichung berechnet:

$$W_{CM',corr} = \mathbf{k} \cdot \mathbf{w}_{CM,corr}$$

In der Praxis wird bei großen n für k = 2 eingesetzt.

Die größte resultierende Unsicherheit W_{CM,corr} wird mit den Anforderungen an die Datenqualität von Immissionsmessungen nach EU-Richtlinie [7] verglichen und bewertet. Es sind zwei Fälle möglich:

1. $W_{CM,corr} \leq W_{dqo} \rightarrow$ Prüfling wird als gleichwertig zum Referenzverfahren betrachtet.

2. $W_{CM,corr} > W_{dqo} \rightarrow$ Prüfling wird nicht als gleichwertig zum Referenzverfahren betrachtet.

Die festgelegte erweiterte relative Unsicherheit W_{dqo} beträgt für Feinstaub 25 % [7].

6.5 Bewertung

Die Prüflinge erfüllen während der Prüfung die Anforderungen an die Datenqualität von Immissionsmessungen schon ohne eine Anwendung von Korrekturfaktoren. Eine Korrektur der Steigung und des Achsabschnitts führt jedoch zu keiner signifikanten Veränderung der erweiterten Messunsicherheiten für den Gesamtdatensatz.

Mindestanforderung erfüllt? ja
Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Die Auswertung des Gesamtdatensatzes für den Prüfling SN 4 ergibt eine signifikante Steigung und einen signifikanten Achsabschnitt (siehe Tabelle 38).

Die Steigung für den Gesamtdatensatz für SN 4 liegt bei 1,029 mit einer Unsicherheit der Steigung von lediglich 0,014.

Der Achsabschnitt für den Gesamtdatensatz für SN 4 liegt bei -1,242 mit einer Unsicherheit von 0,359.

Der UK Equivalence Report aus 2006 [8] hat diesen Punkt als Schwachstelle in der Statistik für den Äquivalenznachweis in der November 2005 Version des Leitfadens beschrieben, da "präzisere" Geräte dadurch benachteiligt werden (Anhang E Abschnitt 4.2). Die gleiche Schwachstelle wurde 1:1 in die Januar 2010 Version des Leitfadens übernommen. Sowohl der TÜV Rheinland als auch die englischen Partner sind der Meinung, dass das Modell 5030i SHARP für PM₁₀ in der Tat durch die Statistik für seine Präzision benachteiligt wird. Es wird daher vorgeschlagen, denselben pragmatischen Ansatz zu wählen, der in der Vergangenheit in früheren Studien schon zur Anwendung kam.

Die Steigung für den Gesamtdatensatz liegt bei 1,009, der Achsabschnitt für den Gesamtdatensatz liegt bei -0,392. Aus diesem Grunde wurde eine Steigungs- und Achsabschnittskorrektur des gesamten Datensatzes durchgeführt und mit den korrigierten Werten alle Datensätze neu ausgewertet. Alle Datensätze erfüllen auch nach der Korrektur die Anforderungen an die Datenqualität. Die Messunsicherheit verschlechtert sich jedoch bei allen betrachteten Datensätzen leicht (siehe Tabelle 41 im Vergleich zu Tabelle 38).

Die Version des Leitfadens vom Januar 2010 verlangt für den Fall des Betriebs der Messeinrichtung in einem Messnetz, dass die Geräte jährlich an einer Anzahl von Messstellen, die wiederum abhängig ist von der höchsten erweiterten Unsicherheit in der Äquivalenzprüfung, überprüft werden. Das entsprechende Kriterium zur Festlegung der Anzahl der Messstellen ist in 5 % Schritte unterteilt (Leitfaden [4], Kapitel 9.9.2, Tabelle 6). Es bleibt festzustellen, dass die höchste ermittelte erweiterte Unsicherheit nach der Korrektur der Steigung und des Achsabschnitts im Bereich 0 % bis 10 % liegt.

Die entsprechende Umsetzung der oben genannten Anforderung zur regelmäßigen Überprüfung in den Messnetzen liegt in der Verantwortung des Messnetzbetreibers oder der zuständigen Behörde des Mitgliedstaates. Allerdings empfehlen der TÜV Rheinland wie auch die englischen Partner, dass die erweiterte Unsicherheit des Gesamtdatensatzes des Datensatzes hierzu herangezogen wird, nämlich 9,2 % (unkorrigierter Datensatz) respektive 9,6 % (Datensatz nach Steigungs- und Achsabschnittskorrektur), was wiederum eine jährliche Überprüfung an 2 Messorten erfordern würde.

Seite 182 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.6 Umfassende Darstellung des Prüfergebnisses

Tabelle 41 zeigt die Ergebnisse der Auswertungen der Äquivalenzprüfung nach Anwendung des Korrekturfaktors für die Steigung und den Achsabschnitt auf den Gesamtdatensatz.

Tabelle 41: Zusammenstellung der Ergebnisse der Äquivalenzprüfung, SN 3 & SN 4, nach Korrektur Steigung und Achsabschnitt

PM10 5030i Sharp Korrigiert um	23.8% ≥ 28 µg m-3			Or	thogon	ale Regre	ession			Unsicherheit zwischen den Gerä	
Steigung und Achsabschnitt	W _{CM} / %	n _{c-s}	r²	Steigu	ıng (b)	+/- ub	Achsabs	chnitt (a) +/- ua	Referenz	Prüflinge
Alle Standorte	9,6	202	0,967	1,000	+/-	0,013	0,003	+/-	0,324	0,63	1,09
< 30 µg m-3	8,5	161	0,903	0,976	+/-	0,024	0,504	+/-	0,427	0,63	1,12
≥ 30 µg m-3	13,8	41	0,938	1,102	+/-	0,044	-4,729	+/-	1,922	0,63	1,21
51/2	Deterrett			Or	thogon	ale Regre	ession			Grenzw e	rt 50 µg m-3
SN3	Datensatz	n _{c-s}	r²	Steigu	ıng (b)	+/- ub	Achsabs	chnitt (a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
	Bornheim (Winter)	42	0,976	0,978	+/-	0,024	1,358	+/-	0,738	8,82	42,9
Finzaldatana ätza	Köln (Winter)	43	0,947	1,023	+/-	0,037	-1,159	+/-	1,244	13,10	53,5
	Bornheim (Sommer)	71	0,952	0,976	+/-	0,026	0,850	+/-	0,529	9,12	9,9
	Teddington (Sommer)	46	0,855	0,965	+/-	0,055	1,048	+/-	0,805	7,89	0,0
	< 30 µg m-3	161	0,899	0,972	+/-	0,025	1,016	+/-	0,435	8,34	4,3
Gesamtdatensätze	≥ 30 µg m-3	41	0,938	1,092	+/-	0,043	-4,387	+/-	1,893	13,54	100,0
	Alle Standorte	202	0,966	0,985	+/-	0,013	0,676	+/-	0,326	9,65	23,8
SNI	Deterrett			Or	thogon	ale Regre	ession			Grenzw e	rt 50 µg m-3
5144	Datensatz	n _{c-s}	r ²	Steigu	ıng (b)	+/- ub	Achsabs	chnitt (a) +/- ua	W _{CM} / %	% ≥ 28 µg m-3
	Bornheim (Winter)	42	0,981	1,018	+/-	0,022	0,318	+/-	0,683	9,37	42,9
Finzaldatanaätza	Köln (Winter)	45	0,944	1,039	+/-	0,037	-2,231	+/-	1,238	13,78	51,1
	Bornheim (Sommer)	75	0,935	1,007	+/-	0,030	-0,785	+/-	0,618	10,70	9,3
	Teddington (Sommer)	46	0,833	0,911	+/-	0,057	0,701	+/-	0,823	16,69	0,0
	< 30 µg m-3	167	0,876	0,986	+/-	0,027	-0,196	+/-	0,480	9,81	4,2
Gesamtdatensätze	≥ 30 µg m-3	41	0,929	1,117	+/-	0,047	-5,288	+/-	2,072	14,97	100,0
	Alle Standorte	208	0,960	1,019	+/-	0,014	-0,837	+/-	0,355	10,60	23,1

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

6.1 5.5 Anforderungen an Mehrkomponentenmesseinrichtungen

Mehrkomponentenmesseinrichtungen müssen die Anforderungen für jede Einzelkomponente erfüllen, auch bei Simultanbetrieb aller Messkanäle.

6.2 Gerätetechnische Ausstattung

Nicht zutreffend.

6.3 Durchführung der Prüfung

Nicht zutreffend.

6.4 Auswertung

Nicht zutreffend.

6.5 Bewertung

Nicht zutreffend.

Mindestanforderung erfüllt? -

6.6 Umfassende Darstellung des Prüfergebnisses

Nicht zutreffend.

Seite 184 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

7. Empfehlungen zum Praxiseinsatz

Arbeiten im Wartungsintervall (4 Wochen)

Folgende regelmäßige Arbeiten sind an der geprüften Messeinrichtung erforderlich:

- Regelmäßige Sichtkontrolle / Telemetrische Überwachung
- Gerätestatus in Ordnung
- Keine Fehlermeldungen
- Keine Verschmutzungen
- Überprüfung der Gerätefunktionen nach Anweisung des Herstellers
- Wartung des Probenahmekopfes gemäß Herstellerangaben

Im Übrigen sind die Anweisungen des Herstellers zu beachten.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Weitergehende Wartungsarbeiten

Über die regelmäßigen Wartungsarbeiten im Wartungsintervall hinausgehend sind folgende Tätigkeiten durchzuführen:

- Kontrolle des Filterbandvorrates ein Filterband reicht dabei für ca. 650 Filterbandwechsel pro Rolle (bei einer Zykluszeit von 8 h entspricht dies ca. 215 Tage) - unter Normalbedingungen (keine außerplanmäßigen Filterwechsel wegen signifikant hoher Staubkonzentrationen) ist ein ca. halb- jährliches Austauschen des Filterbandes ausreichend. Über die Funktion des "Filter Tape Counter" kann die aktuelle Anzahl der Filterbandwechsel überwacht werden und es können Alarmwerte konfiguriert werden, die den Bediener an einen anstehenden Wechsel der Filterbandrolle erinnern.
- Eine Überprüfung der Sensoren für Umgebungstemperatur und Umgebungsdruck soll gemäß den Angaben des Herstellers alle 3 Monate erfolgen.
- Eine Überprüfung der Durchflussrate soll gemäß den Angaben Herstellers alle 3 Monate erfolgen.
- Eine Überprüfung der Dichtigkeit soll gemäß den Angaben des Herstellers alle 3 Monate erfolgen.
- Der externe Pumpenabgasfilter soll alle 6 Monate getauscht werden.
- Einmal im Jahr sind im Rahmen einer jährlichen Grundwartung die Kohleschieber der Vakuumpumpe auszutauschen sowie die SHARP Optik Baugruppe zu reinigen. Letzteres sollte idealerweise von einem erfahrenen Servicetechniker durchgeführt werden. Darüber hinaus wird eine Überprüfung und ggfs. Neukalibrierung der radiometrischen Messung mit Hilfe des Foliensatzes einmal im Jahr empfohlen.
- Während einer jährlichen Grundwartung ist auch auf die Reinigung des Probenahmerohres zu achten.

Weitere Einzelheiten können der Bedienungsanleitung entnommen werden.

Immissionsschutz/Luftreinhaltung

forse W

Guido Baim

Karsten Pletscher

Dipl.-Ing. Guido Baum

Köln, 20. September 2013 936/21209885/G

Seite 186 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

8. Literaturverzeichnis

- [1] VDI-Richtlinie 4202, Blatt 1, "Mindestanforderungen an automatische Immissionsmesseinrichtungen bei der Eignungsprüfung – Punktmessverfahren für gas- und partikelförmige Luftverunreinigungen", Juni 2002 & September 2010
- [2] VDI-Richtlinie 4203, Blatt 3, "Prüfpläne für automatische Messeinrichtungen Prüfprozeduren für Messeinrichtungen zur punktförmigen Messung von gas- und partikelförmigen Immissionen", August 2004 & September 2010
- [3] Europäische Norm EN 12341, "Luftbeschaffenheit Ermittlung der PM 10-Fraktion von Schwebstaub; Referenzmethode und Feldprüfverfahren zum Nachweis der Gleichwertigkeit von Messverfahren und Referenzmessmethode", Deutsche Fassung EN 12341: 1998
- [4] Leitfaden "Demonstration of Equivalence of Ambient Air Monitoring Methods", Englische Fassung vom Januar 2010
- [5] Bedienungshandbuch Modell 5030i SHARP vom 12. März 2013
- [6] Bedienungshandbuch LVS3, Stand 2000
- [7] Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21.05.2008 über Luftqualität und saubere Luft für Europa
- [8] Bericht "UK Equivalence Programme for Monitoring of Particulate Matter", Berichts-Nr.: BV/AQ/AD202209/DH/2396 vom 05.06.2006
- [9] Technische Spezifikation CEN/TS 16450, "Ambient air Automated measuring systems for the measurement of the concentration of particulate matter (PM10; PM2,5)", Englische Fassung vom Mai 2013

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

9. Anlagen

Anhang 1 M	less- und Rechenwerte
------------	-----------------------

- Anlage 1: Nachweisgrenze
- Anlage 2: Temperaturabhängigkeit des Nullpunktes
- Anlage 3: Temperaturabhängigkeit der Empfindlichkeit
- Anlage 4: Netzspannungsabhängigkeit
- Anlage 5: Messwerte aus den Feldteststandorten
- Anlage 6: Umgebungsbedingungen an den Feldteststandorten
- Anlage 7: Messwerte aus der zusätzlichen Kampagne Bornheim, Sommer 2013
- Anlage 8: Umgebungsbedingungen von der zusätzlichen Kampagne Bornheim, Sommer 2013
- Anhang 2 Verfahren zur Filterwägung
- Anhang 3 Handbücher

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 1			Nachweisg	renze	Blatt 1 v	latt 1 von 1
Hersteller	Thermo Fisher Scientific					
Gerätetyp	Model 5030i				Standards NP Nullfilter	
Serien-Nr.	SN 3 / SN 4					
Nr.	Datum	Messwerte [µg/m ³]	Datum	Messwerte [µg/m³]		
1	20.42.2042	SN 3	12 11 2012	<u>SN 4</u>	-	
2	20.12.2012	0,0	13.11.2012	0,0		
2	21.12.2012	0,0	14.11.2012	-0.1		
4	22.12.2012	0,0	10.11.2012	-0,1		
5	23.12.2012	0.0	17 11 2012	0.0		
6	25 12 2012	0.0	18 11 2012	0,1		
7	26 12 2012	0.0	19 11 2012	0.0		
8	27.12.2012	0,0	20.11.2012	0,1		
9	28.12.2012	0,0	21.11.2012	0,2		
10	29.12.2012	0,0	22.11.2012	0,1		
11	30.12.2012	0,0	23.11.2012	-0,1		
12	31.12.2012	0,0	24.11.2012	0,1		
13	01.01.2013	0,0	25.11.2012	0,1		
14	02.01.2013	0,0	26.11.2012	0,1		
15	03.01.2013	0,0	27.11.2012	0,0		
	Anzahl Werte	15	Anzahl Werte	15		-
	Mittelwert	0,01	Mittelwert	0,04	$\left \mathbf{S}_{\mathbf{x}_{0}} = \left \left(-\frac{\mathbf{I}}{\mathbf{I}} \right) \cdot \sum \left[\left(\mathbf{X}_{0} - \mathbf{X}_{0} \right)^{2} \right] \right $	1
	Standardabweichung s_{x0}	0,01	Standardabweichung s_{x0}	0,07	$\int \sqrt{1 n - 1} \sum_{i=1,n} \frac{1}{i} \sum_{i=1,n} \frac{1}{$	
	Nachweisgrenze X	0,01	Nachweisgrenze X	0,16	7	

TÜVRheinland® Genau. Richtig.

Seite 188 von 431

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 189 von von 431

Anlage 2

Umgebungstemperaturabhängigkeit am Nullpunkt (SHARP)

Blatt 1 von 2

Hersteller	Thermo Fish	er Scientifc				<u>.</u>			
Gerätetyp	Model 5030i					Standards		Nullfilter	
Serien-Nr.	SN 3 / SN 4								
			Durchgang 1		Durchgang 2		Durchgang 3		
SN 3		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.	
	Nr.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	
	1	20	0.0	-	0.0	-	0.0	-	
	2	5	0.0	0.0	0.0	0.0	0.0	0.0	
NP	3	20	0.1	0.1	0.1	0.1	0.1	0.1	
	4	40	0.0	0.0	0.0	0.0	0.0	0.0	
	5	20	-0.1	-0.1	0.0	0.0	0.0	0.0	
SN 4		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.	
	Nr.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	
	1	20	1.1	-	1.2	-	1.2	-	
	2	5	0.7	-0.4	0.7	-0.4	0.4	-0.8	
NP	3	20	0.6	-0.5	0.7	-0.5	0.7	-0.5	
	4	40	0.1	-1.0	0.1	-1.1	0.1	-1.1	
	5	20	0.3	-0.8	0.3	-0.9	0.1	-1.2	

Blatt 2 von 2

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Umgebungstemperaturabhängigkeit am Nullpunkt (NEPH)

Seite 190 von 431

Hersteller	Thermo Fish	er Scientifc				Stondordo		Nullfiltor	
Gerätetyp	Model 5030i					Standards		nummer	
Serien-Nr.	SN 3 / SN 4								
			Durchgang 1		Durchgang 2		Durchgang 3	1	
SN 3		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.	
	Nr.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	
	1	20	-0.1	-	0.0	-	0.0	-	
	2	5	-0.3	-0.3	-0.2	-0.2	0.2	0.1	
NP	3	20	0.8	0.8	0.8	0.8	0.8	0.8	
	4	40	0.0	0.0	-0.3	-0.2	-0.4	-0.5	
	5	20	-0.6	-0.5	-0.2	-0.2	-0.1	-0.1	
SN 4		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.	
	Nr.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	
	1	20	1.1	-	1.1	-	1.2	-	
	2	5	0.7	-0.4	0.7	-0.4	0.4	-0.8	
NP	3	20	0.6	-0.5	0.6	-0.5	0.7	-0.5	
	4	40	0.1	-1.0	0.1	-1.0	0.1	-1.1	
	5	20	0.3	-0.8	0.3	-0.8	0.0	-1.1	

Anlage 2

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 191 von von 431

Anlage 3

Umgebungstemperaturabhängigkeit am Referenzpunkt

Blatt 1 von 1

Hersteller	Thermo Fish	ner Scientific				<u>.</u>				
Gerätetyp	Modell 5030	i SHARP				Standards		Referenzfolie	n	
Serien-Nr.	SN 3 / SN 4									
			Durchgang 1		Durchgang 2		Durchgang 3]		
SN 3		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.		
	Nr.	[°C]		[%]		[%]		[%]		
	1	20	7104,5	-	7048,1	-	7042,6	-		
	2	5	7082,2	-0,3	7057,7	0,1	7062,6	0,3		
RP	3	20	7167,7	0,9	7055,5	0,1	7100,1	0,8		
	4	40	7055,5	-0,7	7141,1	1,3	7052,3	0,1		
	5	20	7143,8	0,6	7016,4	-0,4	7096,3	0,8		
SN 4		Temperatur	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.		
	Nr.	[°C]		[%]		[%]		[%]		
	1	20	7058,3	-	7075,4	-	7058,0	-		
	2	5	7032,6	-0,4	7109,6	0,5	7108,6	0,7		
RP	3	20	7068,8	0,1	6989,1	-1,2	7071,8	0,2		
	4	40	7093,4	0,5	7238,4	2,3	7056,9	0,0		
	5	20	7079,5	0,3	6985,4	-1,3	7182,4	1,8		

Seite 192 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 4

Netzspannungsabhängigkeit am Referenzpunkt

Blatt 1 von 1

Hersteller	Thermo Fish	ner Scientific								
Gerätetyp	Modell 5030	i SHARP				Standards		Referenzfolie	'n	
Serien-Nr.	SN 3 / SN 4									
			Durchgang 1		Durchgang 2		Durchgang 3			
SN 3		Netzspannung	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.		
	Nr.	[V]		[%]		[%]		[%]		
	1	230	7082,5	-	7206,5	-	7202,2	-		
	2	190	7121,6	0,6	7141,8	-0,9	7141,5	-0,8		
RP	3	230	7084,1	0,0	7128,3	-1,1	7204,4	0,0		
	4	245	7253,7	2,4	7200,1	-0,1	7037,7	-2,3		
	5	230	7098,8	0,2	7194,3	-0,2	7165,8	-0,5		
SN 4		Netzspannung	Messwert	Abw.	Messwert	Abw.	Messwert	Abw.		
	Nr.	[V]		[%]		[%]		[%]		
	1	230	7087,1	-	7084,8	-	7093,0	-		
	2	190	7134,5	0,7	7082,8	0,0	7001,5	-1,3		
RP	3	230	7082,1	-0,1	7095,8	0,2	7091,6	0,0		
	4	245	7104,9	0,3	7075,6	-0,1	7052,6	-0,6		
	5	230	7013,7	-1,0	7164,1	1,1	7250,6	2,2		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 193 von von 431

Anlage 5	5 Messwerte aus den Feldteststandorten, bezogen auf Umgebungsbedingungen Blatt 1 vo										
Hersteller	Thermo Fisher	Scientific							Oshurshatasık DM40		
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.		
Serien-Nr.	SN 3 / SN 4										
Nr	Datum	Ref 1	Ref 2	Ref 1	Ref 2	Ratio	SN 3	SN 4	Bemerkung	Standort	
	Datam	PM2,5	PM2,5	PM10 [µg/m ³]	PM10 [ug/m ³]	PM2,5/PM10	PM10	PM10	Domonikung	otandort	
1	08.03.2011	31.1	31.8	43.9	43.8	71.7	44.1	44.3		Köln, Winter	
2	09 03 2011	19.1	18.8	30.5	28.7	63.9	27.9	26.7			
3 4	10.03.2011 11.03.2011	16,7	16,1	33,5	33,1	49,2	21,0	20,1	Stromausfall komplett Recovery nach Wiedereinschalten		
5	12.03.2011						29,5	29,6			
6	13.03.2011	13,3	13,1	16,2	15,6	83,0	20,3	18,2			
7	14.03.2011	18,2	20,0	27,7	25,6	71,5			Stromausfall nur Thermo		
8	15.03.2011	37,4	37,8	44,1	43,1	86,3			Recovery nach Wiedereinschalten		
9	16.03.2011	55,0	57,8	67,3	65,8	84,8	65,3	63,1			
10	17.03.2011	50,7	49,6	68,0	67,1	74,1	70,5	71,0			
11	18.03.2011	28,4	28,1	38,4	38,4	73,5	41,6	41,1			
12	19.03.2011						14,0	12,9			
13	20.03.2011	20,4	20,3	28,6	28,0	72,0	24,4	21,3			
14	21.03.2011	22,4	22,3	34,7	34,3	64,8	34,1	30,3			
15	22.03.2011	41,7	41,6	55,7	54,8	75,4	60,5	61,6			
16	23.03.2011	20,3	20,4	33,1	31,6	63,0	29,8	30,2			
17	24.03.2011	18,6	20,2	33,3	32,7	58,7	31,6	30,6			
18	25.03.2011	27,6	27,5	36,9	37,2	74,2	37,0	37,3			
19	20.03.2011	24.6	24.9	25.6	25.4	60.5	15,6	14,9			
20	28.03.2011	24,0	24,8	33,0	31.0	64.2	30,5	29,1			
21	20.03.2011	20,3 44.7	44.2	52,4 65.4	65.6	67.8	50,0 65.4	23,0			
23	30.03.2011	15.6	15.6	24.0	23.4	65.8	22.8	22.8			
23	31 03 2011	6.0	51	10.5	9.3	56.2	91	8.9			
25	01.04.2011	8.5	7.7	13.3	13.0	61.7	14.2	13.0			
26	02.04.2011	0,0	.,.	.0,0	,.	0.,.	27.8	27.4			
27	03.04.2011	14,6	13,7	22,1	22,4	63,6	20,3	20,5			
28	04.04.2011	8,8	9,0	17,9	16,6	51,6	13,3	14,2			
29	05.04.2011	11,0	11,4	19,2	19,0	58,7	18,1	16,7			
30	06.04.2011	13,0	12,9	23,6	23,8	54,6	21,8	22,2			

Luftreinhaltung

Seite 194 von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorte	n, bezogen a	auf Umgebu	ngsbedingungen	Blatt 2 von 20
Hersteller	Thermo Fisher	Scientific							Ontworkstauk DM40	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
31	07.04.2011	13,7	13,1	23,2	24,2	56,7	25,1	22,9		Köln, Winter
32	08.04.2011	19,0	19,8	34,9	34,8	55,7			Nullpunkt	
33	09.04.2011								Nullpunkt	
34	10.04.2011	11,1	11,8	23,4	22,3	50,1			Nullpunkt	
35	11.04.2011	15,2	15,1	31,3	31,5	48,2	34,3	31,4		
36	12.04.2011	9,0	8,2	18,0	17,1	49,0	17,6	16,8		
37	13.04.2011	12,5	12,2	24,4	23,2	51,9	21,2	20,1		
38	14.04.2011	19,6	19,4	32,0	31,5	61,5	34,7	33,8		
39	15.04.2011	13,3	11,4	31,9	31,9	38,8	21,3	22,2		
40	17.04.2011						30,9	30,0		
41	18.04.2011	17.0	17.2	26.4	26.6	64.6	21,5	22,0		
42	19.04.2011	17,0	17,2	20,4	20,0	58.0	20,1	20,9		
43	20.04.2011	20.0	20.8	33.9	34.2	59.8	35.6	34.5		
45	21.04.2011	20,0	20,0	00,0	01,2	00,0	35.5	34.8		
46	22.04.2011						26.4	24.7		
47	23.04.2011						42,2	38,7		
48	24.04.2011						31,2	29,6		
49	25.04.2011	19,6	20,7	27,4	27,4	73,6	28,8	27,7		
50	26.04.2011	17,0	17,6	31,0	31,3	55,7	31,1	31,9		
51	27.04.2011			44,3	45,1		45,1	49,8		
52	28.04.2011	16,2	17,8	28,0	28,0	60,8	26,0	25,3		
53	29.04.2011	19,0	19,3	25,9	27,3	72,0	27,8	28,6		
54	30.04.2011	12,9	13,3	21,0	22,0	61,0	20,7	18,7		
55	01.05.2011	6,7	7,0	13,0	12,9	52,9		12,0	SN3 Motor an Messkammer defekt	
56	02.05.2011	9,3	9,2	16,1	14,9	59,8		15,7	SN3 Motor an Messkammer defekt	
57	03.05.2011	9,0	9,3	15,9	15,1	59,2	16,1	14,2		
58	04.05.2011	11,4	11,5	20,5	20,2	56,1	22,8	22,4		
59	05.05.2011			20,1	19,5		20,5	19,3	Ausreisser Ref. PM2,5	
60	06.05.2011	13,7	13,6	30,7	31,1	44,2	26,2	25,0		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 195 von von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorter	n, bezogen a	auf Umgebu	ngsbedingungen	Blatt 3 von 20
Hersteller	Thermo Fisher	Scientific							Sebushatauh DM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
	1	1		1				1		
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
61	07.05.2011	19,1	17,6	46,1	47,5	39,2	36,5	36,8		Köln, Winter
62	08.05.2011	12,3	12,2	23,4	23,0	53,0	21,8	19,8		
63	25.07.2011	12,1	11,2	17,8	17,8	65,4			Recovery nach Nullpunkt	Bornheim, Sommer
64	26.07.2011	11,8	11,8	19,6	19,1	61,2		18,2	SN3 Heizplatine defekt	
65	27.07.2011	14,3	13,7	21,5	20,9	65,9		18,8	SN3 Heizplatine defekt	
66	28.07.2011	17,5	19,0	26,5	25,2	70,6		17,3	SN3 Heizplatine defekt	
67	29.07.2011	10,2	7,9	16,8	16,6	54,2		10,1	SN3 Heizplatine defekt	
68	30.07.2011						10,5	9,1		
69	31.07.2011	9,8	9,5	13,3	14,2	70,4	17,1	16,2		
70	01.08.2011	12,7	11,4	18,0	19,2	64,8	19,9	18,7		
71	02.08.2011	10,3	10,1	19,0	20,1	52,1	18,0	17,3		
72	03.08.2011	17,0	16,6	24,4	26,1	00,5	26,1	24,7		
73	04.08.2011	8,7	8,4	13,8	14,7	60,2 54.7	12,9	12,6		
74	05.06.2011	0,0	10,6	17,1	16,0	54,7	17,0	10,0		
75	07.08.2011	2.8	3.1	5.6	64	19.5	6.1	6.2		
70	07.00.2011	2,0	3,1	7.0	7.5	43,3	0,1	0,2		
78	09.08.2011	2,0	4,0	10.8	11.2	27.1	3,4 12 3	10.6		
70	10.08.2011	53	6.4	12,1	12.7	47.0	13.4	12.9		
80	11 08 2011	5,5	5.2	11.4	11 1	47,0	10.8	10.2		
81	12.08.2011	3.0	3.8	6.4	7.0	50.2	8.4	7.6		
82	13.08.2011	0,0	0,0	0, 1	.,.	00,2	8.1	8.0		
83	14.08.2011	2.6	3.6	7.0	6.7	45.5	11.1	9.2		
84	15.08.2011	6,0	5,4	13,5	13,9	41,7	15,0	11,8		
85	16.08.2011	6,0	6,0	13,7	12,9	45,1	13,9	11,9		
86	17.08.2011	14,7	14,0	25,8	25,0	56,3	28,2	24,0		
87	18.08.2011	9,0	8,7	16,8	15,9	54,1	16,4	17,0		
88	19.08.2011	6,6	6,2	13,3	12,8	48,8	13,9	12,3		
89	20.08.2011						16,2	14,2		
90	21.08.2011	10,4	10,3	17,1	17,2	60,4	23,9	21,9		

Luftreinhaltung

Seite 196 von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorter	n, bezogen a	auf Umgebu	ngsbedingungen	Blatt 4 von 20
Hersteller	Thermo Fisher	Scientific							Sahwakatauk DM40	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Corion Mr										
Serien-INr.	5N 3 / 5N 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10	-	
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
91	22.08.2011	10,9	10,8	19,7	19,3	55,8	18,8	18,8		Bornheim, Sommer
92	23.08.2011	19,2	19,1	29,9	30,1	63,7	32,9	31,7		
93	24.08.2011	6,7	7,4	16,9	16,7	41,9	14,4	13,2		
94	25.08.2011	11,5	12,1	18,8	18,6	63,4	19,9	20,5		
95	26.08.2011	4,9	5,5	10,7	10,7	48,8	9,3	7,1		
96	27.08.2011						5,8	4,8		
97	28.08.2011			7,7	7,6		9,6	6,2		
98	29.08.2011	5,9	6,2	11,4	11,5	53,0	10,1	9,0		
99	30.08.2011	9,1	8,1	17,1	16,6	51,1	15,6	15,5		
100	31.08.2011	14,5	13,9	26,0	23,6	57,2	25,3	24,8		
101	01.09.2011	17,7	18,2	27,5	26,1	66,9	24,3	25,2		
102	02.09.2011	14,9	15,0	25,1	24,1	60,6	22,1	18,6		
103	03.09.2011						23,3	24,7		
104	04.09.2011	8,2	8,0	12,7	12,1	65,3	10,6	11,8		
105	05.09.2011	4,8	5,0	9,2	9,1	53,8	7,3	7,7		
106	06.09.2011	5,2	5,6	11,1	10,6	49,8	10,3	9,2		
107	07.09.2011	6,1	5,8	12,5	13,2	46,1	12,1	10,6		
108	08.09.2011						8,2	9,1		
109	09.09.2011	6,8	7,1	12,1	11,8	57,9	11,9	9,0		
110	10.09.2011						11,5	11,5	1	
111	11.09.2011	5,7	5,5	9,4	9,3	59,5	9,1	8,1	1	
112	12.09.2011	5,2	6,1	11,6	11,6	48,5	12,1	13,2	1	
113	13.09.2011	6,3	7,2	16,3	16,8	40,6	15,3	10,8	1	
114	14.09.2011	6,7	/,2	15,3	15,6	44,9	13,5	11,8	1	
115	15.09.2011	11,1	12,2	24,3	24,9	47,4	23,1	22,6	Inlet - Nullifiliter	
116	16.09.2011	13,0	13,7	23,0	25,1	55,4			Iniet -> Nuilmiter	
117	17.09.2011	2.2	2.0	7.0	71	50.4			Nullpunkt	
110	18.09.2011	3,∠ 7 0	3,9	12.5	1,1	50,4			Nullfiltor > lolot	
119	19.09.2011	٥, ٢	8,∠	12,5	11,6	00,∠	11 7	12.4	inuimiter -> iniet	
120	20.09.2011						11,7	12,4		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 197 von von 431

Anlage 5	5 Messwerte aus den Feldteststandorten, bezogen auf Umgebungsbedingungen Blatt 5 vor									Blatt 5 von 2
Hersteller	Thermo Fisher	Scientific							Schwebstaub PM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2.5	PM2.5	PM10	PM10	PM2.5/PM10	PM10	PM10	5	
		[µg/m ³]	[µg/m ³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
121	21.09.2011			12,4	12,3		11,0	9,6		Bornheim, Somr
122	22.09.2011	6,4	7,8	19,2	18,9	37,3	18,4	14,8		,
123	23.09.2011	12,2	13,4	26,1	26,2	49,1	25,0	23,5		
124	24.09.2011			,	,	,	22,4	21,2		
125	25.09.2011	15,7	14,5	21,3	21,7	70,0	21,0	21,3		
126	26.09.2011			18,8	20,6	,	23,2	23,0		
127	27.09.2011			38,3	39,8		37,3	35,6		
128	28.09.2011			,	,		24,6	25,0		
129	29.09.2011	17,1	16,0				29,2	28,8		
130	30.09.2011	12,4	11,8	23,4	24,5	50,6	20,3	20,0		
131	01.10.2011						21,6	21,4		
132	02.10.2011						37,1	35,4		
133	03.10.2011	13,5	14,8				22,5	20,3		
134	04.10.2011	9,8	9,8	15,9	16,3	60,9	17,0	17,3		
135	05.10.2011	4,5	2,5	7,0	6,5	51,8	5,7	5,2		
136	06.10.2011	5,5	4,1	10,8	10,4	45,6	8,7	9,5		
137	07.10.2011	3,6	3,1	8,1	7,6	42,9	8,3	7,2		
138	08.10.2011						10,9	9,4		
139	09.10.2011	6,0	6,4	10,1	10,4	60,7	9,9	10,8		
140	10.10.2011	4,7	5,2	11,9	12,5	40,9	14,5	12,7		
141	11.10.2011	1,3	2,0	5,5	5,0	31,2	6,1	5,5		
142	12.10.2011	1,9	3,2	5,3	5,0	49,3	7,6	6,0		
143	13.10.2011	4,2	4,2	11,5	11,7	36,3	14,2	13,1		
144	14.10.2011	5,9	8,5	14,8	14,0	50,2	16,6	15,2		
145	15.10.2011						16,9	15,8		
146	16.10.2011	11,1	13,7	17,0	16,7	73,7	22,1	22,6		
147	17.10.2011	18,6	20,1	28,0	27,3	70,0	28,9	28,9		
148	18.10.2011	4,3	6,7	11,6	11,5	47,7	9,1	8,7		
149	19.10.2011	3,8	5,2				12,5	11,8	Ausreisser Ref. PM10	
150	20 10 2011	93	9.5	11.9	15.8	67.9	19.0	17.0		

Luftreinhaltung

TÜVRheinland[®] Genau. Richtig.

Seite 198 von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorter	n, bezogen a	auf Umgebu	ngsbedingungen	Blatt 6 von 20
Hersteller	Thermo Fisher	Scientific								
Gerätetyp	Modell 5030i S	HARP							Schwebstaub PM10 Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
151	21.10.2011	17,6	18,1	28,0	26,4	65,5			Inlet -> Nullfilter	Bornheim, Sommer
152	22.10.2011								Nullpunkt / Ausreisser Ref PM10	
153	23.10.2011	23,0	23,2						Nullpunkt	
154	24.10.2011	15,4	15,4				10.4	20.6	Nullfilter -> Inlet	
100	25.10.2011	6.0	67				10,4	20,6		
150	20.10.2011	19.1	10.2				12,0	10,8		
158	27.10.2011	17.9	19,3	27.2	27.3	65.6	27,5	29,7		
159	29 10 2011	17,0	10,0	21,2	21,5	05,0	26,4	21,3		
160	30 10 2011	117	12.2	16.8	16.3	72.0	14.6	14 1		
161	31.10.2011	,,,	12,2	10,0	10,0	12,0	29.1	28.5		
162	01.11.2011	22.5	22.3	30.8	28.4	75.7	25.9	23.8		
163	02.11.2011	17,2	17,3	, -	- ,	- ,	20,2	18,7		
164	03.11.2011	9,2	10,8	17,8	17,5	56,4	17,1	15,9		
165	04.11.2011	13,7	14,3	21,0	21,1	66,5	24,6	23,2		
166	05.11.2011						30,5	30,9		
167	06.11.2011	55,2	54,7	62,1	63,5	87,5	61,9	62,2		
168	07.11.2011	34,6	34,3	39,5	40,6	85,9	40,9	42,4		
169	08.11.2011	43,7	43,6	53,1	54,2	81,4	53,5	55,1		
170	09.11.2011	24,0	23,4	28,6	29,9	81,1	30,8	31,3		
171	10.11.2011	14,3	13,9	17,3	17,3	81,4	18,1	19,2		
172	11.11.2011	26,9	27,9	35,1	35,3	78,0			Nullpunkt	
173	12.11.2011		[Nullpunkt	
174	13.11.2011	21,5	21,5	24,1	24,7	88,1			Nullpunkt	
175	16.01.2012	20,6	22,3	28,9	28,1	75,1	28,8	28,4		Bornheim, Winter
176	17.01.2012	32,7	33,2	44,3	45,6	73,4	46,4	48,0		
177	18.01.2012	19,5	18,9	28,9	26,4	69,4	30,4	29,5		
178	19.01.2012	3,5	3,5	4,1	5,3	74,2	6,0	5,6		
179	20.01.2012	6,2	5,9	8,6	9,5	67,3	12,5	11,0		
180	21.01.2012						8,5	8,6		1

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 199 von von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorter	n, bezogen a	auf Umgebungs	bedingungen	Blatt 7 von 2
Hersteller	Thermo Fisher	Scientific						Sci	hwebstaub PM10	
Gerätetyp	Modell 5030i S	HARP						Me	sswerte in µg/m ³ i.B.	
Senier Ma										
Serien-INr.	5IN 3 / 5IN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10	-	
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
181	22.01.2012	5,4	5,1	11,4	12,9	43,1	14,1	15,4		Bornheim, Wir
182	23.01.2012	7,0	7,9	11,7	13,5	59,0	16,8	16,3		
183	24.01.2012			20,9	21,5		25,6	25,3		
184	25.01.2012	19,9	20,0	28,3	25,5	74,1	26,9	27,2		
185	26.01.2012	22,7	22,3	29,3	27,6	79,0	30,5	28,9		
186	27.01.2012	17,0	16,0	24,1	24,3	68,2	24,3	25,1		
187	28.01.2012						21,5	22,4		
188	29.01.2012	64,0	62,4	69,2	69,8	90,9	74,7	74,8		
189	30.01.2012	61,2	60,2	71,2	71,6	85,0	71,7	72,6		
190	31.01.2012	36,5	36,6	44,2	42,8	84,0	42,7	45,8		
191	01.02.2012	25,3	25,1	31,6	31,4	80,0	29,0	30,0		
192	02.02.2012	20,1	20,2	25,6	25,3	79,2	25,2	27,4		
193	03.02.2012	29,0	28,9	37,6	36,7	77,9	35,8	38,2		
194	04.02.2012						38,1	39,2		
195	05.02.2012	24,1	25,6	31,3	30,1	81,1	29,1	30,7		
196	06.02.2012	31,9	32,4	41,3	40,4	78,7	41,2	43,6		
197	07.02.2012	25,2	25,7	37,6	35,5	69,7	33,6	35,1		
198	08.02.2012	33,4	34,4	43,6	42,7	78,6	45,4	48,1		
199	09.02.2012	30,1	32,6	38,7	37,7	82,0	38,6	39,0		
200	10.02.2012					1 1			Inlet -> Nullfilter	
201	11.02.2012					1 1			Nullpunkt	
202	12.02.2012					1 1			Nullpunkt	
203	13.02.2012	39,6	36,0	41,9	41,0	91,1	41,5	40,7		
204	14.02.2012	10,3	9,8	16,6	15,7	62,3	16,6	16,5		
205	15.02.2012	7,1	6,7	14,7	15,0	46,6	15,3	14,0		
206	16.02.2012	15,6	14,2	20,8	21,9	69,7	26,0	22,9		
207	17.02.2012	9,7	9,1	11,3	11,9	80,8	12,4	11,0		
208	18.02.2012						5,3	4,3		
209	19.02.2012	10.0	40.0	40.0	47.0	61.0	15,9	15,2		
210	20.02.2012	10,3	10,6	16,6	17,6	61,0	16,4	16,4		

Luftreinhaltung

Seite 200 von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorte	n, bezogen a	auf Umgebu	ngsbedingungen	Blatt 8 von 20
Hersteller	Thermo Fisher	Scientific							Sobushatauh PM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
211	21.02.2012	9,9	10,5	16,3	17,4	60,4	17,5	17,4		Bornheim, Winter
212	22.02.2012	13,3	14,4	20,8	22,2	64,5	20,7	20,5		
213	23.02.2012	8,3	8,6	9,1	10,2	87,3	12,7	11,4		
214	24.02.2012	12,1	11,6	14,7	14,9	80,1	18,4	15,9		
215	25.02.2012						21,5	20,0		
216	26.02.2012	26,5	26,4	38,6	39,6	67,7	41,0	38,5		
217	27.02.2012	19,6	18,9	26,0	25,6	74,6	26,9	26,2		
218	28.02.2012	18,7	16,0	21,8	21,7	79,8	22,4	22,4		
219	29.02.2012	27,6	26,5	34,3	33,7	79,5	30,4	29,2		
220	01.03.2012	19,6	18,0	29,1	29,8	63,7	29,3	28,9		
221	02.03.2012	15,9	13,3	18,9	18,0	78,8	17,7	18,9		
222	03.03.2012						29,6	33,5		
223	04.03.2012	31,5	30,0	42,8	41,3	73,2	35,8	37,4		
224	05.03.2012	6,1	4,6	8,1	7,1	70,6	7,5	6,4		
225	06.03.2012	15,2	12,8	21,5	20,5	66,7	21,1	20,5		
226	07.03.2012	15,5	14,5	24,8	22,4	63,4	23,9	24,3		
227	17.07.2012	4,2	4,5	8,5	8,9	50,1	9,0	7,8		Teddington, Somme
228	18.07.2012	3,8	4,2	8,9	9,4	44,2	6,9	7,5		
229	19.07.2012	4,6	4,6	9,1	8,9	51,2	8,6	10,4		
230	20.07.2012	5,1	4,9	10,3	10,8	4/,/	12,2	9,5		
231	21.07.2012	5,8	6,1	10,9	10,7	55,0	12,5	12,2		
232	22.07.2012	7,1	0,0	10,0	10,6	67.9	13,0	11,9		
233 234	23.07.2012	0,0 11 /	0,0	17.7	12,0	64.6	13,7	14,7		
235	25.07.2012	17.8	18.5	26.5	26.6	68.4	27.7	23.0		
236	26.07.2012	21.0	21.4	20,5	20,0	00,4	27.2	25,0	Ausreisser Ref PM10	
237	27.07.2012	12.3	11.8	20.0	20.3	59.7	21.9	20.6	Austelisser Rei. Fillito	
238	28 07 2012	12,5	11,0	20,0	20,0	55,7	10.6	10.3		
239	29.07.2012						8.4	6.8		
240	30 07 2012	5.0	4.8	10.0	9.8	49.2	10.3	9.2		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 201 von von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorter	n, bezogen a	auf Umgebun	gsbedingungen	Blatt 9 von 20
Hersteller	Thermo Fisher	Scientific							Saburabatauh PM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]		
241	31.07.2012	9,2	9,4	14,9	15,7	60,7	18,3	17,1		Teddington, Somm
242	01.08.2012	5,9	5,9	12,7	12,6	46,7	11,1	10,1		0,
243	02.08.2012	5,3	5,5	12,6	13,0	42,3	14,5	12,7		
244	03.08.2012			13,2	11,9		12,7	10,6	Ausreisser Ref. PM2,5	
245	04.08.2012	4,8	5,3	10,3	10,6	48,3	12,0	12,8		
246	05.08.2012	4,6	4,8	9,2	9,6	50,4	9,3	9,0		
247	06.08.2012	3,4	3,6	7,7	8,0	44,4	7,8	8,2		
248	07.08.2012	3,5	3,4	7,8	8,0	43,4	10,1	8,6		
249	08.08.2012	8,1	8,1	12,0	12,7	65,7	15,0	10,7		
250	09.08.2012	11,5	11,6	15,9	16,8	70,5	16,7	15,7		
251	10.08.2012	13,3	13,3	20,2	21,0	64,7	20,0	19,9		
252	11.08.2012	15,3	15,0	25,6	26,3	58,3	19,5	19,0		
253	12.08.2012	7,3	7,1	14,4	14,6	49,6	11,2	10,5		
254	13.08.2012	4,8	4,6	9,0	9,3	51,4	8,3	7,7		
255	14.08.2012	7,7	7,7	13,6	14,1	55,4	12,5	10,3		
256	15.08.2012	7,2	7,1	19,6	19,9	36,2	21,8	21,4		
257	16.08.2012	6,5	6,6	16,0	16,2	40,8	16,4	13,2		
258	17.08.2012	6,7	6,7	13,7	13,9	48,9	12,3	13,9		
259	18.08.2012	6,9	6,9	10,7	10,9	63,8	11,5	9,1		
260	19.08.2012	6,5	6,4	10,8	11,2	58,4	11,9	10,1		
261	20.08.2012	7,4	7,3	12,4	12,6	58,8	13,1	12,7		
262	21.08.2012			13,8	14,1		14,2	13,1		
263	22.08.2012			14,4	13,8		14,8	12,2		
264	23.08.2012			14,1	14,6		13,1	12,6		
265	24.08.2012			9,7	10,1		10,0	9,9		
266	25.08.2012						8,2	7,6		
267	26.08.2012						10,0	9,8		
268	27.08.2012						8,9	10,6		
269	28.08.2012			14,0	13,6		16,4	11,6		
270	20 08 2012		1	120	12.0		10.9	10.8		1

Luftreinhaltung

TÜVRheinland[®] Genau. Richtig.

Seite 202 von 431

Anlage 5			Mess	werte aus	den Feldt	eststandorten	i, bezogen a	auf Umgebui	ngsbedingungen	Blatt 10 von 20
Hersteller	Thermo Fisher	Scientific							Oshurshatavik DM40	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr	Dotum	Pof 1	Pof 2	Pof 1	Pof 2	Potio	SN 2	SN 4	Pomorkung	Standart
INF.	Datum	Rel. I	Rel. 2	Rel. I	Rei Z.		SIN 3	5N 4	Bernerkung	Standon
		PIVIZ,5	PIVIZ,5	PIVI10 [ug/m3]	PIVITU [ug/m3]	PMZ,5/PM10	PIVI10	PIVI10		
271	30.08.2012	[µg/III*]	[µg/III*]	[µg/11*]	[µg/11*]	[70]	[µg/11*]	[µg/118]		Toddington Commo
271	31.09.2012			11,5	11,2		12,3	10,2		redaington, Somme
272	01.09.2012			11.8	11.6		12,7	12.7		
273	02.09.2012			12.6	12.0		12.8	14.3		
275	03.09.2012			14.9	15.0		16.3	13.1		
276	04.09.2012	8.9	8.6	16.8	17.7	50.9	16.5	14.5		
277	05.09.2012	10,7	11,0	21,0	20,8	51,9	20,3	19,3		
278	06.09.2012	11,2	11,4	24,1	24,2	46,7	23,3	23,3	Stop PM10 Referenz	
279	07.09.2012								Inlet -> Nullfilter	
280	08.09.2012								Nullpunkt	
281	09.09.2012								Nullpunkt	
282	10.09.2012								Audits	
283	11.09.2012	4,4	4,4				6,6	7,3		
284	12.09.2012						6,3	7,0		
285	13.09.2012	4,7	4,7				9,2	9,6		
286	14.09.2012	5,1	5,3				14,7	14,3		
287	15.09.2012	8,9	8,6				18,6	18,5		
200	17.00.2012	5,4	3,3				7,0	0,3		
209	18.09.2012	5,9	6.3				13,1	10.4		
200	19.09.2012	8.2	8.2				13.0	12.2		
292	20.09.2012	5.4	6.0				10.3	11.2		
293	21.09.2012	5.5	5.2				12.5	11.0		
294	22.09.2012	7,6	7,4				12,4	11,7		

Luftreinhaltung

TÜVRheinland[®] Genau. Richtig.

Hersteller	Thermo Fisher	Scientific							Schwebstaub PM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.N.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10	Ĵ	
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm³]	[%]	[µg/Nm³]	[µg/Nm³]		
1	08.03.2011	-	-	44,7	45,0	-	44,9	45,2		Köln, Wint
2	09.03.2011	-	-	31.2	29.6	-	28.5	27.4		
3	10.03.2011	-	-	- /	- , -	-	- / -	,	Stromausfall komplett	
4	11.03.2011	-	-	34,2	34,0	-			Recovery nach Wiedereinschalten	
5	12.03.2011	-	-	-		-	31,2	31,3	·	
6	13.03.2011	-	-	16,9	16,4	-	21,1	19,0		
7	14.03.2011	-	-	28,6	26,6	-			Stromausfall nur Thermo	
8	15.03.2011	-	-	46,1	45,5	-			Recovery nach Wiedereinschalten	
9	16.03.2011	-	-	70,2	69,1	-	67,7	65,6		
10	17.03.2011	-	-	69,4	69,1	-	72,1	72,7		
11	18.03.2011	-	-	38,9	39,2	-	42,1	41,6		
12	19.03.2011	-	-			-	13,7	12,7		
13	20.03.2011	-	-	28,5	28,3	-	24,2	21,1		
14	21.03.2011	-	-	34,7	34,6	-	33,9	30,2		
15	22.03.2011	-	-	56,3	55,8	-	61,0	62,1		
16	23.03.2011	-	-	33,6	32,4	-	30,2	30,6		
17	24.03.2011	-	-	34,1	33,8	-	32,4	31,3		
18	25.03.2011	-	-	38,5	39,1	-	38,7	39,1		
19	26.03.2011	-	-	20.0	07.0	-	16,2	15,2		
20	27.03.2011	-	-	36,8	37,0	-	31,6	30,1		
21	28.03.2011	-	-	33,1	32,9 69.4	-	31,3	29,7		
22	29.03.2011	-	-	25.1	00,4 24.6		24.0	24.0		
23 24	31.03.2011	-	-	20,1	24,0 0.7		24,0 0.6	24,0		
24 25	01 04 2011			13.8	3,1 13.7		9,0 14.8	9,3 13.6		
20	02.04.2011			13,0	13,7		29.6	29.1		
20	03.04.2011	-	_	22.9	23.4		23,0	21.3		
28	04 04 2011	_	-	18.3	17 1	_	13.7	14.6		
20	05.04.2011	_	_	19,5	19.7		18.6	17.2		
29					1.1.1				-	

Luftreinhaltung

Seite 204 von 431

Anlage 5			PM ₁₀ -Mes	sswerte au	is den Feld	dteststandorte	en, bezogen	auf Normbeo	dingungen [EN 12431]	Blatt 12 von 2
Hersteller	Thermo Fisher	Scientific								
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.N.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1 PM2,5 [µg/m³]	Ref. 2 PM2,5 [µg/m³]	Ref. 1 PM10 [µg/Nm³]	Ref 2. PM10 [µg/Nm³]	Ratio PM2,5/PM10 [%]	SN 3 PM10 [µg/Nm³]	SN 4 PM10 [µɡ/Nm³]	Bemerkung	Standort
31	07.04.2011	-	-	24.1	25.3	-	26.1	23.7		Köln, Winter
32	08.04.2011	-	-	36,2	36,3	-	-,	- ,	Nullpunkt	. ,
33	09.04.2011	-	-			-			Nullpunkt	
34	10.04.2011	-	-	24,3	23,5	-			Nullpunkt	
35	11.04.2011	-	-	31,8	32,3	-	36,4	33,2		
36	12.04.2011	-	-	18,9	18,1	-	17,8	17,1		
37	13.04.2011	-	-	25,1	24,1	-	21,8	20,7		
38	14.04.2011	-	-	32,7	32,5	-	35,4	34,5		
39	15.04.2011	-	-	32,9	33,2	-	22,0	22,9		
40	16.04.2011	-	-			-	38,3	38,3		
41	17.04.2011	-	-	07.0	00.4	-	22,5	22,6		
42	18.04.2011	-	-	27,6	28,1	-	29,4	30,3		
43	19.04.2011	-	-	31,9	32,0	-	35,4	35,4		
44	21.04.2011			33,0	50,4		37,7	37.0		
46	22.04.2011	_	_			-	28.6	26.7		
47	23 04 2011	-	-			-	44.8	41.2		
48	24.04.2011	-	-				33,4	31,7		
49	25.04.2011	-	-	28,9	29,1	-	30,3	29,1		
50	26.04.2011	-	-	32,7	33,3	-	32,9	33,9		
51	27.04.2011	-	-	45,9	47,1	-	46,6	51,6		
52	28.04.2011	-	-	29,4	29,7	-	27,3	26,6		
53	29.04.2011	-	-	27,6	29,3	-	29,7	30,6		
54	30.04.2011	-	-	22,4	23,6	-	22,2	20,2		
55	01.05.2011	-	-	13,7	13,7	-		12,8	SN3 Motor an Messkammer defekt	
56	02.05.2011	-	-	16,8	15,7	-		16,4	SN3 Motor an Messkammer defekt	
57	03.05.2011	-	-	16,4	15,8	-	16,8	14,7		
58	04.05.2011	-	-	21,0	20,9	-	23,6	23,0	Augusta an Dati DMO 5	
59	05.05.2011	-	-	20,9	20,5	-	21,6	20,2	Ausreisser Ref. PM2,5	
60	06.05.2011	II -		32,5	33,2		28,2	26,6		1

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 205 von von 431

Hersteller Ther Gerätetyp Mod Serien-Nr. SN 3	ermo Fisher S dell 5030i SH 3 / SN 4	Scientific IARP								
Gerätetyp Mod Serien-Nr. SN 3	dell 5030i SH 3 / SN 4	IARP							Schwebstaub PM10	
Serien-Nr. SN 3	3 / SN 4								Messwerte in µg/m ³ i.N.	
Serien-INF. SIN	3 / SIN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm³]	[%]	[µg/Nm³]	[µg/Nm ³]		
61 07	7.05.2011	-	-	49,3	51,3	-	40,0	40,1		Köln, Winter
62 08	8.05.2011	-	-	25,0	24,8	-	23,8	21,4		
63 25	5.07.2011	-	-	19,0	19,2	-			Recovery nach Nullpunkt	Bornheim, Som
64 26	6.07.2011	-	-	20,8	20,4	-		19,5	SN3 Heizplatine defekt	
65 27	7.07.2011	-	-	22,8	22,4	-		20,0	SN3 Heizplatine defekt	
66 28	8.07.2011	-	-	28,0	26,9	-		18,4	SN3 Heizplatine defekt	
67 29	9.07.2011	-	-	17,7	17,7	-		10,7	SN3 Heizplatine defekt	
68 30	0.07.2011	-	-			-	11,1	9,5		
69 31	1.07.2011	-	-	13,9	15,0	-	18,0	16,9		
70 01	1.08.2011	-	-	19,2	20,8	-	21,5	20,1		
71 02	2.08.2011	-	-	20,6	22,0	-	19,7	18,8		
72 03	3.08.2011	-	-	26,1	28,2	-	28,3	26,6		
73 04	4.08.2011	-	-	14,9	16,1	-	14,2	13,8		
74 05	5.08.2011	-	-	18,4	19,5	-	19,5	19,6		
75 06	6.08.2011	-	-			-	11,8	11,5		
76 07	7.08.2011	-	-	6,0	6,9	-	6,6	6,6		
77 08	8.08.2011	-	-	8,3	8,0	-	10,0	8,1		
78 09	9.08.2011	-	-	11,2	11,8	-	13,0	11,1		
79 10	0.08.2011	-	-	12,8	13,6	-	14,4	13,8		
80 11	1.08.2011	-	-	12,2	12,1	-	11,8	11,1		
81 12	2.08.2011	-	-	6,9	7,6	-	9,1	8,1		
82 13	3.08.2011	-	-			-	8,8	8,6		
83 14	4.08.2011	-	-	7,5	7,2	-	12,0	9,9		
84 15	5.08.2011	-	-	14,3	14,9	-	16,1	12,6		
85 16	6.08.2011	-	-	14,5	13,8	-	14,9	12,8		
86 17	7.08.2011	-	-	27,8	27,2	-	30,7	26,0		
8/ 18	8.08.2011	-	-	18,2	17,4	-	18,0	18,6		
88 19	9.08.2011	-	-	14,1	13,6	-	14,9	13,1		
89 20	0.08.2011	-	-	40.4	40.7	-	17,6	15,3		

.

Luftreinhaltung

Seite 206 von 431

Anlage 5			PM ₁₀ -Mes	sswerte au	is den Felo	dteststandorte	en, bezogen a	auf Normbeo	dingungen [EN 12431]	Blatt 14 von 20
Hersteller	Thermo Fisher	Scientific							Columbatoria DM40	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m³ i.N.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10	-	
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm³]	[%]	[µg/Nm³]	[µg/Nm³]		
91	22.08.2011	-	-	21,1	20,8	-	20,4	20,3		Bornheim, Sommer
92	23.08.2011	-	-	32,4	32,9	-	36,2	34,7		
93	24.08.2011	-	-	18,1	18,1	-	15,7	14,3		
94	25.08.2011	-	-	20,2	20,2	-	21,7	22,2		
95	26.08.2011	-	-	11,5	11,6	-	10,3	7,7		
96	27.08.2011	-	-			-	6,2	5,1		
97	28.08.2011	-	-	8,1	8,1	-	10,2	6,6		
98	29.08.2011	-	-	12,0	12,2	-	10,7	9,5		
99	30.08.2011	-	-	17,9	17,5	-	16,4	16,2		
100	31.08.2011	-	-	27,3	25,1	-	26,9	26,3		
101	01.09.2011	-	-	29,1	27,9	-	26,1	26,9		
102	02.09.2011	-	-	27,0	26,2	-	24,1	20,1		
103	03.09.2011	-	-			-	25,7	27,1		
104	04.09.2011	-	-	13,7	13,1	-	11,6	12,9		
105	05.09.2011	-	-	9,7	9,7	-	7,8	8,2		
106	06.09.2011	-	-	11,8	11,4	-	11,1	9,9		
107	07.09.2011	-	-	13,2	14,1	-	12,9	11,3		
108	08.09.2011	-	-	12.0	10.7	-	8,7	9,7		
109	09.09.2011	-	-	13,0	12,7	-	12,9	9,6		
110	10.09.2011	-	-	40.0	10.0	-	12,7	12,6		
111	11.09.2011	-	-	10,0	10,0	-	9,8	8,7		
112	12.09.2011	-	-	12,4	12,0	-	13,∠ 16.4	14,2		
113	13.09.2011	-	-	17,3	17,9	-	10,4	11,5		
114	14.09.2011	-		25.3	26.2		24.4	12,4		
116	16.09.2011			23,3	20,2		24,4	23,7	Inlet -> Nullifilter	
117	17 09 2011			24,4	20,5				Nullpunkt	
118	18 09 2011	_		74	7.5				Nullpunkt	
119	19 09 2011	-	- I	13.0	12.3	- I			Nullfilter -> Inlet	
120	20.09.2011	-	. I	,.	,0	-	12.4	13.0		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 207 von von 431

Anlage 5			PM ₁₀ -Mes	sswerte au	is den Fele	dteststandorte	en, bezogen	auf Normbeo	lingungen [EN 12431]	Blatt 15 von 2
Hersteller	Thermo Fisher	Scientific							Sobwobstaub PM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.N.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm ³]	[%]	[µg/Nm³]	[µg/Nm³]		
121	21.09.2011	-	-	13,0	13,1	-	11,8	10,2		Bornheim, Som
122	22.09.2011	-	-	20,1	20,0	-	19,4	15,6		
123	23.09.2011	-	-	27,3	27,6	-	26,4	24,7		
124	24.09.2011	-	-			-	23,8	22,3		
125	25.09.2011	-	-	22,5	23,1	-	22,4	22,6		
126	26.09.2011	-	-	19,9	22,0	-	24,9	24,5		
127	27.09.2011	-	-	40,2	42,2	-	39,8	37,7		
128	28.09.2011	-	-			-	26,1	26,4		
129	29.09.2011	-	-			-	31,1	30,4		
130	30.09.2011	-	-	24,6	26,0	-	21,5	21,1		
131	01.10.2011	-	-			-	22,9	22,6		
132	02.10.2011	-	-			-	39,4	37,3		
133	03.10.2011	-	-			-	24,0	21,6		
134	04.10.2011	-	-	16,8	17,3	-	18,2	18,4		
135	05.10.2011	-	-	7,4	6,9	-	6,1	5,5		
136	06.10.2011	-	-	11,3	11,0	-	9,2	10,0		
137	07.10.2011	-	-	8,4	7,9	-	8,6	7,5		
138	08.10.2011	-	-			-	11,3	9,6		
139	09.10.2011	-	-	10,5	10,9	-	10,4	11,3		
140	10.10.2011	-	-	12,6	13,4	-	15,6	13,5		
141	11.10.2011	-	-	5,7	5,0	-	6,5	5,8		
142	12.10.2011	-	-	5,5	5,2	-	7,9	6,2		
143	13.10.2011	-	-	11,7	12,0	-	14,5	13,4		
144	14.10.2011	-	-	14,9	14,3	-	16,8	15,3		
145	15.10.2011	-	-	17.0		-	17,2	15,9		
146	16.10.2011	-	-	17,3	17,2	-	22,7	23,0		
147	17.10.2011	-	-	29,0	28,5	· ·	30,1	29,9		
148	18.10.2011	-	-	12,0	12,0	-	9,5	9,0		
149	19.10.2011	-	-	10.0		-	12,8	12,1	Ausreisser Ref. PM10	
150	20110 2011		· -	1.20	161		10.7	1/0		

Luftreinhaltung

.

Seite 208 von 431

Anlage 5			PM ₁₀ -Mes	sswerte au	ıs den Fele	dteststandorte	n, bezogen	auf Normbeo	lingungen [EN 12431]	Blatt 16 von 20
Hersteller	Thermo Fisher	Scientific								
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.N.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10	_	
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm³]	[%]	[µg/Nm³]	[µg/Nm³]		
151	21.10.2011	-	-	28,0	26,8	-			Inlet -> Nullfilter	Bornheim, Somme
152	22.10.2011	-	-			-			Nullpunkt / Ausreisser Ref PM10	
153	23.10.2011	-	-			-			Nullpunkt	
154	24.10.2011	-	-			-			Nullfilter -> Inlet	
155	25.10.2011	-	-			-	19,5	21,7		
156	26.10.2011	-	-			-	13,0	11,1		
157	27.10.2011	-	-			-	28,7	30,8		
158	28.10.2011	-	-	28,2	28,6	-	21,4	22,2		
159	29.10.2011	-	-			-	28,1	27,2		
160	30.10.2011	-	-	17,5	17,2	-	15,4	14,7		
161	31.10.2011	-	-		<u> </u>	-	30,5	29,6		
162	01.11.2011	-	-	31,8	29,9	-	27,3	24,9		
164	02.11.2011	-	-	19.0	10.0	-	21,4	19,7		
165	04 11 2011	-	-	10,9	10,0	-	16,3	16,9		
166	05 11 2011			22,2	22,5		20,3	32.3		
167	06 11 2011	_	_	64.0	66.0	_	64.6	64.4		
168	07 11 2011	-	-	40.4	41.9	. I	42.0	43.2		
169	08.11.2011	-	-	54.3	56.0	.	55.3	56.5		
170	09.11.2011	-	-	29,1	30,7	.	31,7	32,0		
171	10.11.2011	-	-	17,6	17,8	-	18,5	19,5		
172	11.11.2011	-	-	35,6	36,1	-			Nullpunkt	
173	12.11.2011	-	-			.			Nullpunkt	
174	13.11.2011	-	-	24,1	24,9	-			Nullpunkt	
175	16.01.2012	-	-	28,3	27,9	-	28,3	27,7		Bornheim, Winte
176	17.01.2012	-	-	43,3	45,2	-	45,7	46,9		
177	18.01.2012	-	-	28,8	26,7	-	30,5	29,4		
178	19.01.2012	-	-	4,2	5,5	.	6,2	5,7		
179	20.01.2012	-	-	8,7	9,7	-	12,7	11,0		
180	21.01.2012	-	-	1		-	8,9	8,8		

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 209 von von 431

Anlage 5			PM ₁₀ -Mes	swerte au	is den Felo	dteststandorte	n, bezogen	auf Normbeo	dingungen [EN 12431]	Blatt 17 von
Hersteller	Thermo Fisher	Scientific							Saburahatauh DM10	
Gerätetyp	Modell 5030i S	HARP							Messwerte in µg/m ³ i.N.	
O and and Min										
Serien-Nr.	SN 37 SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/Nm ³]	[%]	[µg/Nm³]	[µg/Nm³]		
181	22.01.2012	-	-	11,7	13,4	-	14,6	15,8		Bornheim, Wi
182	23.01.2012	-	-	11,8	13,8	-	17,2	16,6		
183	24.01.2012	-	-	20,8	21,8	-	25,8	25,2		
184	25.01.2012	-	-	28,3	25,8	-	27,1	27,2		
185	26.01.2012	-	-	29,4	28,1	-	30,9	29,0		
186	27.01.2012	-	-	23,9	24,6	-	24,3	24,9		
187	28.01.2012	-	-			-	21,5	22,2		
188	29.01.2012	-	-	68,1	69,7	-	73,8	73,4		
189	30.01.2012	-	-	70,3	71,6	-	71,2	71,6		
190	31.01.2012	-	-	43,1	42,5	-	41,9	44,5		
191	01.02.2012	-	-	30,5	30,8	-	28,0	28,8		
192	02.02.2012	-	-	24,4	24,6	-	24,1	25,9		
193	03.02.2012	-	-	35,5	35,2	-	33,7	35,7		
194	04.02.2012	-	-			-	36,0	36,7		
195	05.02.2012	-	-	29,7	29,1	-	27,6	28,9		
196	06.02.2012	-	-	39,0	38,7	-	38,9	40,9		
197	07.02.2012	-	-	35,6	34,1	-	32,0	33,1		
198	08.02.2012	-	-	41,6	41,3	-	43,4	45,6		
199	09.02.2012	-	-	37,0	36,6	-	37,1	37,2		
200	10.02.2012	-	-	0,0	0,0	-			Inlet -> Nullifilter	
201	11.02.2012	-	-	0,0	0,0	-			Nullpunkt	
202	12.02.2012	-	-	0,0	0,0	-		40.0	Nullpunkt	
203	13.02.2012	-	-	41,7	41,4	-	41,4	40,3		
204	14.02.2012	-	-	16,8	16,0	-	16,8	16,7		
205	15.02.2012	-	-	15,0	15,1	-	15,6	14,1		
206	16.02.2012	-	-	20,9	22,2	-	26,3	23,0		
207	17.02.2012	-	-	11,4	12,2	-	12,1	11,2		
200	10.02.2012						5,4 15.0	4,3 15.0		
209	20.02.2012			16.3	17.5		15,9	15,0		

Luftreinhaltung

.

Seite 210 von 431

Anlage 5			PM ₁₀ -Mes	sswerte au	ıs den Fel	dteststandorte	n, bezogen	auf Normbeo	dingungen [EN 12431]	Blatt 18 von 20		
Hersteller	Thermo Fisher	<u>.</u>										
Gerätetyp	Modell 5030i S	Modell 5030i SHARP Schwebstaub PM10 Modell 5030i SHARP Messwerte in µg/m³ i.N.										
Serien-Nr.	SN 3 / SN 4											
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort		
		PM2 5	PM2 5	PM10	PM10	PM2 5/PM10	PM10	PM10				
		[µg/m ³]	[µq/m ³]	[µg/Nm³]	[µq/Nm ³]	[%]	[µg/Nm ³]	[µq/Nm³]				
211	21.02.2012	-	-	16.3	17.6	-	17.5	17.3		Bornheim, Winter		
212	22.02.2012	-	-	21.1	22.7	-	21.0	20.7		,		
213	23.02.2012	-	-	9,3	10,5	-	13,1	11,7				
214	24.02.2012	-	-	15,0	15,4	-	19,0	16,2				
215	25.02.2012	-	-			-	22,0	20,4				
216	26.02.2012	-	-	38,8	40,2	-	41,5	38,8				
217	27.02.2012	-	-	26,4	26,2	-	27,5	26,6				
218	28.02.2012	-	-	22,3	22,4	-	23,1	22,9				
219	29.02.2012	-	-	35,2	34,9	-	31,6	30,1				
220	01.03.2012	-	-	29,7	30,7	-	30,2	29,5				
221	02.03.2012	-	-	19,3	18,6	-	18,3	19,4				
222	03.03.2012	-	-			-	30,5	34,2				
223	04.03.2012	-	-	43,9	42,9	-	37,2	38,5				
224	05.03.2012	-	-	8,2	7,3	-	7,6	6,5				
225	06.03.2012	-	-	21,6	20,8	-	21,3	20,5				
226	07.03.2012	-	-	25,1	22,9	-	24,4	24,7				
227	17.07.2012	-	-	8,9	9,5	-	9,6	8,4		Teddington, Somm		
228	18.07.2012	-	-	9,4	10,0		7,3	8,0				
229	19.07.2012	-	-	9,0	9,5		9,1	11,0				
230	20.07.2012	-	-	10,8	11,4	-	12,8	10,0				
231	21.07.2012	-	-	11,4	11,3	-	13,1	12,8				
232	22.07.2012	-	-	11,1	11,2	-	13,7	12,5				
233	23.07.2012	-	-	13,4	13,7	-	16,8	15,6				
234	24.07.2012	-	-	19,0	19,1	-	20,2	21,2				
235	25.07.2012	-	-	28,5	28,9	-	30,2	25,0				
236	26.07.2012	-	-	0,0	0,0	-	29,3	27,9	Ausreisser Ref. PM10			
237	27.07.2012	-	-	21,3	21,8	-	23,8	22,4				
238	28.07.2012	-	-			-	11,3	11,0				
239	29.07.2012	-	-	40.5	5.0	-	8,8	7,1				
240	30.07.2012			10.5	5.8		10.9	9.8				

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 211 von von 431

Anlage 5			PM ₁₀ -Messwerte aus den Feldteststandorten, bezogen auf Normbedingungen [EN 12431]							Blatt 19 von 20		
Hersteller	Thermo Fisher	Scientific							Schwebstaub PM10			
Gerätetyp	Modell 5030i S	HARP			Messwerte in µg/m³ i.N.							
Serien-Nr.	SN 3 / SN 4											
N	- Dit is	D.()	D.(a		D.(A	D.C.	0110	0114		0		
INF.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SIN 3	SN 4	Ветегкинд	Standort		
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM10	PM10				
		[µg/m³]	[µg/m³]	[µg/Nm³]	[µg/INm³]	[%]	[µg/Nm³]	[µg/Nm³]				
241	31.07.2012	-	-	15,8	16,8	-	19,4	18,1		Teddington, Som		
242	01.08.2012	-	-	13,5	13,6	-	11,9	10,9				
243	02.08.2012	-	-	13,4	13,9	-	15,5	13,5				
244	03.08.2012	-	-	13,9	12,7	-	13,6	11,3	Ausreisser Ref. PM2,5			
245	04.08.2012	-	-	10,9	11,3	-	12,7	13,6				
246	05.08.2012	-	-	9,8	10,3	-	10,0	9,6				
247	06.08.2012	-	-	8,1	8,5	-	8,3	8,7				
248	07.08.2012	-	-	8,2	8,5	-	10,6	9,1				
249	08.08.2012	-	-	12,6	13,5	-	15,9	11,3				
250	09.08.2012	-	-	16,8	17,9	-	17,8	16,7				
251	10.08.2012	-	-	21,4	22,4	-	21,3	21,3				
252	11.08.2012	-	-	27,1	28,2	-	20,9	20,3				
253	12.08.2012	-	-	15,3	15,8	-	12,1	11,4				
254	13.08.2012	-	-	9,6	10,0	-	8,9	8,3				
255	14.08.2012	-	-	14,6	15,3	-	13,5	11,2				
256	15.08.2012	-	-	20,9	21,4	-	23,5	23,1				
257	16.08.2012	-	-	17,0	17,4	-	17,6	14,1				
258	17.08.2012	-	-	14,7	15,1	-	13,4	15,3				
259	18.08.2012	-	-	11,5	11,9	-	12,6	9,9				
260	19.08.2012	-	-	11,6	12,1	-	13,0	11,0				
261	20.08.2012	-	-	13,1	13,4	-	14,0	13,5				
202	21.08.2012	-	-	14,5	15,0	-	15,1	14,0				
263	22.08.2012	-	-	15,2	14,7	-	15,8	13,0				
264	23.08.2012	-	-	14,9	15,6	-	14,0	13,4				
205	24.08.2012	-	-	10,3	10,9	-	10,8	10,6				
200	25.08.2012	-	-			-	δ, / 10.6	ŏ,∠				
207	20.08.2012	-	-			-	10,6	10,3				
200	21.00.2012	-	-	147	14.5	-	9,0	11,3				
209	28.08.2012	-	-	14,7	14,5	-	17,0	12,4				
2711		-	-			-	1115			-		

Luftreinhaltung

Seite 212 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 5			PM ₁₀ -Mes	sswerte au	ıs den Fel	dteststandorte	n, bezogen	auf Normbeo	dingungen [EN 12431]	Blatt 20 von 20
Hersteller	Thermo Fisher	Scientific								
Gerätetyp	Modell 5030i S	Messwerte in µg/m ³ i.N.								
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 3	SN 4	Bemerkung	Standort
		PM2,5 [µg/m³]	PM2,5 [µg/m ³]	PM10 [µg/Nm ³]	PM10 [ug/Nm ³]	PM2,5/PM10 [%]	PM10 [ua/Nm ³]	PM10 [µɑ/Nm³]		
271	30.08.2012		-	11.8	11.6	-	12.7	10.5		Teddington Sommer
272	31 08 2012	_	_	13.8	13.9		13.2	12.4		reddington, ooninier
273	01.09.2012	-	-	12.3	12.2	-	14 1	13.3		
274	02.09.2012	-	-	13.2	12.6	-	13.5	15.0		
275	03.09.2012	-	-	15.6	15.8	-	17.2	13.8		
276	04.09.2012	-	-	17,6	18,8	-	17,4	15,3		
277	05.09.2012	-	-	21,6	21,6	-	21,1	20,2		
278	06.09.2012	-	-	25,0	25,4	-	24,3	24,3	Stop PM10 Referenz	
279	07.09.2012	-	-	,		-	,	,	Inlet -> Nullfilter	
280	08.09.2012	-	-			-			Nullpunkt	
281	09.09.2012	-	-			-			Nullpunkt	
282	10.09.2012	-	-			-			Audits	
283	11.09.2012	-	-			-	6,9	7,6		
284	12.09.2012	-	-			-	6,6	7,3		
285	13.09.2012	-	-			-	9,7	10,2		
286	14.09.2012	-	-			-	15,4	15,0		
287	15.09.2012	-	-			-	19,8	19,6		
288	16.09.2012	-	-			-	7,4	8,8		
289	17.09.2012	-	-			-	14,0	12,2		
290	18.09.2012	-	-			-	12,3	10,9		
291	19.09.2012	-	-			-	13,5	12,7		
292	20.09.2012	-	-			-	10,7	11,6		
293	21.09.2012	-	-			-	13,0	11,4		
294	22.09.2012	-	-			-	12,9	12,2		

staub PM₁₀, Berichts-Nr.: 936/21209885/G

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-

Luftreinhaltung

Seite 213 von von 431

Anlage 6

Umgebungsbedingungen an den Feldteststandorten

Blatt 1 von 10

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
1	08.03.2011	Köln, Winter	43,8	6,4	14,5	7,9	14,4	1013	54,0	2,3	147	0,0
2	09.03.2011		29,6	4,6	15,4	7,1	10,6	1010	75,8	3,5	232	0,9
3	10.03.2011					9,2	10,1	1008	68,9	5,3	231	0,0
4	11.03.2011		33,3	2,5	7,6	8,1	11,4	1008	69,5	3,8	197	0,3
5	12.03.2011			2,6		12,1	16,4	998	61,6	3,3	147	0,3
6	13.03.2011		15,9	1,4	8,6	11,2	14,1	1001	77,3	2,0	156	1,5
7	14.03.2011		26,7			9,8	13,8	1010	81,2	0,3	114	0,0
8	15.03.2011		43,6	6,5	15,0	12,3	19,6	1006	66,2	2,2	96	0,0
9	16.03.2011		66,5	9,2	13,9	9,5	16,9	1000	71,9	2,5	126	0,0
10	17.03.2011		67,6	9,0	13,3	5,7	7,2	1009	86,9	4,7	267	0,0
11	18.03.2011		38,4	11,2	29,2	6,0	7,6	1018	89,1	1,1	135	11,1
12	19.03.2011			5,8		5,0	12,1	1027	59,5	1,2	123	0,0
13	20.03.2011		28,3	5,1	18,0	5,3	13,2	1027	57,7	0,9	150	0,0
14	21.03.2011		34,5	5,1	14,8	6,9	16,1	1029	56,5	1,0	166	0,0
15	22.03.2011		55,2	9,9	17,8	9,4	17,2	1031	62,7	1,1	184	0,0
16	23.03.2011		32,4	7,0	21,6	10,7	18,6	1030	66,8	1,2	161	0,0
17	24.03.2011		33,0	6,6	19,9	10,9	18,6	1021	67,2	1,0	174	0,0
18	25.03.2011		37,1	9,3	25,1	11,8	18,0	1010	59,4	1,6	183	0,0
19	26.03.2011			4,3		7,7	11,6	1010	64,8	1,5	105	0,0
20	27.03.2011		35,5	6,3	17,7	9,3	16,3	1006	60,9	1,1	196	0,0
21	28.03.2011		32,1	6,2	19,3	7,2	13,7	1009	60,2	1,9	172	0,0
22	29.03.2011		65,5	13,9	21,3	9,6	18,5	1007	62,1	1,1	168	0,0
23	30.03.2011		23,7	6,7	28,4	12,6	15,9	1008	66,7	2,4	170	0,0
24	31.03.2011		9,9	1,7	17,5	13,8	15,6	1011	78,2	3,7	230	6,5
25	01.04.2011		13,2	3,2	24,1	13,9	18,8	1014	78,1	2,3	175	0,0
26	02.04.2011			3,7		17,6	24,3	1006	62,2	2,6	159	0,0
27	03.04.2011		22,3	4,8	21,6	10,9	15,8	1009	85,3	2,0	251	8,7
28	04.04.2011		17,2	3,0	17,4	10,0	15,0	1017	65,3	2,7	214	0,0
29	05.04.2011		19,1	3,4	17,9	11,8	15,1	1020	71,9	2,1	173	0,9
30	06.04.2011	1	23.7	3.8	16.2	16.2	23.0	1019	73.9	1.8	196	0.0

Luftreinhaltung

Δ **TÜV**Rheinland® Genau. Richtig.

Seite 214 von 431

Anlage 6

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Blatt 2 von 10

Umgebungsbedingungen an den Feldteststandorten

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
31	07.04.2011	Köln, Winter	23,7	5,7	24,1	13,8	21,6	1019	67,2	3,0	245	0,0
32	08.04.2011		34,8			12,9	18,2	1018	64,7	2,9	255	0,0
34	09.04.2011					11,3	18,9	1018	59,8	1,3	183	0,0
34	10.04.2011		22,9			14,0	23,1	1016	60,2	1,1	191	0,0
35	11.04.2011		31,4			16,0	25,0	1012	58,8	3,9	244	2,7
36	12.04.2011		17,5	2,3	13,3	7,7	12,4	1018	66,7	4,1	257	0,9
37	13.04.2011		23,8	2,9	12,1	10,1	14,3	1013	57,1	2,0	203	0,0
38	14.04.2011		31,8	4,5	14,1	8,0	14,2	1013	65,4	0,6	159	0,0
39	15.04.2011		31,9	2,9	9,0	10,4	17,0	1014	53,6	1,2	169	0,0
40	16.04.2011			1,7		11,9	16,9	1017	51,7	0,9	166	0,0
41	17.04.2011			2,3		11,4	19,2	1017	53,7	1,2	139	0,0
42	18.04.2011		26,5	3,0	11,4	14,3	21,2	1011	48,6	1,9	149	0,0
43	19.04.2011		30,5	2,6	8,4	15,5	25,5	1009	52,4	1,2	146	0,0
44	20.04.2011		34,1	2,8	8,2	16,6	25,7	1008	51,3	1,1	154	0,0
45	21.04.2011			2,4		17,8	26,3	1006	54,1	0,7	180	0,0
46	22.04.2011			2,7		20,0	27,8	1003	51,8	1,3	146	8,3
47	23.04.2011			3,2		18,0	28,9	1005	58,0	0,7	152	0,0
48	24.04.2011			1,9		18,1	28,0	1011	51,7	1,0	172	0,0
49	25.04.2011		27,4	2,1	7,8	16,8	26,0	1013	50,3	1,2	153	0,0
50	26.04.2011		31,1	3,2	10,2	16,7	23,4	1011	51,5	1,8	166	2,1
51	27.04.2011		44,7	8,2	18,2	10,8	12,5	1010	90,4	0,7	213	8,9
52	28.04.2011		28,0	5,3	18,8	14,2	20,5	1005	77,6	0,7	176	0,3
53	29.04.2011		26,6	2,8	10,5	17,2	24,9	1002	56,8	1,7	112	3,0
54	30.04.2011		21,5	1,7	7,7	16,9	24,2	1002	47,4	1,7	141	0,0
55	01.05.2011		12,9	2,1	16,6	14,8	22,4	1002	44,5	1,6	111	0,0
56	02.05.2011		15,5	1,9	12,3	11,0	17,8	1004	53,3	2,0	116	0,0
57	03.05.2011		15,5	2,4	15,8	10,0	17,2	1011	49,4	1,0	164	0,0
58	04.05.2011		20,3	3,0	14,8	9,7	16,2	1016	61,5	1,3	168	0,0
59	05.05.2011		19,8	3,7	18,6	14,1	19,8	1015	46,9	2,2	119	0,0
60	06.05.2011		30,9	2,7	8,7	18,6	24,8	1012	41,1	2,5	110	0,0

Luftreinhaltung

Seite 215 von von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 6

.

Umgebungsbedingungen an den Feldteststandorten

Blatt 3 von 10

.

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m ³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
61	07.05.2011	Köln, Winter	46,8	2,7	5,7	21,9	28,3	1011	37,0	3,4	109	0,0
62	08.05.2011		23,2	1,2	5,2	22,1	28,6	1013	34,7	4,1	97	0,0
63	25.07.2011	Bomheim, Sommer	17,8			17,2	22,8	1001	73,8	0,8	193	1,2
64	26.07.2011		19,3	3,2	16,5	17,0	20,6	1006	78,4	1,1	259	0,0
65	27.07.2011		21,2	4,1	19,1	17,3	24,3	1010	84,8	0,7	229	51,7
66	28.07.2011		25,8	5,3	20,4	17,7	24,5	1011	85,6	0,6	228	5,9
67	29.07.2011		16,7	3,4	20,2	16,9	20,2	1011	76,2	2,9	299	0,0
68	30.07.2011			1,4		14,5	16,1	1010	80,4	2,3	288	0,0
69	31.07.2011		13,7	1,3	9,4	13,4	16,6	1009	76,2	0,9	244	0,0
70	01.08.2011		18,6	1,9	10,3	19,1	26,1	1008	68,1	0,9	177	0,0
71	02.08.2011		19,5	1,0	5,1	23,2	30,0	1007	60,8	1,5	143	0,0
72	03.08.2011		25,2	3,1	12,3	19,7	24,1	1006	82,9	1,1	195	5,4
73	04.08.2011		14,2	3,4	24,1	22,3	29,2	1005	71,6	0,8	204	3,6
74	05.08.2011		17,5	2,3	12,9	20,6	25,0	1004	75,8	1,1	221	0,6
75	06.08.2011			2,0		19,3	25,4	996	85,0	1,4	171	7,7
76	07.08.2011		6,0	1,1	17,6	17,8	22,4	998	64,0	1,5	209	1,8
77	08.08.2011		7,7	-0,2	-2,5	15,5	18,4	1000	74,7	2,5	219	6,2
78	09.08.2011		11,0			13,8	17,8	1012	76,8	2,7	265	14,8
79	10.08.2011		12,4	2,7	22,2	18,0	22,4	1013	57,5	1,3	224	0,0
80	11.08.2011		11,2	1,5	13,5	20,9	25,5	1004	53,8	1,2	220	0,3
81	12.08.2011		6,7	2,3	34,6	18,5	21,7	1003	78,9	1,1	228	2,1
82	13.08.2011			1,7		20,1	23,7	1001	77,0	0,7	185	0,0
83	14.08.2011		6,8	0,6	9,3	17,4	19,9	1000	86,2	1,1	219	17,4
84	15.08.2011		13,7	0,8	6,0	17,9	22,4	1009	71,8	1,2	230	0,0
85	16.08.2011		13,3	2,0	14,9	19,1	23,9	1010	69,0	0,7	190	0,6
86	17.08.2011		25,4	3,7	14,5	21,1	27,8	1007	73,8	0,7	206	4,7
87	18.08.2011		16,4	3,3	20,1	22,5	31,3	1004	76,6	1,2	174	20,9
88	19.08.2011		13,1	2,6	19,9	16,8	21,2	1011	80,0	1,5	235	3,3
89	20.08.2011			2,1		20,7	28,1	1011	66,6	0,8	157	0,0
90	21.08.2011		17,1	1,1	6,3	23,2	31,4	1007	74,8	1,0	184	0,3

Luftreinhaltung

TÜVRheinland[®] Genau. Richtig.

Seite 216 von 431

Anlage 6

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Blatt 4 von 10

Umgebungsbedingungen an den Feldteststandorten

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
91	22.08.2011	Bomheim, Sommer	19,5	3,8	19,4	20,4	24,4	1009	76,5	1,2	253	0,0
92	23.08.2011		30,0	3,7	12,4	22,6	27,8	1005	78,4	0,9	206	0,0
93	24.08.2011		16,8	2,5	14,7	20,1	27,2	1007	76,6	0,7	192	0,6
94	25.08.2011		18,7	2,9	15,7	20,8	27,6	1003	83,4	1,0	176	2,1
95	26.08.2011		10,7	2,1	19,9	19,4	30,2	999	83,7	1,5	195	29,1
96	27.08.2011			1,0		15,3	20,0	1007	77,0	1,1	207	0,3
97	28.08.2011		7,6	1,3	16,8	15,6	19,7	1009	69,2	1,3	212	0,0
98	29.08.2011		11,5	1,4	12,1	14,5	18,4	1008	66,7	2,0	243	0,0
99	30.08.2011		16,8	2,3	13,7	13,6	18,4	1008	73,6	0,8	236	0,0
100	31.08.2011		24,8	3,3	13,1	14,8	21,4	1007	72,0	0,7	225	0,0
101	01.09.2011		26,8	4,3	16,2	16,4	23,4	1006	71,6	0,6	182	0,0
102	02.09.2011		24,6	1,8	7,3	21,2	29,4	1004	72,2	0,8	160	0,0
103	03.09.2011			1,8		24,5	30,9	1002	67,0	1,3	132	3,6
104	04.09.2011		12,4	1,8	14,2	20,2	27,4	1002	79,5	1,1	223	0,6
105	05.09.2011		9,1	0,7	8,1	16,6	21,4	1009	62,9	1,9	217	0,0
106	06.09.2011		10,9	2,2	20,3	17,4	20,6	1005	66,8	2,6	219	4,8
107	07.09.2011		12,9	1,4	11,1	14,9	18,1	1004	73,1	2,2	246	5,7
108	08.09.2011			0,9		14,7	16,2	1003	84,7	1,1	209	3,3
109	09.09.2011		12,0	1,1	8,8	19,0	21,6	1004	86,9	0,4	167	0,0
110	10.09.2011			1,0		23,8	29,7	1001	73,0	1,5	155	0,0
111	11.09.2011		9,4	2,0	21,4	16,2	22,1	1003	86,0	0,7	165	16,2
112	12.09.2011		11,6	1,7	14,4	19,4	24,6	1004	71,1	1,7	204	0,0
113	13.09.2011		16,5	1,4	8,4	16,7	20,8	1006	67,3	1,6	219	0,0
114	14.09.2011		15,4	0,6	4,1	15,2	19,6	1011	65,1	1,5	224	0,0
115	15.09.2011		24,6	2,2	8,8	14,1	20,4	1013	75,3	0,6	207	0,0
116	16.09.2011		24,1			17,1	21,9	1006	72,6	1,4	145	0,0
117	17.09.2011					16,8	21,4	1001	70,6	1,0	207	3,6
118	18.09.2011		7,0			13,3	16,5	998	76,4	1,0	200	4,5
119	19.09.2011		12,0			13,6	18,1	1008	75,8	1,4	231	0,9
120	20.09.2011			1,2		15,6	18,5	1014	78,0	0,5	196	0,0
staub PM₁₀, Berichts-Nr.: 936/21209885/G

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-

Luftreinhaltung

Seite 217 von von 431

Anlage 6

Umgebungsbedingungen an den Feldteststandorten

Blatt 5 von 10

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
121	21.09.2011	Bornheim, Sommer	12,3	1,0	8,4	16,9	20,5	1011	69,5	0,8	204	0,0
122	22.09.2011		19,1	0,9	4,7	15,2	18,7	1011	72,2	1,2	231	0,0
123	23.09.2011		26,1	1,6	6,2							,
124	24.09.2011			0,7								
125	25.09.2011		21,5	1,1	5,3							
126	26.09.2011		19,7						Ausfall Wetterstation	n		
127	27.09.2011		39,1	3,1	7,8							
128	28.09.2011											
129	29.09.2011			2,1								
130	30.09.2011		24,0	1,9	7,8	18,4	26,8	1017	68,3	1,2	155	0,0
131	01.10.2011			1,9		18,1	28,0	1018	70,6	0,5	176	0,0
132	02.10.2011			3,8		17,8	26,8	1016	75,4	0,3	213	0,0
134	03.10.2011			4,3		18,8	26,5	1013	65,9	0,8	168	0,0
134	04.10.2011		16,1	1,3	8,4	17,8	20,5	1013	72,4	1,6	214	0,0
135	05.10.2011		6,7	2,0	29,3	17,5	20,0	1011	70,8	1,2	199	0,0
136	06.10.2011		10,6	1,8	16,6	13,2	19,3	1001	71,2	2,3	213	0,3
137	07.10.2011		7,9	0,8	10,1	9,9	13,4	1005	81,6	3,6	272	5,7
138	08.10.2011			1,1		8,7	11,4	1009	85,5	2,1	258	6,0
139	09.10.2011		10,3	2,2	21,9	12,2	16,3	1011	84,5	1,4	190	5,4
140	10.10.2011		12,2	1,1	8,9	17,7	21,3	1009	74,4	3,2	261	0,3
141	11.10.2011		5,2	1,3	25,6	16,3	18,0	1010	77,4	3,6	251	0,0
142	12.10.2011		5,1	0,1	1,0	12,5	15,8	1012	91,1	0,9	226	17,9
143	13.10.2011		11,6	1,0	8,9	9,9	15,8	1022	76,3	0,6	209	0,0
144	14.10.2011		14,4	1,5	10,6	8,7	15,9	1024	69,6	1,0	151	0,0
145	15.10.2011			2,2		7,8	14,8	1020	68,8	1,2	162	0,0
146	16.10.2011		16,9	2,5	14,8	8,5	14,8	1016	73,8	1,5	157	0,0
147	17.10.2011		27,7	5,0	18,1	10,5	16,6	1011	78,5	0,8	163	0,0
148	18.10.2011		11,6	2,9	24,9	9,2	15,0	1003	82,0	1,2	197	3,0
149	19.10.2011			0,9		8,1	14,0	1010	74,4	1,5	225	0,0
150	20.10.2011		13,8	2,0	14,4	5,6	10,6	1018	79,8	1,0	223	0,0

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

.

Luftreinhaltung

TÜVRheinland[®] Genau. Richtig.

Seite 218 von 431

Anlage 6

.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Blatt 6 von 10

Umgebungsbedingungen an den Feldteststandorten

	D :		DI LLA LL	D			1.64		B 1 1 67 1 1			A.B. 1. 1.1
Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lutttemperatur	max. Lutttemperatur	Luftdruck	Rel. Luttleuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	Ŭ	[mm]
151	21.10.2011	Bornheim, Sommer	27,2	4,2	15,5	5,2	11,4	1019	79,3	1,1	154	0,0
152	22.10.2011			5,6		6,8	11,9	1013	69,3	3,9	128	0,0
153	23.10.2011			6,0		7,4	13,6	1007	71,6	2,3	138	0,0
154	24.10.2011			4,2		9,8	12,4	999	67,2	3,8	132	0,0
155	25.10.2011			1,9		10,9	13,0	997	68,8	1,9	132	0,0
156	26.10.2011			1,3		9,4	15,7	1006	74,9	0,9	171	0,0
157	27.10.2011			3,6		10,1	13,4	1008	80,4	2,7	126	0,0
158	28.10.2011		27,3	3,4	12,4	14,0	20,1	1016	75,8	0,7	149	0,0
159	29.10.2011			3,0		13,5	17,2	1015	79,8	1,0	132	0,9
160	30.10.2011		16,6	2,7	16,4	13,5	18,2	1014	86,7	0,4	170	0,0
161	31.10.2011			4,4		11,9	17,2	1009	87,0	1,0	152	0,3
162	01.11.2011		29,6	4,6	15,7	12,2	15,6	1007	83,2	2,0	134	1,8
163	02.11.2011			5,2		12,5	14,7	1002	80,8	2,9	124	0,3
164	03.11.2011		17,7	2,6	14,7	13,7	17,3	995	69,7	3,8	140	0,0
165	04.11.2011		21,0	2,2	10,6							
166	05.11.2011			1.1								
167	06.11.2011		62.8	6.3	10.1							
168	07.11.2011		40.1	5.1	12.6							
169	08.11.2011		53.6	5.4	10.0				Austall Wetterstatio	n		
170	09.11.2011		29.2	5.0	16.9							
171	10.11.2011		17,3	4,2	24,5							
172	11.11.2011		35.2	4.6	13.1							
173	12.11.2011			6.8		7.2	9.4	1024	81.6	4.1	135	0.0
174	13.11.2011		24,4	5,9	24,3	5,4	10,1	1023	83,7	2,4	131	0,0
175	16.01.2012	Bornheim, Winter	28.5	3.3	11.6	-0.9	3.9	1020	81.8	0.6	138	0.3
176	17.01.2012		44.9	4.7	10.5	-0.6	4.7	1022	81.5	0.5	123	0.3
177	18.01.2012		27,7	5,4	19,6	3,1	7,1	1018	84,3	1,5	126	6,6
178	19.01.2012		4.7	3.8	81.3	7.2	11.9	1006	84.8	4.1	253	12.8
179	20.01.2012		9.0	3.2	35.5	3.1	5.4	1008	85.5	3.1	239	5.1
180	21.01.2012		-,-	3.1	,-	7.3	10.3	1000	81.9	5.3	261	6,9

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

Luftreinhaltung

Seite 219 von von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 6

Umgebungsbedingungen an den Feldteststandorten

Blatt 7 von 10

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
181	22.01.2012	Bornheim, Winter	12,2	1,7	13,6	6,4	9,3	1003	77,0	4,7	271	1,8
182	23.01.2012		12,6	2,3	18,2	4,2	7,1	1008	83,7	3,0	268	3,6
183	24.01.2012		21,2	3,2	15,3	2,3	5,5	1014	87,4	0,9	188	0,0
184	25.01.2012		26,9	5,0	18,7	2,5	4,2	1012	81,0	3,9	126	0,0
185	26.01.2012		28,5	6,3	22,2	2,6	4,0	1010	78,6	4,1	127	0,6
186	27.01.2012		24,2	4,0	16,7	2,3	7,4	1016	85,6	1,1	124	0,0
187	28.01.2012			4,1		1,6	4,4	1021	81,0	0,9	166	0,3
188	29.01.2012		69,5	7,2	10,3	-0,4	0,3	1020	81,2	1,4	238	0,0
189	30.01.2012		71,4	7,6	10,6	-0,1	0,9	1017	75,8	1,5	110	0,0
190	31.01.2012		43,5	5,6	13,0	-2,7	0,9	1018	62,8	2,0	116	0,0
191	01.02.2012		31,5	5,5	17,4	-5,2	0,7	1023	53,6	2,2	144	0,0
192	02.02.2012		25,5	4,2	16,4	-7,0	-0,8	1026	50,2	1,5	186	0,0
193	03.02.2012		37,2	5,4	14,6	-8,5	-4,0	1031	69,0	1,0	252	0,0
194	04.02.2012			8,1		-8,5	-3,7	1031	69,8	1,0	182	0,0
195	05.02.2012		30,7	5,6	18,1	-7,9	-3,6	1027	57,9	1,7	142	0,0
196	06.02.2012		40,9	4,7	11,6	-8,9	-3,6	1029	57,8	1,1	152	0,0
197	07.02.2012		36,5	4,2	11,5	-7,6	-4,3	1031	61,6	1,8	148	0,0
198	08.02.2012		43,1	5,3	12,2	-5,7	0,0	1030	68,4	0,8	187	0,0
199	09.02.2012		38,2	6,9	18,0	-5,4	-2,2	1030	81,1	1,6	259	0,0
200	10.02.2012					-5,7	-0,3	1031	64,9	1,1	116	0,6
201	11.02.2012					-7,6	-2,1	1028	67,2	1,1	198	0,0
202	12.02.2012					-4,2	-1,5	1024	69,3	0,9	233	0,0
203	13.02.2012		41,5			0,4	1,9	1012	89,7	0,7	208	2,1
204	14.02.2012		16,2			3,1	5,0	1006	88,5	4,4	280	4,2
205	15.02.2012		14,8			3,5	5,3	1008	81,1	5,7	303	0,6
206	16.02.2012		21,4			4,2	5,3	1016	90,4	1,2	246	2,1
207	17.02.2012		11,6			5,6	7,1	1013	87,7	1,7	229	1,2
208	18.02.2012			2,0		6,5	9,4	1005	81,8	2,5	213	1,5
209	19.02.2012			0,4		1,5	4,8	1017	84,7	2,9	270	0,9
210	20.02.2012		17,1	2,3	13,3	1,0	5,1	1026	76,4	0,8	179	0,0

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

.

Luftreinhaltung

TÜVRheinland® Genau. Richtig.

Anlage 6

.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Blatt 8 von 10

Umgebungsbedingungen an den Feldteststandorten

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
211	21.02.2012	Bornheim, Winter	16,9	1,6	9,2	4,4	8,5	1023	70,8	1,8	176	0,0
212	22.02.2012		21,5			6,3	11,2	1017	69,6	1,6	156	3,0
213	23.02.2012		9,7	2,8	28,6	8,2	10,3	1016	86,2	1,0	191	0,0
214	24.02.2012		14,8	4,1	27,4	9,9	13,7	1017	86,4	2,8	256	1,2
215	25.02.2012			6,5		7,0	10,9	1016	78,1	3,4	269	0,3
216	26.02.2012		39,1	6,7	17,2	5,2	6,9	1019	87,2	1,9	244	0,6
217	27.02.2012		25,8	6,6	25,8	7,7	10,3	1016	77,4	1,1	211	0,6
218	28.02.2012		21,8	5,5	25,4	9,4	10,7	1016	86,5	1,8	252	0,0
219	29.02.2012		34,0	7,7	22,8	10,4	13,3	1017	87,9	0,6	142	0,0
220	01.03.2012		29,5	5,4	18,3	8,8	10,6	1018	90,5	0,8	178	0,0
221	02.03.2012		18,5	5,0	27,0	9,0	11,8	1016	87,0	2,2	151	0,0
222	03.03.2012			5,9		8,7	10,9	1015	82,3	1,2	161	0,3
223	04.03.2012		42,0	10,3	24,5	8,6	11,5	1008	84,6	2,6	129	10,2
224	05.03.2012		7,6	3,5	45,6	5,6	7,8	1010	70,7	4,6	162	0,0
225	06.03.2012		21,0	3,9	18,6	4,8	10,3	1018	72,5	1,6	173	0,0
226	07.03.2012		23,6	6,0	25,4	5,2	7,8	1011	76,5	3,8	218	9,8
227	17.07.2012	Teddington, Sommer	8,7			19,2	25,2	1001	76,1	0,3	213	0,5
228	18.07.2012		9,1	3,2	35,1	16,4	19,6	991	83,8	0,4	212	1,3
229	19.07.2012		9,0	2,4	26,8	16,4	21,2	994	71,7	0,2	270	0,0
230	20.07.2012		10,5	2,7	25,7	16,2	20,0	1001	69,7	0,7	221	0,3
231	21.07.2012		10,8	2,0	18,1	16,9	22,8	1007	64,9	0,3	189	0,0
232	22.07.2012		10,6	2,5	23,9	18,6	23,8	1007	61,9	0,6	203	0,0
234	23.07.2012		12,7	3,0	23,9	21,4	29,4	1002	57,0	0,4	197	0,0
234	24.07.2012		17,7	3,4	19,1	22,8	30,8	997	56,3	0,3	213	0,0
235	25.07.2012		26,5	5,0	18,8	24,2	32,3	998	47,1	1,0	117	0,0
236	26.07.2012			6,1		21,8	28,3	996	62,0	1,1	125	0,0
237	27.07.2012		20,1	4,8	24,0	19,9	25,1	992	60,4	0,9	256	0,0
238	28.07.2012			1,8		17,1	23,8	992	55,5	0,3	236	0,0
239	29.07.2012			1,7		13,6	19,9	995	78,7	0,2	198	6,1
240	30.07.2012		9,9	1,9	18,9	16,3	22,0	997	66,3	0,3	195	4,3

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

Seite 220 von 431

staub PM₁₀, Berichts-Nr.: 936/21209885/G

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-

Luftreinhaltung

Seite 221 von von 431

Anlage 6

Umgebungsbedingungen an den Feldteststandorten

Datum Standort mittlere PM10-Konz PM10 Volatile Anteil Volatile an PM10 mittl. Lufttemperatur max. Lufttemperatur Luftdruck Rel. Luftfeuchte Windgeschwindigkeit Windrichtung Niederschlagsmenge Nr. [µg/m³] [µg/m³]* [°C] [hPa] [%] [m/s] [%] [°C] [°] [mm] 31.07.2012 241 Teddington, Sommer 15,3 2,8 18,2 17,2 21,0 994 84,5 0,4 170 0,5 242 01.08.2012 12,6 2,5 19,8 18,4 23,3 989 75,5 0,7 185 0,0 243 02.08.2012 12,8 2,3 17,9 17,7 22,6 993 73,1 0,8 195 0,0 03.08.2012 244 12,5 2,4 19.0 17,8 22,7 993 71,6 0,8 180 2,3 245 04.08.2012 10,5 2,5 23,9 16,4 21,0 990 80,7 0,6 200 1,8 2,0 17,3 22,4 988 77,6 0,4 210 2,3 246 05.08.2012 9,4 21,7 247 06.08.2012 7,8 1,5 19,1 16,0 23,3 995 77,5 0,2 190 0,8 2,1 26,3 17,2 21,1 1003 80,7 0,3 201 248 07.08.2012 7,9 0.8 249 08.08.2012 12,3 2,6 20,9 19,0 25,5 1005 73,0 0,2 263 0,0 250 4,1 28,3 1007 62,7 0,4 202 09.08.2012 16,4 25,0 21,0 0,0 251 20.6 29.4 1005 59.5 0.5 142 10.08.2012 59 28.8 21.4 0.0 252 11.08.2012 25,9 6,0 23,3 19,8 24,4 997 63,9 1,9 78 0,0 253 12.08.2012 14.5 3.5 24.1 19.8 26.1 992 70.6 0.8 171 0.0 254 13.08.2012 9,2 2,3 25,5 19,2 23.2 992 81,2 0,7 184 1,5 255 14.08.2012 13,8 4,5 32,8 21,1 26,1 991 66,3 0,9 139 0,0 256 15.08.2012 19.7 2.3 11.4 19.0 23.3 989 71.8 1.0 187 0.5 257 16.08.2012 16,1 2,2 13,5 19,8 22,9 996 65,3 1,1 160 0,0 258 17.08.2012 13.8 2.8 20.6 23.4 28.3 993 55.8 0.8 180 0.0 259 18 08 2012 10,8 4,7 43,6 24,2 32.2 995 67.6 0,2 214 0.0 260 19.08.2012 11,0 5,4 49,3 22,7 30,8 997 68,7 0,4 208 0,0 261 20.08.2012 12.5 2.5 19.7 197 27.8 1001 77.3 0.2 215 0.0 262 21.08.2012 13,9 2,2 15,5 17,7 23,3 998 76,0 0,1 207 0,3 263 22.08.2012 14.1 2.2 15.3 17.6 23.9 998 69.3 0.2 210 0.0 264 23.08.2012 14,3 2,5 17,4 17,4 22,7 992 69,0 0,2 190 0,0 265 24.08.2012 9,9 2,8 28,6 17,1 20,6 983 81,7 0,8 174 2,8 266 25 08 2012 1.2 16.7 22.5 987 81.9 0.5 243 27.9 267 26.08.2012 2,3 16,9 23,3 999 69,4 0,4 206 0,0 268 27.08.2012 2.2 18.3 21.4 992 74.9 0.8 195 0.8 269 28 08 2012 13,8 2,5 18,4 18,0 23,7 995 74,2 0,5 190 0,3 270 29.08.2012 12.0 1.7 14.3 15,0 20,6 993 85.2 0,6 184 4.1

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

Blatt 9 von 10

Luftreinhaltung

TÜVRheinland® Δ Genau. Richtig.

Anlage 6

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Blatt 10 von 10

Umgebungsbedingungen an den Feldteststandorten

Nr.	Datum	Standort	mittlere PM10-Konz.	PM10 Volatile	Anteil Volatile an PM10	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
	Batam	orandore	[µg/m ³]	[µg/m ³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
271	30.08.2012	Teddington, Sommer	11,3	1,3	11,0	12,6	17,7	1005	70,1	1,5	302	0,0
272	31.08.2012		13,4	2,3	17,2	15,3	19,4	1010	60,5	0,7	289	0,0
273	01.09.2012		11,7	2,2	18,8	16,6	22,7	1006	75,4	0,2	210	0,0
274	02.09.2012		12,3	3,0	24,1	16,8	19,5	1007	88,3	0,1	238	0,0
275	03.09.2012		14,9	3,5	23,7	18,4	26,9	1006	74,1	0,2	239	0,0
276	04.09.2012		17,2	2,5	14,5	18,9	26,6	1005	64,6	1,1	295	0,0
277	05.09.2012		20,9	2,6	12,4	14,7	21,9	1010	63,9	1,0	144	0,0
278	06.09.2012		24,2	3,5	14,7	16,3	23,2	1008	67,9	0,2	198	0,0
279	07.09.2012					17,5	28,4	1005	63,9	0,1	219	0,0
280	08.09.2012					17,1	28,3	998	64,8	0,1	208	0,0
281	09.09.2012					20,1	27,4	991	66,5	0,8	191	0,0
282	10.09.2012					17,5	21,0	991	75,3	0,9	192	0,0
283	11.09.2012					12,8	19,4	997	63,4	0,4	252	0,0
284	12.09.2012					13,4	20,4	998	72,4	0,5	267	2,5
285	13.09.2012					16,3	21,4	998	63,9	0,3	205	0,0
286	14.09.2012					14,3	21,3	997	70,8	0,7	257	0,0
287	15.09.2012					17,0	24,3	997	71,9	0,2	204	0,0
288	16.09.2012					15,6	19,6	994	75,9	0,2	207	0,0
289	17.09.2012					15,5	20,7	994	67,9	0,2	207	0,0
290	18.09.2012					11,7	19,3	1000	64,2	0,7	278	0,0
291	19.09.2012					12,2	18,3	1004	65,9	0,4	260	0,0
292	20.09.2012					13,3	19,3	1001	70,9	0,2	203	0,0
293	21.09.2012					12,1	17,3	998	77,3	0,4	273	1,3
294	22.09.2012					12,5	17,2	1000	60,6	0,8	89	0,0

* Volatile PM-Bestandteile ermittelt mit parallel betriebenen TEOM-FDMS Systemen

Seite 222 von 431

Luftreinhaltung

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 223 von von 431

Hersteller	Thermo Fisher	Scientific								
leistellei									Schwebstaub PM10	
Serätetyp	Modell 5030i SH	HARP							Messwerte in µg/m ³ i.B.	
erien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1 PM2,5 [ug/m³]	Ref. 2 PM2,5	Ref. 1 PM10	Ref 2. PM10	Ratio PM2,5/PM10	SN 3 PM10	SN 4 PM10 [ug/m³]	Bemerkung	Standor
1	07.06.2013	17,0	16,1	28,6	29,9	56,6	[µ9/111]	[µ9/11]		Bornheir
2	08.06.2013	,	,	,	, ,	ŕ				
3	09.06.2013	14,0	13,6	20,1	21,3	66,9				
4	10.06.2013	16,1	15,4	26,1	27,1	59,1				
5	11.06.2013	13,0	12,2	20,8	20,7	60,7	21,8	20,1		
6	12.06.2013	7,1	6,4	14,6	14,0	47,4	9,5	10,4		
7	13.06.2013	5,6	5,4	13,4	12,7	42,1	11,9	11,5		
8	14.06.2013	5,0	5,7	10,8	10,8	49,3	10,1	10,2		
9	15.06.2013	5,1	5,3	10,6	10,2	50,0	10,4	9,5		
10	16.06.2013	7,3	7,6	16,7	16,6	44,8	16,6	17,6		
11	17.06.2013	12,2	13,3	21,3	20,9	60,3	18,5	21,2		
12	18.06.2013	17,8	17,3	28,6	29,1	60,9	30,5	30,5		
13	19.06.2013	31,9	32,7	48,7	48,5	66,5	42,3	42,1		
14	20.06.2013	8.7	10.1	15.5	14.9	62.1	12.8	12.7		
15	21.06.2013	4,2	4,5	7,2	6,8	62,2	6,1	5,9		
16	22.06.2013	3,3	4,1	5,7	5,9	63,8	5,0	4,9		
17	23.06.2013	3,1	3,0	4,6	5,5	59,8	6,1	7,3		
18	24.06.2013	8,7	8,0	13,9	13,2	61,8	17,1	17,2		
19	25.06.2013	6,3	6,6	12,9	12,7	50,4	10,7	11,4		
20	26.06.2013	9,1	9,4	14,6	14,5	63,5	16,2	13,7		
21	27.06.2013	9,8	9,6	14,2	13,8	69,2	13,0	13,3		
22	28.06.2013	8,8	8,7	14,2	14,7	60,4	13,5	14,1		
23	29.06.2013	6,0	5,8	11,7	11,5	50,9	11,7	10,9		
24	30.06.2013	7,4	6,9	14,6	14,4	49,4	12,2	13,3		
25	01.07.2013	7,7	7,6	13,4	13,2	57,7	14,8	14,4		
26	02.07.2013	7,9	7,9	12,5	12,0	64,6	12,2	13,8		
27	03.07.2013	3,6	3,8	9,0	9,9	39,1	9,3	9,6		
28	04.07.2013	7,5	7,9	13,5	13,6	56,9	15,4	13,7		
29	05.07.2013	12,9	13,1	20,9	19,9	63,8	22,8	22,8		
30	06.07.2013	13.3	13.1	18.7	18.5	71 1	18.0	20.3		

Luftreinhaltung

Seite 224 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schweb-staub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 7	7 Messwerte aus dem zusätzlichen Standort Bornheim, Sommer 2013, bezogen auf Umgebungsbedingungen Blatt									
Hersteller	Thermo Fisher	Scientific							Columbateut DM40	
Gerätetyp	Modell 5030i Sł	HARP							Messwerte in µg/m ³ i.B.	
Serien-Nr.	SN 3 / SN 4									
Nr.	Datum	Ref. 1 PM2,5 [µg/m³]	Ref. 2 PM2,5 [µg/m³]	Ref. 1 ΡΜ10 [μg/m³]	Ref 2. PM10 [µg/m³]	Ratio PM2,5/PM10 [%]	SN 3 PM10 [µg/m³]	SN 4 PM10 [μg/m³]	Bemerkung	Standort
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	07.07.2013 08.07.2013 10.07.2013 11.07.2013 12.07.2013 13.07.2013 14.07.2013 15.07.2013 16.07.2013 17.07.2013 19.07.2013 20.07.2013 21.07.2013 22.07.2013 23.07.2013 24.07.2013 25.07.2013	11,3 11,3 14,2 9,7 13,6 16,5 15,3 14,5 17,4 20,4 13,6 9,0 10,1 12,9 15,5 14,1 20,3 11,1	10,7 10,6 14,5 10,2 14,3 16,8 15,3 14,5 17,4 18,4 13,2 7,3 9,5 12,3 14,8 13,6 20,0 12,1	14,9 16,3 24,9 19,1 26,6 20,4 22,2 26,2 30,2 18,7 17,0 16,3 17,3 18,0 23,2 25,4 31,5 21,3	14.4 16,1 22,6 17,5 24,9 20,7 21,5 25,6 28,9 18,0 17,3 14,8 16,0 17,7 22,0 24,5 30,3 20,3	75,1 67,6 60,4 54,4 54,2 74,5 66,5 67,1 65,5 72,9 52,7 58,7 70,7 67,2 55,3 65,2 55,7	16,4 16,4 23,7 21,0 27,5 28,6 21,9 24,4 27,1 31,3 21,1 17,9 17,5 22,1 18,6 24,8 26,5 31,2 17,2	16,6 16,8 25,2 20,9 28,3 29,5 22,7 25,9 29,7 33,0 20,9 17,5 17,3 22,3 18,8 23,3 26,8 30,4 18,5	Ausreisser Referenz PM10 Ausreisser Referenz PM2,5	Bornheim

. – -----

Luftreinhaltung

Seite 225 von von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Anlage 8

Umgebungsbedingungen am zusätzlichen Standort Bornheim, Sommer 2013

Blatt 1 von 2

Nr.	Datum	Standort	mittlere PM2,5-Konzentration	PM2,5-Volatile	Anteil Volatile an PM2,5	mittl. Lufttemperatur	max. Lufttemperatur	Luftdruck	Rel. Luftfeuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]*	[%]	[°C]	[°C]	[hPa]	[%]	[m/s]	[°]	[mm]
1	07.06.2013	Bornheim	16,6			21,7	29,1	1010	55,5	1,0	211	0,0
2	08.06.2013					21,1	26,8	1005	62,3	2,1	243	0,0
3	09.06.2013		13,8			15,6	19,2	1001	78,7	1,8	273	4,5
4	10.06.2013		15,7			14,4	18,1	1005	75,9	1,2	253	0,6
5	11.06.2013		12,6	3,2	25,4	18,8	23,8	1008	61,5	0,6	198	0,0
6	12.06.2013		6,8	1,3	19,5	21,1	23,7	1008	67,1	1,0	181	0,0
7	13.06.2013		5,5	0,3	4,7	17,0	27,6	1007	77,9	1,3	209	22,5
8	14.06.2013		5,3	1,1	21,4	16,1	21,2	1009	65,4	0,6	181	0,0
9	15.06.2013		5,2	0,4	6,9	17,2	22,6	1005	63,1	1,4	209	0,0
10	16.06.2013		7,5	0,6	8,6	17,7	23,7	1007	63,9	0,7	226	0,0
11	17.06.2013		12,7	1,7	13,3	23,3	29,7	1004	64,7	0,9	185	0,0
12	18.06.2013		17,6	2,3	13,0	27,2	34,8	1005	61,3	0,4	178	0,0
13	19.06.2013		32,3	4,6	14,3	26,9	35,0	1003	67,8	1,9	244	0,0
14	20.06.2013		9,4	3,0	32,3	20,5	25,1	1003	78,5	1,0	187	34,6
15	21.06.2013		4,3	1,1	24,6	19,0	23,4	1005	69,8	1,6	196	0,3
16	22.06.2013		3,7	1,3	35,0	19,0	23,7	1004	67,8	1,8	198	1,5
17	23.06.2013		3,0	0,4	13,6	16,2	19,2	1005	69,9	1,6	216	0,9
18	24.06.2013		8,4	1,0	12,2	14,2	17,4	1013	76,9	1,8	255	1,5
19	25.06.2013		6,5	0,9	14,6	13,4	16,8	1018	71,1	1,8	259	0,3
20	26.06.2013		9,3	1,9	20,8	13,9	16,7	1018	70,9	1,1	250	9,8
21	27.06.2013		9,7	2,1	21,1	13,2	17,1	1014	78,5	0,7	230	3,9
22	28.06.2013		8,8	2,1	24,3	14,1	16,7	1010	86,1	0,3	174	16,4
23	29.06.2013		5,9	0,7	12,4	14,8	18,8	1012	73,9	2,6	269	1,8
24	30.06.2013		7,2	1,3	18,3	17,7	22,4	1012	66,4	0,6	198	0,0
25	01.07.2013		7,7	1,4	17,9	18,8	25,4	1008	74,9	0,7	215	21,0
26	02.07.2013		7,9	1,6	20,5	21,6	27,1	1003	62,7	0,6	183	0,3
27	03.07.2013		3,7	0,7	19,0	17,5	20,1	1004	85,6	0,2	213	16,0
28	04.07.2013		7,7	0,4	5,3	20,0	24,7	1014	71,1	0,9	232	0,0
29	05.07.2013		13,0	1,3	10,4	19,8	24,8	1020	74,4	0,3	222	0,0
30	06.07.2013		13,2	2,0	15,4	22,4	29,3	1020	65,4	1,0	191	0,0

* Volatile Bestandteile für PM2,5 zur Orientierung ermittelt mit parallel betriebenem TEOM-FDMS-System

Luftreinhaltung

Blatt 2 von 2

TÜVRheinland[®] Genau. Richtig.

Seite 226 von 431

Anlage 8

Umgebungsbedingungen am	zusätzlichen Stande	ort Bornheim, So	ommer 2013
ungebungsbedingungen am	zusatzlichen Stanue	on bonnein, sc	Jinner 2013

	B :	0 1 1 1	DMO 5 K A	D140 517 1		the second second	1.61		B 1 1 67 1 1			A.C. 1. 1.
Nr.	Datum	Standort	mittlere PM2,5-Konzentration	PM2,5-Volatile	Anteil Volatile an PM2,5	mitti. Lutttemperatur	max. Lutttemperatur	Luttdruck	Rel. Luttleuchte	Windgeschwindigkeit	Windrichtung	Niederschlagsmenge
			[µg/m³]	[µg/m³]^	[%]	[°C]	[°0]	[hPa]	[%]	[m/s]	ľ	[mm]
31	07.07.2013	Bornheim	11,0	1,1	10,0	23,1	29,7	1020	58,8	1,2	218	0,0
32	08.07.2013		11,0	1,4	12,9	23,0	29,8	1019	59,6	1,4	214	0,0
33	09.07.2013		14,4	2,7	19,2	23,4	29,9	1014	59,4	1,4	237	0,0
34	10.07.2013		10,0	1,8	18,1	19,5	24,2	1012	62,6	3,5	261	0,0
35	11.07.2013		14,0	1,4	10,0	15,7	19,7	1013	70,1	1,7	215	0,0
36	12.07.2013		16,7	3,4	20,4	16,5	21,9	1013	70,8	1,2	250	0,0
37	13.07.2013		15,3	2,8	18,5	17,7	22,9	1014	68,3	1,1	241	0,0
38	14.07.2013		14,5	3,7	25,5	18,9	24,2	1014	69,1	1,7	249	0,0
39	15.07.2013		17,4	2,0	11,3	21,3	27,8	1013	62,9	0,8	188	0,0
40	16.07.2013		19,4	2,7	14,2	22,5	29,2	1013	58,8	0,8	184	0,0
41	17.07.2013		13,4	2,0	14,8	23,2	29,3	1014	59,0	1,2	218	0,0
42	18.07.2013			2,0		24,5	31,6	1014	56,8	1,7	224	0,0
43	19.07.2013		8,2	1,7	21,3	23,5	29,1	1013	58,3	2,3	241	0,0
44	20.07.2013		9,8	1,7	17,5	21,1	26,6	1011	68,5	1,3	226	0,0
45	21.07.2013		12,6	1,8	14,6	25,3	32,3	1009	57,4	1,1	155	0,0
46	22.07.2013		15,2	2,2	14,4	27,6	35,1	1006	52,2	0,9	167	0,0
47	23.07.2013		13,8	1,8	12,8	25,5	33,7	1004	62,0	0,6	159	0,0
48	24.07.2013		20,1	5,0	24,9	21,7	27,6	1006	78,7	0,7	213	3,6
49	25.07.2013		11,6	4,5	38,4	22,5	28,1	1006	81,7	0,7	145	15,1
			1 1		1							

* Volatile Bestandteile für PM2,5 zur Orientierung ermittelt mit parallel betriebenem TEOM-FDMS-System

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 227 von 431

Anhang 2

Verfahren zur Filterwägung

A) Standorte in Deutschland (Köln und Bornheim)

A.1 Ausführung der Wägung

Die Wägungen werden im klimatisierten Wägeraum durchgeführt. Die Bedingungen sind 20 °C \pm 1 °C und 50 % \pm 5 % rel. Feuchte und entsprechen damit den Vorgaben der DIN EN 14907.

Die Filter für den Feldtest werden manuell gewogen. Für die Konditionierung werden die Filter einschließlich der Kontrollfilter auf Siebe gelegt, sodass keine Überlappung vorliegt. Die Bedingungen für die Hin und Rückwägung werden vorher festgelegt und entsprechen der Richtlinie.

Vor der Probenahme = Hinwägung	Nach der Probenahme = Rückwägung
Konditionierung 48 Stunden + 2 Stunden	Konditionierung 48 Stunden + 2 Stunden
Wiegen der Filter	Wiegen der Filter
nochmals Konditionierung 24 Stunden +2	nochmals Konditionierung 24 Stunden + 2
Stunden	Stunden
Wiegen der Filter und sofort verpacken	Wiegen der Filter

Die Waage steht immer betriebsbereit zur Verfügung. Vor jeder Wägeserie wird die interne Waagenkalibrierung gestartet. Ist alles in Ordnung, wird als Referenzgewicht das Eichgewicht von 200 mg gewogen und die Randbedingungen notiert. Die Abweichungen zur vorhergehenden Wägung entsprechen der Richtlinie und überschreiten die 20 µg nicht (siehe Abbildung 76). Dann werden die sechs Kontrollfilter gewogen. Die Kontrollfilter mit einer Abweichung von über 40 µg werden in der Auswerteseite mit einer Warnung angezeigt und nicht für die Rückwägung verwendet. Für die Rückwägung werden die ersten drei einwandfreien Kontrollfilter genommen, während die anderen sicher in ihren Döschen bleiben, um bei Beschädigungen und/oder größeren Abweichungen der ersten drei Kontrollfilter zum Einsatz zu kommen. Den exemplarischen Verlauf über einen Zeitraum von über vier Monate zeigt Abbildung 77.

Bei der Hinwägung der Filter werden die Filter, die zwischen der ersten und zweiten Wägung eine Differenz von über 40 µg aufweisen, ausgemustert. Bei der Rückwägung werden die Filter mit einer Differenz von über 60 µg normgerecht nicht zur Auswertung genommen.

Seite 228 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Für den Transport von und zu der Messstelle und für die Lagerung werden die gewogenen Filter einzeln in Polystyroldöschen verpackt. Erst vor dem Einlegen in den Filterhalter wird das Döschen geöffnet. Die unbeladenen Filter können im Wägeraum bis zu 28 Tage vor der Probenahme gelagert werden. Sollte dieser Zeitraum einmal überschritten werden, so wird die Hinwägung der Filter wiederholt.

Die Lagerung der beaufschlagten Filter kann bei oder unterhalb von 23 °C max. 15 Tage erfolgen. Die Filter werden bei 7 °C im Kühlschrank gelagert.

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die Auswertung der Filter erfolgt unter Verwendung eines Korrekturterms. Zweck dieser Korrekturrechnung ist es, die relative Masseänderung durch die Wägeraumbedingungen zu minimieren.

Formel :

 $Staub = MF_{rück} - (M_{Tara} \times (MKon_{rück} / MKon_{hin}))$ (F1)

MKon_{hin} = mittlere Masse der 3 Kontrollfilter von 48 h und 72 h Hinwägung

MKon_{rück} = mittlere Masse der 3 Kontrollfilter von 48 h und 72 h Rückwägung

M_{Tara} = mittlere Masse des Filters von 48 h und 72 h Hinwägung

MF_{rück} = mittlere Masse des bestaubten Filters von 48 h und 72 h Rückwägung

Staub = korrigierte Staubmasse auf dem Filter

Es zeigt sich, dass durch die Korrekturrechnung das Verfahren unabhängig von den Wägeraumkonditionen wird. Damit sind die Einflüsse des Wassergehaltes der Filtermasse zwischen beladenen und unbeladenen Filtern kontrollierbar und verändern nicht die Staubgehalte auf den beladenen Filtern. Damit ist der Punkt EN 14907 9.3.2.5 hinreichend erfüllt.

Der exemplarische Verlauf des Eichgewichtes für den Zeitraum von Nov. 2008 bis Feb. 2009 zeigt, dass die zulässige Differenz von 20 µg zur vorhergehenden Messung nicht überschritten wird.

Abbildung 76: Stabilität Eichgewicht

Seite 229 von 431

Seite 230 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 42: Stabilität Eichgewicht

			Differenz zur
			vorhergehenden
Datum	Wägung Nr.	Eichgewicht	Wägung
		g	μg
12.11.2008	1	0,20002	
13.11.2008	2	0,20001	-10
10.12.2008	3	0,20002	10
11.12.2008	4	0,20002	0
17.12.2008	5	0,20003	10
18.12.2008	6	0,20002	-10
07.01.2009	7	0,20001	-10
08.01.2009	8	0,20001	0
14.01.2009	9	0,20000	-10
15.01.2009	10	0,20001	10
21.01.2009	11	0,20001	0
22.01.2009	12	0,20001	0
29.01.2009	13	0,20001	0
30.01.2009	14	0,20000	-10
04.02.2008	15	0,20001	10
05.02.2009	16	0,20001	0
11.02.2009	17	0,20001	0
12.02.2009	18	0,20000	-10
18.02.2009	19	0,20000	0
19.02.2009	20	0,20000	0
26.02.2009	21	0,20000	0
27.02.2009	22	0.19999	-10

Gelb hinterlegt = Mittelwert

Grün hinterlegt = niedrigster Wert

Blau hinterlegt = höchster Wert

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 231 von 431

Abbildung 77: Stabilität der Kontrollfilter

Seite 232 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Tabelle 43: Stabilität der Kontrollfilter

	Kontrollfilter Nr.		
Wägung Nr.	TM1 TM2 TM3		
1	0,09257	0,09155	0,09110
2	0,09258	0,09155	0,09113
3	0,09260	0,09155	0,09115
4	0,09260	0,09157	0,09116
5	0,09262	0,09156	0,09117
6	0,09264	0,09157	0,09116
7	0,09262	0,09154	0,09114
8	0,09260	0,09156	0,09116
9	0,09262	0,09156	0,09113
10	0,09263	0,09160	0,09117
11	0,09263	0,09158	0,09118
12	0,09263	0,09158	0,09117
13	0,09267	0,09160	0,09118
14	0,09265	0,09157	0,09116
15	0,09266	0,09159	0,09119
16	0,09269	0,09162	0,09122
17	0,09268	0,09162	0,09121
18	0,09267	0,09161	0,09121
19	0,09266	0,09161	0,09118
20	0,09268	0,09160	0,09120
21	0,09264	0,09161	0,09117
22	0,09264	0,09159	0,09116
Mittelwert	0,09264	0,09158	0,09117
Standardabw.	3,2911E-05	2,4937E-05	2,8558E-05
rel.	0.000	0.007	0.004
Standardabw.	0,036	0,027	0,031
Median	0.00264	0.00159	0.00117
	0,09204	0,09156	0,09117
höchster	0,09257	0,09104	0,09110
Wert	0,09269	0,09162	0,09122

Gelb hinterlegt = Mittelwert

Grün hinterlegt = niedrigster Wert

Blau hinterlegt = höchster Wert

Seite 233 von 431

B) Standort in Großbritannien (Teddington)

B.1 Umsetzung der Wägeprotokolle

NPL (National Physical Laboratory) wurde beauftragt, die Filter für den Feldtest manuell zu wiegen. Entsprechend der Richtlinie EN14907 wurden die Filter weniger als 28 Tage im Wägeraum gelagert; die Plexiglaskammer, in der der Wiegevorgang stattfand, wurde bei 20 \pm 1 °C und 50 \pm 5 % gehalten; die Filter wurden vor und nach Probenahme zweimal gewogen. Tabelle 44 fasst die Wägebedingungen und Wiegezeiten zusammen:

Tabelle 44: Wägebedingungen und Wiegezeiten

Anfang Probenahme	Ende Probenahme
Lagerung mindestens 48 Stunden	Lagerung 48 Stunden
Filterwägung	Filterwägung
Lagerung 24 Stunden	Lagerung 24 Stunden
Filterwägung	Filterwägung

Zu Beginn jeder Wägereihe wurde die Balkenwaage untersucht, um die mechanischen Steifigkeiten zu entfernen, danach wurde kalibriert. Zu Beginn und zum Ende jeder Filtercharge wurde je ein Prüfgewicht von 50 mg und 200 mg gewogen. Entsprechend der Anforderungen des UK PM Equivalence Report [8] wurden die Filter in Bezug auf ein 100 mg Prüfgewicht und nicht in Bezug auf einen Nullfilter gewogen, da dieser über die Zeit einen Gewichtsverlust hat. Je vier Filter wurden zwischen den Prüfgewichten gewogen, da über diese Zeit die Wägedrift klein ist.

Seite 234 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Die Masse des Prüfgewichts (CM) für die Filter wurde für jede Wägereihe nach der Gleichung E A.1 berechnet

$$CM = \frac{\left(m_{check,Beg} + m_{check,End}\right)}{2}$$
 E A.1

Mit:

M_{check,Beg} = Masse des Prüfgewichts, gewogen direkt vor dem Probenfilter.

M_{check,End} = Masse des Prüfgewichts, gewogen direkt nach dem Probenfilter.

Die Relative Masse (RM) der Filter wurde für jede Wägereihe nach Gleichung E A.2 berechnet: $RM = m_{filter} - CM$ E A.2

Mit:

m_{filter} = Masse des Probenfilters

Die **Partikel Masse (PM)** wird wie in EN 14907 beschrieben nach der folgenden Gleichung berechnet.

$$PM = \left(\frac{RM_{End1} + RM_{End2}}{2}\right) - \left(\frac{RM_{Beg1} + RM_{Beg2}}{2}\right)$$
 E A.3

Mit:

Beg2 kennzeichnet Wägereihe 2, vor Probenahme

End1 kennzeichnet Wägereihe 1, nach Probenahme

End2 kennzeichnet Wägereihe 2, nach Probenahme

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM_{10} Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM_{10} , Berichts-Nr.: 936/21209885/G

Seite 235 von 431

End Streubereich (S_{Pre}), Beg Streubereich (S_{Post}) und Prüfgewicht Streubereich (S_{Blank}) wurden nach den folgenden Gleichungen berechnet:

$$S_{Post} = RM_{End1} - RM_{End2}$$
 E A.5

$$S_{Blank} = \left(\frac{CM_{End2} + CM_{End1}}{2}\right) - \left(\frac{CM_{Anf2} + CM_{Anf1}}{2}\right) \qquad \textbf{E A.6}$$

Wie im UK PM Equivalence Report [8] beschrieben war es nicht möglich, alle Filter wie in EN14907 beschrieben innerhalb des 15-tägigen Zeitfensters zu wiegen.

Allerdings wurden die Filter direkt aus dem Referenzprobenehmer entnommen und in den Kühlschrank gelegt, dadurch war es nicht notwendig zu bestimmen, ob T_{Umgebung} 23 °C überschreitet. 15 Tage erscheinen unpraktikabel für einen relativ kleinen Feldtest Rahmen, es ist wenig wahrscheinlich, dass diese Methode in nationalen und regionalen Netzwerken übernommen wird, die Methode die hier angewendet wurde, ist repräsentativ für den Betrieb der Referenzprobenehmer in der Praxis.

A.2 Analyse des verwendeten Wägeprotokolls

Das Streuverhalten der Anfangs- und Endwiegungen für alle gewogenen EMFAB Filter im Verhältnis zum Taragewicht und zum Prüfgewicht sind in Abbildung 78 dargestellt. Wenn alle Filter während der Messungen an relativer Masse verlieren, wird die Streuung nach rechts verschoben, im Gegenzug wird die Streuung nach links verschoben, wenn die relative Masse der Filter zunimmt. Die EN14907 schreibt vor, dass unbeladene Filter verworfen werden sollen, wenn die Differenz der Masse der zwei Anfangswägungen größer als 40 µg ist. Gleichermaßen schreibt die EN14907 vor, dass Filter, deren Massendifferenz der beiden Endwägungen größer als 60 µg ist, verworfen werden. Es wurden keine Filter aufgrund dieses Kriteriums verworfen. Es gilt als unwahrscheinlich, dass die festgestellten Streuungen der Wiederholungsbestimmungen der Masse einen signifikanten Einfluss auf die Ergebnisse zu haben.

Seite 236 von 431

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Abbildung 78: Streuung der Emfab Filter für (**A**) Anfangswägung m Vergleich zum Prüfgewicht und (**B**) Endwägung im Vergleich zum Prüfgewicht

Bericht über die Eignungsprüfung der Immissionsmesseinrichtung Modell 5030*i* SHARP mit PM₁₀ Vorabscheider der Firma Thermo Fisher Scientific für die Komponente Schwebstaub PM₁₀, Berichts-Nr.: 936/21209885/G

Seite 237 von 431

Anhang 3

Handbuch

Modell 5030*i* SHARP

Bedienungsanleitung Synchronisiertes Hybrid-Echtzeit Staubmessgerät Art.Nr. 108148-00 12 März 2013

© 2011 Thermo Fisher Scientific Inc. Alle Rechte vorbehalten.

Änderungen der Spezifikationen, Bedingungen und Preisgestaltung sind vorbehalten. Eine Verfügbarkeit aller Produkte in allen Ländern ist nicht gegeben. Bezüglich weiterer Details setzen Sie sich bitte mit Ihren örtlichen Vertriebsvertretungen in Verbindung.

Thermo Fisher Scientific Air Quality Instruments 27 Forge Parkway Franklin, MA 02038 1-508-520-0430 www.thermo.com/aqi

Entsprechung der WEEE Richtlinie

Dieses Produkt muss der Europäischen WEEE Richtlinie 2002/96/EWG über die Entsorgung von Elektro- und Elektronik-Altgeräten entsprechen. Das Produkt ist mit dem folgenden Symbol gekennzeichnet:

Thermo Fisher Scientific hat mit einem oder mehreren Recycling-/Entsorgungsfirmen in jedem EU Mitgliedsstaat eine vertragliche Regelung getroffen. Das Produkt sollte demzufolge durch eine dieser Firmen recycled oder entsorgt werden. Weitere Informationen über die Einhaltung dieser Richtlinien durch Thermo Fisher Scientific, über Recycling-Firmen in Ihrem Land und über Thermo Fisher Scientific Produkte, die eine Erkennung von Substanzen erleichtern, die unter die RoHS Richtlinie fallen, erhalten Sie unter: www.thermo.com/WEEERoHS.

Über dieses Handbuch

Dieses Handbuch liefert Ihnen Informationen über Installation, Betrieb, Wartung und Service des Messgeräts vom Typ 5030*i* "Synchronisiertes Hybrid-Echtzeit Staubmessgerät (SHARP)". Es beinhaltet auch wichtige Warnhinweise, um einen sicheren Betrieb zu gewährleisten und Schäden am Gerät vorzubeugen. Um bestimmte Informationen leichter auffinden zu können, finden Sie nachfolgend eine Gliederung der Kapitel und Anhänge, die Ihnen den Zugang zu Informationen bzgl. Betrieb und Service erleichtern soll:

- Kapitel 1 "Einleitung" gibt Ihnen eine Übersicht über die Produktmerkmale, beschreibt die Arbeitsweise des Gerätes und gibt einen Überblick über die Produktspezifikationen.
- Kapitel 2 "Installation" beschreibt die notwendigen Schritte zum Auspacken, Aufstellen und zur Inbetriebnahme des Geräts.
- Kapitel 3 "Betrieb" liefert eine Beschreibung über das Display auf der Gerätevorderseite, das Tastenfeld auf der Gerätevorderseite und die menügesteuerte Firmware.
- In Kapitel 4 "Kalibrierung" werden die Vorgehensweise zur Kalibrierung des Messgeräts sowie das hierzu benötigte Ausrüstung beschrieben.
- Im Kapitel 5 "Präventive Wartung" finden Sie eine Beschreibung der Vorgehensweise zur Wartung, um einen sicheren und zuverlässigen Betrieb des Messgeräts zu gewährleisten.
- Kapitel 6 "Störungssuche und Störungsbeseitigung" liefert einen Leitfaden für die Fehlerdiagnose und Fehlerabgrenzung und gibt Empfehlungen bzw. liefert Vorschläge, wie der ordnungsgemäße Betrieb wiederhergestellt werden kann.
- Kapitel 7 "Service" liefert Sicherheitshinweise für Techniker, die am Gerät arbeiten, schrittweise Anleitungen zur Reparatur bzw. zum Austausch einzelner Komponenten und eine Ersatzteilliste. Hier finden Sie auch alle Kontaktdaten bzgl. technischer Informationen und Support.

	• Kapitel 8 "Systembeschreibung" beschreibt die Funktion und Position der Systemkomponenten, liefert eine Übersicht über die Firmware-Struktur und beschreibt die Systemelektronik sowie Ein- und Ausgänge.
	• Kapitel 9 "Optionale Ausrüstungsteile" gibt einen Überblick über die optional erhältlichen Teile, die zusammen mit dem Messgerät verwendet werden können.
	• Kapitel 10 "Upgrade von Modell 5014i auf 5030i" beschreibt das Upgrade vom Gerätetyp 5014 <i>i</i> auf den Gerätetyp 5030 <i>i</i> .
	 In Anhang A "Gewährleistung" finden Sie eine Kopie der Gewährleistungserklärung.
	• Anhang B <u>"C-Link Protokollbefehle"</u> liefert eine Beschreibung der C-Link Protokollbefehle, die verwendet werden können, um das Messgerät mit Hilfe eines Hosts wie z.B. einem PC oder Messwerterfassungsgerät fernzusteuern.
	• Anhang C "MODBUS Protokol" liefert eine Beschreibung der MODBUS Protokoll-Schnittstelle und wird sowohl über RS-232/485 (RTU Protokoll) als auch über TCP/IP über Ethernet unterstützt.
	• Anhang D "Gesytec (Bayern-Hessen) Protokoll" beschreibt die Gesytec (Bayern-Hessen oder BH) Protokollschnittstelle und wird sowohl über RS-232/485 als auch über TCP/IP über Ethernet unterstützt.
	• Im Anhang E "ESM Protokollbefehle" finden Sie eine Beschreibung der ESM Protokollbefehle (von der vorherigen 5030 Plattform), die verwendet werden können, um das Messgerät mit Hilfe eines Host-Geräts wie beispielsweise einem PC oder Messwerterfassungsgerät fernzusteuern.
Sicherheit	Lesen Sie die nachfolgenden Sicherheitshinweise sorgfältig durch, bevor Sie mit dem Messgerät arbeiten. Dieses Handbuch liefert genaue Informationen darüber, wie das Gerät zu betreiben ist. Kommt jedoch der Analysator auf eine Art und Weise zum Einsatz, die nicht vom Hersteller spezifiziert wurde, dann können Sicherheit und Schutzeinrichtungen des Gerätes negativ beeinflusst werden.
Warnhinweise zur Sicherheit und zu Schäden am Gerät	Dieses Handbuch beinhaltet wichtige Informationen, um Sie auf mögliche Gefahren hinsichtlich Sicherheit und Schäden am Gerät

hinzuweisen. Die folgenden Arten von Warnhinweisen finden Sie in diesem Handbuch.

Beschreibung der Warnhinweise bzgl. Sicherheit und Schäden am Gerät

Warnhinweis		Beschreibung
\triangle	GEFAHR	Es liegt eine Gefährdung vor, die bei Nichtbeachtung dieses Warnhinweises zum Tod oder zu ernsthaften Verletzungen führen kann. •
	ACHTUNG	Es liegt eine Gefahr vor oder eine unsichere Handhabung, die bei Nichtbeachtung dieses Warnhinweises zu ernsthaften Personenschäden bzw. Verletzungen führen kann. •
	VORSICHT	Es liegt eine Gefahr oder ein unsicherer Gebrauch vor, die bei Nichtbeachtung dieses Warnhinweises zu geringeren bis mittleren Personenschäden führen kann. •
\triangle	Schäden am Gerät	Es liegt eine Gefahr oder ein unsicherer Gebrauch vor, die bei Nichtbeachtung dieses Warnhinweises zu Sachschäden führen kann. •

In diesem Handbuch verwendete Warnhinweise bzgl. Sicherheit und Schäden am Gerät

Warnhinweis		Beschreibung
	ACHTUNG	Das Modelll 5030 <i>i</i> wird mit einem 3-pol. Erdungskabel geliefert. Die Erdungseinrichtung darf unter keinen Umständen außer Kraft gesetzt werden.
		Wird das Gerät in einer Art und Weise betrieben, die nicht vom Hersteller spezifiziert wurde, dann können Sicherheit und Schutzeinrichtungen des Gerätes negativ beeinflusst werden. •
		Die in diesem Handbuch beschriebenen Servicearbeiten dürfen ausschließlich von qualifiziertem Servicepersonal durchgeführt werden. •
		Die Detektor-Anordung sollte von einem qualifizierten Techniker getauscht werden,

Warnhinweise zur Sicherheit und zu Schäden am Gerät

Warnhinweis		Beschreibung
		der über ein fundiertes Fachwisen im Bereich Strahlenschutzvorkehrungen verfügt. Entfernt man die Detektor- Anordnung, soll liegt der C-14 Strahler teilweise frei. Während des Austauschs ist daher eine Schutzbrille zu tragen. Die Menge C-14 entspricht den USNRC Bestimmungen als Freigrenze für radioaktive Strahler <100 µCi.
	VORSICHT	Das Detektorfenster ist sehr zerbrechlich und erfordert einen sorgfältigen, vorsichtigen Umgang. Berühren Sie das Fenster nicht und wischen Sie es nicht ab. Berühren Sie die Kabel-Lötstelle (Elektrode) nicht mit bloßen Fingern. Das Fett der Haut kann den Detektor beschädigen.
		Beim Tauschen der Detektor-Anordnung muss eine Schutzbrille getragen werden.
		Geht das LCD Display kaputt, dann vermeiden Sie jegliche Berührung der Flüssigkristalle mit Ihrer Haut oder Kleidung bzw. waschen diese sofort mit Seife und Wasser ab. •
\triangle	Schäden am Gerät	Versuchen Sie niemals, das Meßgerät am Gehäuse oder an externen Anschlüssen hochzuheben. •
		Einige interne Komponenten können durch kleine Mengen statischer Aufladung beschädigt werden. Tragen Sie deshalb beim Arbeiten an solchen Komponenten ein korrekt geerdetes Antistatik- Armband. •
		Ziehen Sie das serielle Kabel ab, bevor Sie einen Wechsel von RS-232 auf RS- 485 vornehmen, um Schäden an Ausrüstungsteilen zu vermeiden, die derzeit an das Messgerät angeschlossen sind.
		Verwenden Sie keine Lösungsmittel oder andere Reinigungsmittel, um das Gehäuse außen zu reinigen. •
		Platte oder Rahmen des LCD-Moduls niemals abnehmen.
		Die Polarisationsplatte des LCD-Moduls ist sehr zerbrechlich, deshalb vorsichtig damit umgehen.

Warnhinweis	Beschreibung
	Die Polarisierungsplatte des LCD-Moduls nicht mit einem trockenen Tuch reinigen, da dadurch die Oberfläche zerkratzt werden könnte. •
	Zum Reinhigen des Moduls keinen Alkohol, Azeton, MEK oder auf Keton- basierende oder aromatische Lösungsmittel verwenden. Stattdessen die Reinigung mit einem weichen Lappen, der mit einem benzinhaltigen Reinigungsmittel befeuchtet ist, durchführen. •
	Das LCD-Modul nicht in der Nähe organischer Lösungsmittel oder korrosiver Gase aufstellen. •
	LCD-Modul nicht schütteln oder stauchen.

Elektrische / Sicherheitszertifizierungen

Dieses Produkt wurde getestet und dokumentiert und entspricht den folgenden U.S. und kanadischen Sicherheitsnormen:

UL Norm 61010-1:2004 2. Ausgabe CAN/CSA C22.2 Nr. 1010-1:2004 2. Ausgabe IEC 61326-2-3: 2006

Thermo Fisher Scientific bescheinigt, dass dieses Produkt im Hinblick auf elektrische Aussendungen und Störfestigkeit in Übereinstimmung mit der EG-Richtline 89/336/EWG arbeitet. Das Gerät entspricht insbesondere den Anforderungen der EN 61326-1:1998 Norm bzgl. Störfestigkeit und Aussendungen. Zusätzlich wurde die Hardware hinsichtlich Personen- oder Brandsicherheit in Übereinstimmung mit der Norm EN61010-1:2001 (Sicherheit) in Erfüllung der EG-Richtlinie 73/23/EWG getestet.

FCC Einhaltung

Jegliche Modifikation oder Veränderung am Gerät, die von der für die Einhaltung der FCC Vorschriften verantwortlichen Partei nicht genehmigt wurde, kann dazu führen, dass die Genehmigung zur Nutzung/Bedienung des Gerätes für den Bediener erlischt.

Hinweis Dieses Gerät wurde gemäß Absatz 15 der FCC Richtlinien geprüft und es wurde befunden, dass das Gerät die Grenzwerte für ein digitales Gerät der Klasse A einhält. Diese Grenzwerte dienen dazu, ein vernünftiges Maß an Schutz gegen schädliche Interferenzen zu bieten, wenn das Gerät in kommerziellem Umfeld betrieben wird. Das Gerät erzeugt, verwendet und kann Energie in Form von Hochfrequenz aussenden. Wenn das Gerät nicht wie im Handbuch beschrieben installiert und verwendet wird, kann dies zu Störungen im Funkverkehr führen. Der Betrieb dieses Gerätes in Wohngebieten führt wahrscheinlich ebenfalls zu schädlichen Interferenzen. In diesem Fall ist der Bediener/Betreiber angehalten, die Beeinträchtigung auf seine Kosten zu beseitigen.•

WEEE Symbol

Das nachfolgende Symbol und die dazugehörige Beschreibung identifizieren die WEEE-Kennzeichnung, die auf dem Gerät aufgebracht und in der Dokumentation verwendet wird.

Symbol Beschreibung

Kennzeichnung elektrischer und elektronischer Ausrüstungsteile, die für elektrische und elektronische Teile gilt, die unter die 2002/96/EC (WEEE) Richtlinie fallen (Richtlinie über Elektro- und Elektronik-Altgeräte), und für Ausrüstung/Gerätschaften, die nach dem 13. August 2005 auf den Markt gekommen sind.

Anlaufstellen bei Fragen

Falls Sie technische Fragen haben oder Unterstützung benötigen, so steht Ihnen hierfür ein weltweites Netz von Vertriebshändlern zur Verfügung. Informationen zu einem Vertriebshändler in Ihrer Nähe erhalten Sie von unserer Niederlassung Europa (in den Niederlanden) unter der Rufnummer:

+31 765795641.

Inhaltsverzeichnis

Chapter 1	Einleitung1-1
-	Funktionsprinzip1-5
	Technische Daten 1-11
Chapter 2	Installation2-1
	Verpackung und Transport 2-1
	Heben2-2
	Entpacken und Überprüfung2-2
	Abnahme und Inbetriebnahme2-3
	Abnahme2-4
	1-Punkt Temperaturüberprüfung2-8
	1-Punkt Überprüfung des Sensors für die rel. Luftfeuchte2-8
	1-Punkt Überprüfung des Luftdrucks2-9
	1-Punkt Überprüfung des Volumenstroms
	Dichtigkeitsprüfung2-11
	Uberprüfung der Nephelometer Lichtquelle2-11
	Nephelometer Nullkontrolle2-11
	Aufstellung2-11
	Einlass-System2-11
	Heizung
	Verlängerung Probenahmerohr 2-15
	Montage in einem Einbaugehäuse (optional) 2-15
	Messgerät installieren 2-15
	Anschluss externer Geräte 2-19
	Klemmleisten-Leiterplatten-Baugruppen 2-19
	I/O Klemmleiste 2-19
	D/O Klemmleiste 2-21
	25-po. Klemmleiste2-23
	Netzanschluss
	Indetriednanme
	Dateninnalt
	Heruntertanren
	wichtige Tipps2-26
Chapter 3	Betrieb3-1
	Display
	Drucktasten3-2
	Soft Keys3-4
	Alphanumerischer Eingabebildschirm

Firmware Ubersicht	3-5
Startbildschirm	 3- 7
Run Screens	 3- 7
"Run" Screen Umgebungsbedingungen	3-8
"Run" Screen Probenahmebedingungen	3-9
"Run"-Screen Massensensordaten	3-9
"Run"-Screen Hybriddaten	3-10
Hauptmenü	3-10
Menü "Range"	3-11
Maßeinheiten Konzentration	3-11
SHARP Bereich	3-13
Kundenspez. Bereich einstellen	3-15
Kundenspez. Bereiche	3-15
Integrationszeit	3-16
24-Std. Mittel	3-17
24-Std. Mittel Startzeit	3-17
Menii "Kalibrierfaktoren"	
Feinstaub-Hintergrund	3-18
Feinstaub-Koeffizient	3-18
SHARP Hintergrund	3-10
SHARP Koeffizient	3-10
Nenhelometer Hintergrundwerte	3-20
Nephelometer Modus	3-20
Werte	2-21
Vorherige Werte wiederherstellen	
Nenhelometer Koeffizient	<u>1</u> ن 2-00
Menji Gerätestellerung"	
Durchfluss/Pumpe einstellen	
Durchfluss	ა <u>-</u> კე ი_ეე
Durchituss	ა <u>-</u> კე ი_ეე
Heizung einstellen	····· 3 ⁻ 23
Staugrung	····· 3 ⁻ 24
Schwallwart rol Luftfouchto	3-24
Schwellwert Ten Lutifeuchte	3-24
Filterband Stouerung	3-25
Manuall	3-25
Manuell	3-20
Massengrenzwert	3-20
	3-20
Zeitraum	3-27
Zanier	3-27
vernaltnis Band/Null	3-28
volumetrische Bedingungen	3-28
1 emperaturausgieicn	3-29
Standardtemperatur	3-29
Druckausgleich	3-29
Standarddruck	3-30

Einstellungen Messwerterfassung	3-30
Srec/Lrec Datensatz auswählen	
Erfasste Daten anzeigen	3-33
Anzahl Datensätze	
Datum und Zeit	
Erfasste Daten löschen	3-34
Inhalt auswählen	
Felddaten auswählen	3-36
Konzentrationen	3-36
Andere Messungen	
Analogeingänge	
Inhalt speichern	
Inhalt auf Standardeinstellung zurücksetzen	
Messwerterfassung konfigurieren	
Erfassungsperiode in Minuten	
Speicherzuordnung in Prozent	
Datenaufbereitung	
Daten Flag-Status	
Einstellungen Kommunikation	
Serielle Einstellungen	
Baudrate	
Databits	
Parität	
Stopbits	
RS-232/RS-485 auswählen	
Gerätekennnummer (ID)	
Gesvtec Seriennummer	
Kommunikations-protokoll	
Streaming-Daten konfigurieren	
Streaming-Daten Intervall	
Streaming-Daten auswählen	
Konzentrationen	
Andere Messungen	
Analogeingänge	
TCP/IP Einstellungen	
DHCP Protokoll verwenden	
IP Addresse	
Netzmaske	
Standard-Gateway	
Host Name	
NTP Server	
I/O Konfiguration	
Einstellungen Ausgangsrelais	
Logischer Zustand	
Gerätezustand	
Alarme	
	0.00

Kein Alarme	
Einstellungen Digitaleingänge	
Logischer Zustand	3-60
Geräteaktion	3-60
Analogausgang konfigurieren (Kanäle auswählen)	3-61
Werte über/unter Messbereich zulassen	3-61
Analogausgang konfigurieren (Aktion auswählen)	
Bereich auswählen	
Minimum und Maximum	
Signal zu Ausgang wählen	
Analogeingänge konfigurieren	
Deskriptor	
Einheiten	
Dezimalstellen	
Anzahl Tabellenpunkte	
Tabellenpunkte	
Volts	
Benutzerwert	
Bildschirmkontrast	
Service Modus	
Datum/Zeit	
zeitzone	
Menii "Diagnose"	
Programm-Versionen	
Spannungen	
Spannungswerte Motherboard	
Spannungen Interface-Karte	
Spannungen I/O Board	
Spannungen Detector Board	
Spannungen Nephelometer-Karte	
Rel. Luftfeuchte/ Temperatur	
Druck/Vakuum.	
Durchfluss	
Detektorstatus	
Nephelometer Status	
CRn	
Anzeigewerte Analogeingänge	
Spannungswerte Analogeingänge	3-80
Digitaleingänge	3-81
Relaisstatus	
Analogausgänge testen	
Analogausgänge einstellen	3-82
Gerätekonfiguration	3-83
Kontaktinformation	3-83
Menü "Alarm"	
Gerätealarm	3-84

Filterbandzähler	3-85
Max. Filterbandzähler	3-85
Detektoralarme	3-86
Min. und max. Alpha-Alarm	3-86
Min and Max Beta Alarm	3-87
Nephelometer Alarm	3-87
Nephelometer Temperatur	. 3-88
Min. und max. Grenzwerte Nephelometer Temperatur.	. 3-88
Nephelometer relative Luftfeuchte	3-89
Min. und max. Grenzwerte für rel. Luftfeuchte Nephelo	meter3-89
LED Strom	. 3-90
Min. und max. Grenzwerte LED-Strom	. 3-90
Spannung Referenzdetektor	3-91
Alarm rel. Luftfeuchte/ Temperatur	3-91
Rel. Luftfeuchte Umgebungsluft	3-92
Min. und max. Grenzwerte rel. Luftfeuchte	3-92
Rel. Luftfeuchte Probe	3-92
Min. und max. Grenzwerte rel. Luftfeuchte Probe	3-93
Umgebungstemperatur	3-93
Min. und max. Grenzwerte Umgebungstemperatur	3-94
Durchflusstemperatur	3-94
Min. und max. Grenzwerte Durchflusstemperatur	3-95
Platinentemperatur	3-95
Min. und max. Grenzwerte Platinentemperatur	3-96
Druck-/Vakuum- Alarm	3-96
Luftdruck	3-97
Min. und max. Grenzwerte Luftdruck	3-97
Vakuum	3-98
Min. und max. Grenzwerte Vakuum	3-98
Durchfluss	3-99
Min. und max. Grenzwerte Durchfluss	3-99
Durchfluss-Alarm	3-100
Durchfluss	3-100
Min. und max. Grenzwerte Durchfluss	3-101
Konzentrations- Alarm	3-101
Durchschnittl. Feinstaub-Konzentration	3-101
Min. und max. Grenzwerte für momentane Feinstaub-	
Konzentration	3-102
Durchschnittl. SHARP Konzentration	3-102
Min. und max. Grenzwerte für durchschnittl. SHARP-	
Konzentration	3-103
Durchschnittl. Nephelometer- Konzentration	3-103
Min. und max. Grenzwerte für durchschnittl. Nephelom	ieter-
Konzentration	3-104
Momentane Feinstaub-Konzentration	3-104
Min. und max. Grenzwerte für momentane Feinstaub-	
---	---------
Konzentration	. 3-105
Momentane SHARP-Konzentration	. 3-105
Min and Max Instant SHARP Concentration Limits	. 3-106
Momentane Nephelometer-Konzentration	. 3-106
Min. und max. Grenzwerte für momentane Nephelome	eter-
Konzentration	. 3-107
Service Menü	. 3-107
Rel. Luftfeuchte / Temperatur kalibrieren	. 3-108
Umgebungstemperatur	. 3-108
Durchflusstemperatur	. 3-109
Rel. Luftfeuchte Umgebungsluft	. 3-109
Druck/Vakuum kalibrieren Luftdruck kalibrieren	3-110
Luftdruck kalibrieren	3-110
Luftdruck-Offset kalibrieren	3-111
Luftdruck-Messbereich kalibrieren	3-111
Standardmäßige Kalibrierung wiederherstellen	3-112
Vakuum/Durchfluss kalibrieren	3-112
C Vakuum-/Durchfluss-Offset kalibrieren	3-113
Vakuumdruck-Bereich kalibrieren	3-113
Durchflussdruck-Bereich kalibrieren	
Standardmäßige Kalibrierung wiederherstellen	
Durchfluss kalibrieren	3-115
Autom. Kalibrierung des Durchflusses	3-115
Manuelle Kalibrierung des Durchflusses	
Masse kalibrieren	
Thermischer Massenkoeffizient	3-118
Vakuum-Massenkoeffizient	3-118
Barometer Massenkoeffizient	3-118
Massenkoeffizient	3-119
Autom. Massenkoeffizient	3-119
Manueller Massenkoeffizient	. 3-120
Alpha-Effizienzkoeffizient	. 3-120
Detektor kalibrieren	3-121
Autom. Kalibrierung des Detektors	3-121
Manuelle Kalibrierung des Detektors	. 3-122
Beta/Ref/Alpha Zählimpulse	3-12
Hochspannung	. 3-122
Beta Ref Schwellwert	. 3-123
Alpha Schwellwert	. 3-123
Nephelometer kalibrieren	. 3-124
Nephelometer - Rel. Luftfeuchte	. 3-124
Nephelometer- Temperatur	. 3-124
Nephelometer Quellenpegel	. 3-125
Analogausgänge kalibrieren	. 3-125
Null-Kalibrierung Analogausgang	. 3-126

	Skalenendwert-Kalibrierung Analogausgang	3-126
	Analogeingänge kalibrieren	3-127
	Null-Kalibrierung Analogeingang	3-128
	Skalenendwert-Kalibrierung Analogeingang	3-128
	Display Pixel Test	3-129
	Benutzer-Standardwerte wiederherstellen	3-129
	Werksseitige Standardwerte wiederherstellen	3-129
	Passwort-Menü	
	Passwort einrichten	
	Gerät sperren	3-131
	Verriegeln/entriegeln und lokaler-/Fernbetrieb	3-131
	Passwort ändern	3-132
	Passwortschutz entfernen	3-132
	Gerät entriegeln	3-132
		0 -0-
Chanter 4	Kalibrierung	4-1
Unapter 4	Häufigkeit der Kalibrierung	/-1
	Benötigte Ausrüstung	/-9
	Vorkalibrierung	
	Kalibriervorgang	ن ۲۰۰۰۰۰4 ی ۲-۹
	Rel Luftfeuchte / Temperatur kalibrieren	·····4-3
	Umgehungstemperatur	·····4-4 4-4
	Rel Luftfeuchte Umgebungsluft	·····4-4 4-4
	Durchflusstemperatur	
	Druck/Vakuum kalibrieren	·····4-5 4-6
	Luftdruck kalibriaran	4-0
	Vakuum / Durchfluss auf null kalibrieren	4-0 4-6
	Vakuum-Messherejeh kalibriaren	4-0 4-7
	Nakuuni-messbereich kalibrieren	/-4-/ 1-8
	Durchfluss kalibrieren	4-0 4-0
	Autom Durchflusskalibrierung	·····4 9 4-0
	Masse kalibrieren	·····4-9 4-0
	Massenkoeffizient	······4 9 /_11
	Autom Massenkoeffizient	۱۱ ۲۰۰۰۰۰ 11_۸
	Detektor kalibrieren	4-11 1_1_1
	Autom Detektorkalibrierung	+14-14 م-15
	Nenhelometer kalibrieren	······ 4 13 4-15
	Rel Luftfeuchte des Nenhelometers	4-13 1-16
	Nenhelometer- Temperatur	4 10 1-16
	Nenhelometer Quellennegel	····· 4 10 1-17
	replicionieter Quenenpeger	4-1/
Chapter 5	Bröventive Wertung	E 4
Chapter 5	Flaventive waitung	
	Sichernensmadhannnen	
	Ersatztelle	
	Genauseaudenseite reinigen	5-2

	Einlässe reinigen	
	U.S. EPA PM10 Einlass	
	Europäischer PM10/PM2.5 Einlass	
	Zyklon warten	
	Heizung und Probenahmerohr	
	Wetterfeste Ausrüstung	
	Lüfterfilter prüfen und reinigen	
	Pumpe erneuern	
	Dichtigkeitsprüfung	
	Filterband tauschen	
	Nocke schmieren	
	Externer Pumpenabgasfilter	5-10
	SHARP Optik-Baugruppe reinigen	5-12
Chapter 6	Störungssuche und Störungsbeseitigung	6-1
•	Vorbeugende Sicherheitsmaßnahmen	6-1
	Leitfäden zur Störungsbehebung	6-2
	Schaltpläne auf Platinenebene	6-11
	Beschreibung Pinbelegung	6-13
	Service Standorte	6-29
Chapter 7	Service und Wartung	7-1
	Vorbeugende Sicherheitsmaßnahmen	
	Firmware Updates	
	Aufrufen des Service-Modus	
	Ersatzteilliste	
	Kabelliste	
	Komponenten zum Anschluss externer Geräte	
	SHARP Optik-Baugruppe entfernen	
	Messgehäuse entfernen und Trennwand absenken	
	Sicherung tauschen	7-16
	Lüfter / Filter tauschen	7-16
	Detektor-Verstärker-Baugruppe tauschen	
	Detektor-Verstärker-Platine kalibrieren	7-19
	Externe Pumpe tauschen	
	Druckplatine tauschen	
	Druck-Platine kalibrieren	
	Analogausgänge testen	
	Analogausgänge kalibrieren	
	Analogeingänge kalibrieren	
	ingangskanäle auf o V kalibrieren	
	Eingangskanäle auf Skalenendwert kalibrieren	
	Thermistor tauschen	7-31
	I/O Erweiterungskarte tauschen (optional)	

	Motherboard tauschen	7-35
	Mess-Interface-Karte tauschen7	7-36
	Photo-Interrupt-Karte tauschen	7-37
	Proportionalventil tauschen7	7-38
	Detektor-Baugruppe tauschen7	7-40
	Durchfluss-RTD-Element tauschen	7-42
	Transformator tauschen	7-43
	Radiusrohr tauschen	7-44
	Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)"	
	tauschen	7-45
	Frontplatten-Karte tauschen	7-47
	LCD Modul tauschen7	7-48
	SHARP Optik-Abdeckung entfernen	7-50
	Externes Magnetventil tauschen	7-51
	SHARP Sensor für rel. Feuchte/Temp. tauschen	7-52
	SHARP Interfacekarte tauschen	7-53
	Delrin Mutter tauschen	7-56
	Interne SHARP Kabelbaugruppe tauschen	7-59
	Gehäusekabel tauschen	7-60
	Externer Nullpunkt-Rückstellungs-Filter	7-61
	Service Standorte	7-62
Chapter 8	Systembeschreibung	.8-1
•	Hardware	. 8-1
	Nephelometer-Baugruppe	.8-4
	Hauptmesskop	.8-4
	Detektorverstärker	.8-4
	Nocken-Photo-Interrupt-Karte	.8-4
	Zählrad-Interrupt-Karte	.8-4
	Proportional ventil	.8-4
	Nockenmotor	-/
	Bandmotor	8-5
	Druckplatine	.0 J 8-5
	Externer Magnet	8-5
	T-Stück Pumpenansaugöffnung	.0 5 8-5
	Firmware	.0-5 8-5
	Stauering des Ceräts	.0-5 8_r
	Sicuci ung des Gerais	.0-5 8 6
	Vommunikation mit den Ausgöngen	0-0.
	Electronil	0-0
	Mothorboard	0-0.
	Moulerpoaru	.0-'/
	Nephelometer interface-Karte	0-0
	Steckverbindungen Nephelometer Interface-Karte	8-8
	Mess-Interface-Karte	8-8
	Steckverbindungen auf der Mess-Interface-Karte	8-8
	Durchtlusssensor-System	.8-0

	Drucksensor-Baugruppe	8-9
	Detektorverstärker-Baugruppe	
	Digitale Ausgangskarte	
	I/O Erweiterungs-Karte (Optional)	
	Frontplatten-Anschluss-Karte	
	I/O Komponenten	
	Analoge Spannungsausgänge	
	Analog Spannungsausgänge (Optional)	8-11
	Analoge Spannungseingänge (Optional)	8-11
	Digitale Relais-Ausgänge	8-11
	Digitale Eingänge	
	Serielle Ports	
	RS-232 Anschluss	
	RS-485 Anschluss	
	Ethernet Anschluss	
	Steckverbindung für externes Zubehör	
	0	
Chanter 9	Ontionale Ausrüstungsteile	9-1
onaptor o	Einlass-Baugruppen	0-1
	Verlängerungen Probenahmerohr	0-1
	I/O Erweiterungs-Karten-Baugrunne	
	25-nol Klemmlatten-Baugruppe	
	Klemmleiste und Kabelsets	0-2
	Kahel	0-2
	Montageoptionen	0-4
	Dachflansch-Anordnung	0-8
	Duchinansen Thiorenang	
Chapter 10	Ungrade von Modell 501/i auf 5030i	10-1
Chapter 10	Gerät vorhereiten	10-1
	SHARD Anschlusskonsole installieren	10-1 10-2
	Radiusrohr-Adapter installieren	
	Externes SHARD Ventil installioren	
	SHARP-Ontik-Baugruppe installieren	/-10 10-10
	Ungrade der Heizungsrohr-Baugruppe	10-10 10-19
	Modellaufklaber tauschen	10-12 10-14
	Gerät einschalten	10-14 10-15
Appendix A	Gewährleistung	A-1
	-	
Appendix B	C-Link Protokollbefehle	B-1
••	Geräte- Identifikations nummer	B-2
	Befehle	B-2
	Befehlsliste	B-3
	Messungen	B-13
	Alarme	B-16

	Diagnose	B-27
	Messwerterfassung	B-31
	Kalibrierung	B-39
	Tasten/Display	B-51
	Konfiguration der Messungen	B-52
	Hardware Konfiguration	B-58
	Konfiguration d. Kommunikation	B-61
	I/O Konfiguration	B-68
	Definition Datensatz-Layout	B-74
	Format Spezifikationselement für ASCII Antworten	B-75
	Format Spezifikationselement für binäre Antworten	B-75
	Format Spezifikationselement für Erec Lavout	B-76
	Text	B-76
	Werte-String	B-76
	Werte-Quelle	B-77
	Alarm Information	B-77
	Translationstabelle	
	Auswahltabelle	B-78
	Tastenhezeichnung	B 70 B-78
	Reisniele	D 70 B-70
	Deloptere	
Annendix C	MODBUS Protokoll	C-1
	Serielle Kommunikationsparameter	C-1
	TCP Kommunikationsparameter	с 1 С-2
	Definition Anwendungsdateneinheit	С-2 С-2
	Slave Adresse	С-2 С-2
	MBAP Header	С-2 С-2
	Funktionscode	ი. C-ა
	Daten	ი C-ა
	Fehler-Check	ი C-ა
	Funktionscodes	ر C-4
	(0v01/0v02) Ausgänge lesen/Fingänge lesen	C-4 C-4
	(0x01/0x02) Ausgange resen/ Emgange resen	······· 0-4
	(0v02/0v04) Ausgangsdaten lesen/Fingangsdaten les	en C-6
	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les	sen C-6
	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben)	sen C-6 C-7
	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter	sen C-6 C-7 C-9
Annondix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter	sen C-6 C-7 C-9
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll	sen C-6 C-7 C-9 D-1
Appendix D	 (0x03/0x04) Ausgangsdaten lesen/Eingangsdaten lesen/E	sen C-6 C-7 C-9 D-1
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter	sen C-6 C-7 C-9 D-1 D-2
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter Geräteadresse	sen C-6 C-7 C-9 D-1 D-2 D-2
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter Geräteadresse Verwendete Abkürzungen	sen C-6 C-7 C-9 D-1 D-2 D-2 D-2
Appendix D	 (0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter Geräteadresse	sen C-6 C-7 C-9 D-1 D-2 D-2 D-2 D-3
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter Geräteadresse Verwendete Abkürzungen Grundlegende Befehlsstruktur Zeichen für Blockchecksumme <bcc></bcc>	sen C-6 C-7 C-9 D-1 D-1 D-2 D-2 D-2 D-3 D-3
Appendix D	(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten les (0x05) Einz. Ausgang forcen (schreiben) Unterstützte MODBUS Parameter Gesytec (Bayern-Hessen) Protokoll Serielle Kommunikations-parameter TCP Kommunikations-parameter Geräteadresse Verwendete Abkürzungen Grundlegende Befehlsstruktur Zeichen für Blockchecksumme <bcc> Gesytec Befehle</bcc>	sen C-6 C-7 C-9 D-1 D-1 D-2 D-2 D-2 D-3 D-3 D-3

	Datenabfragebefehl (DA)	D-4
	Messwerte als Antwort auf einen DA Befehl .	D-8
	Betriebs- und Fehlerstatus	D-9
		-
Appendix E	ESM Protokollbefehle	E-1
••	Unterstützte ESM Befehle	E-1

Abbildungen

Abb. 1–1. Weg der Probe im SHARP Monitor	1-5
Abb. 1-2. Nephelometer Probenahme und Null-Durchfluss	
(schematische Darstellung)	1-7
Abb. 2–1. Verpackungsmaterial entfernen	2-3
Abb. 2–2. Modell 5030 <i>i</i> Probenahme aus der Raumluft unt	er
stabilen Bedingungen	2-8
Abb. 2–3. Modell 5030 <i>i</i> Seitenansicht—Zoll [Millimeter]	2-12
Abb. 2–4. Modell 5030 <i>i</i> Draufsicht – Zoll [Millimeter]	2-13
Abb. 2–5. Modell 5030 <i>i</i> Senkrechte Ansicht	2-14
Abb. 2–6. Baugruppe Heizung	2-16
Abb. 2–7. Verrohrung auf der Geräterückseite – schematis	che
Darstellung	2-18
Abb. 2–8. Ansichten I/O Klemmleiste	2-20
Abb. 2–9. Pins Steckverbindung Geräterückseite	2-21
Abb. 2–10. Ansichten D/O Klemmleiste	2-22
Abb. 2–11. Ansichten 25-pol. Klemmleiste	2-23
Abb. 3–1. Front Panel Display	3-2
Abb. 3–2. Drucktasten auf der Gerätevorderseite	3-2
Abb. 3–3. Flussdiagram – menügesteuerte Firmware	3-6
Abb. 3–4. Pinbelegung d. Steckverbinders auf der	
Geräterückseite	3-14
Abb. 3–5. Allgemeine Flags	3-39
Abb. 3–6. Flags Detektor A	3-39
Abb. 4–1. Differenzdruck und Vakuumkalibrierports	4-7
Abb. 5–1. U.S. EPA PM ₁₀ Einlass	5-3
Abb. 5–2. Europäischer PM ₁₀ Einlass	5-4
Abb. 5–3. PM _{2.5} Sharp-Cut Zyklon	5-5
Abb. 5–4. Lüfter prüfen und reinigen	5-7
Abb. 5–5. Filterband tauschen	5-9
Abb. 5–6. Externen Pumpenabgasfilter tauschen	5-11
Abb. 6–1. Schaltplan auf Platinenebene - gesamte Elektron	nik6-11
Abb. 6-2. Schaltplan auf Platinenebene - Messsystem	6-12
Abb. 6-3. Schaltplan auf Platinenebene - SHARP	6-13
Abb. 7–1. Korrekt geerdetes Antistatik-Armband	7-5
Abb. 7–2. Modell 5030 <i>i</i> – Anordnung der Komponenten	7-11
Abb. 7–3. SHARP – Anordnung der Optik-Komponenten	7-12

Abb. 7-4. SHARP Optik-Baugruppe entfernen
Abb. 7–5. Messgehäuse entfernen und Trennwand absenken7-14
Abb. 7–6. Lüfter tauschen
Abb. 7-7. Detektor-Verstärker-Baugruppe tauschen
Abb. 7–8. Pumpe tauschen
Abb. 7–9. Druck-Platinen-Baugruppe tauschen
Abb. 7–10. Leitungsanschlüsse der Druck-Platinen-Baugruppe
tauschen7-23
Abb. 7–11. Analoge Eingangs- und Ausgangspins auf der
Geräterückseite
Abb. 7–12. Thermistor tauschen
Abb. 7–13. I/O Erweiterungskarte tauschen (optional)
Abb. 7–14. Anschlüsse auf der Geräterückseite
Abb. 7–15. Mess-Interface-Karte tauschen
Abb. 7–16. Photo-Interrupt-Karte tauschen
Abb. 7–17. Proportionalventil tauschen
Abb. 7–18. Detektor-Baugruppe tauschen
Abb. 7–19. RTD-Element tauschen
Abb. 7–20. Transformator tauschen
Abb. 7–21. Radiusrohr tauschen
Abb. 7–22. Baugruppe "Rel. Feuchte / Temperatur" tauschen 7-47
Abb. 7–23. Frontplatten-Karte und LCD-Modul tauschen 7-48
Abb. 7–24. Abdeckung der SHARP-Optik entfernen
Abb. 7–25. Externes Magnetventil tauschen7-52
Abb. 7-26. "Rel. Feuchte/Temp" - Steckverbinder entfernen 7-53
Abb. 7–27. Anschlüsse SHARP Interfacekarte
Abb. 7–28. SHARP Optik-Karte tauschen7-56
Abb. 7–29. Delrin-Mutter tauschen
Abb. 7–30. Interne SHARP Kabelbaugruppe tauschen
Abb. 7-31. Gehäusekabel tauschen
Abb. 7-32. Ext. Nullpunkt-Rückstellungs-Filter tauschen 7-62
Abb. 8–1. Modell 5030 <i>i</i> Hardware-Komponenten
Abb. 8-2. SHARP Optik-Komponenten
Abb. 9–1. Montage auf Arbeitsfläche oder Werkbank
Abb. 9-2. Montage in einem EIA-Rack
Abb. 9-3. Montage in einem Umbau-Rack
Abb. 9-4. Baugruppe Rack-Montage (Option)9-7
Abb. 9–5. Dachflansch-Anordnung
Abb. 9-6. Befestigung des Dachflanschs
Abb. 10–1. SHARP-Optik - Anschlusskonsole 10-2

Abb. 10–2. Aufnahmespule für Filterband entfernen
Abb. 10–3. Verlauf des Filterbands
Abb. 10-4. Anschlusskonsole mit Mess-Interface-Karte verkabeln10-5
Abb. 10–5. Radiusrohr-Adapter installieren
Abb. 10–6. Ausrichtung des Adapters prüfen10-6
Abb. 10–7. Ventil-Baugruppe installieren
Abb. 10–8. Verrohrung (schematische Darstellung)10-9
Abb. 10–9. Optik installieren10-10
Abb. 10–10. Optik an Optik-Steckverbindung anschließen10-11
Abb. 10–11. Upgrade -5030 <i>i</i> Heizungs-Baugruppe
Abb. 10–12. Heizung an Abdeckung der Optik-Baugruppe
befestigen10-14
Abb. 10–13. Aufkleber auf Gerätevorderseite tauschen 10-14
Abb. B–1. Flag-Feld B-14

Abbildungen

Tabellen

Tabelle 1–1. Modell 5030i – Technische Daten
Tabelle 2–1. Umrechnung Druckeinheiten 2-7
Tabelle 2–2. I/O Klemmleiste - Pinbelegung2-20
Tabelle 2–3. Standard Analogausgänge 2-21
Tabelle 2–4. D/O Klemmleiste – Beschreibung der Pinbelegung2-22
Tabelle 2–5. 25-pol. Klemmleiste – Beschreibung Pinbelegung2-23
Tabelle 3–1. Drucktasten auf der Gerätevorderseite3-3
Tabelle 3–2. Standard-Messbereiche 3-13
Tabelle 3–3. Standard-Analogausgänge 3-15
Tabelle 3–4. Analogausgänge – Null bis Skalenendwert3-63
Tabelle 3–5. Auswahl Signaltypen
Tabelle 6–1. Störungsbehebung – Allg. Leitfaden6-3
Tabelle 6–2. Störungsbehebung - Alarmmeldungen 6-7
Tabelle 6–3. Motherboard – Pinbelegung Stecker 6-13
Tabelle 6–4. Mess-Interface-Karte – Pinbelegung Stecker6-18
Tabelle 6–5. Frontplatten-Karte – Pinbelegung Stecker6-23
Tabelle 6–6. I/O Erweiterungskarte (optional) – Pinbelegung
Stecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker 6-27 Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker 6-27
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker 6-27 Tabelle 6–8. SHARP Mess-Interface-Karte – Pinbelegung Stecker 6-28
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27 Tabelle 6–8. SHARP Mess-Interface-Karte – Pinbelegung Stecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27Tabelle 6–8. SHARP Mess-Interface-Karte – PinbelegungStecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27Tabelle 6–8. SHARP Mess-Interface-Karte – PinbelegungStecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27Tabelle 6–8. SHARP Mess-Interface-Karte – PinbelegungStecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27Tabelle 6–8. SHARP Mess-Interface-Karte – PinbelegungStecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker6-27Tabelle 6–8. SHARP Mess-Interface-Karte – PinbelegungStecker
Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker

Tabelle B-4. Streamzeitwerte	B-39
Tabelle B–5. Standard-Bereiche	B-56
Tabelle B–6. Kontrasteinstellungen	B-58
Tabelle B-7. Befehle zulassen / ignorieren - Werte	B-64
Tabelle B-8. Antwort-Abschlussformate	B-65
Tabelle B-9. Layoutbestätigungswerte setzen	B-67
Tabelle B-10. Werte - Power-Up Modus	B-68
Tabelle B-11. Analoge Stromausgänge - Bereichswerte .	B-69
Tabelle B-12. Analoge Spannungsausgänge - Bereichsw	/erteB-70
Tabelle B-13. Default-Zuordnungen der analogen	
Ausgangskanäle	B-72
Tabelle C–1. Register lesen - Modell 5030i	C-9
Tabelle C-2. Ausgänge lesen - Modell 5030i	C-10
Tabelle C–3. Ausgänge schreiben - Modell 5030 <i>i</i>	C-12
Tabelle D-1. Betriebstsati – Modell 5030i	D-9
Tabelle D-2. Fehlerstati - Modell 5030i	D-9
Tabelle E–1. Lesebefehle 5030i	E-1
Tabelle E-2. Schreibbefehle 5030i	E-2
Tabelle E–3. Steuerbefehle für Modell 5030i	E-3

Chapter 1 Einleitung

Das synchronisierte Hybrid-Echtzeit Staubmessgerät SHARP, Modell 5030*i*. ist ein Hybrid-Staubmessgerät, das nach dem Nephelometer-/ Radiometer-Prinzip arbeitet. Das Gerät liefert exakte, minütliche Echtzeit-Messergebnisse mit beispielhaft guter Nachweisgrenze. Das SHARP Staubmessgerät misst die Massenkonzentration von in der Umgebungsluft befindlichen PM10-, PM2.5- und PM1.0-Aerosolen in Echtzeit. Das Gerät verfügt über ein hochempfindliches Lichtstreuungsphotometer, dessen Ausgangssignal fortlaufend auf die zeitlich gemittelten Messungen eines integrierten Beta-Abschwächungs-Massenmessers referenziert wird (wie für das Modell 5014i Beta entwickelt). Mit dem System wird eine bislang unerreichte Kurzzeit-Genauigkeit und Präzision erzielt. Das SHARP Staubmessgerät verfügt über hochentwickelte Firmware zur Optimierung der kontinuierlichen Massenkalibrierung des nephelometrischen Signals, wobei sichergestellt ist, dass die gemessene Massenkonzentration von Änderungen in der Partikelpopulation, aus der Proben genommen werden, unabhängig bleibt.

Das SHARP Messgerät verfügt über ein dynamisches Heizungssystem (DHS), das entwickelt wurde, um die relative Luftfeuchtigkeit der durch das Filterband der radiometrischen Stufe strömenden Luft deutlich unterhalb der benutzerdefinierten Schwelle gehalten wird, d.h. typischerweise unter dem Punkt, an dem die gesammelten Partikel aneinander haftenbleiben und flüssiges Wasser aufstauen. Dieses dynamische Heizungssystem (DHS) minimiert den internen Temperaturanstieg, indem es nicht heizt, wenn die relative Feuchte der Umgebungsluft unterhalb des Grenzwerts liegt, auf den die Heizung eingestellt ist. Wenn die relative Feuchte der Umgebungsluft den Grenzwert überschreitet, wird die eingeschaltete Heizung optimiert, um den Grenzwert für die relative Luftfeuchtigkeit über dem Probenahme-Filterband aufrecht zu halten. Dieses Heizsystem ist speziell dafür ausgerichtet, dass der kontinuierliche, radiometrische Massenmesser mit der gravimetrischen Referenzmethode und den Bedingungen im Hinblick auf relative Luftfeuchtigkeit übereinstimmt, auf die die Referenzfilter-Proben

konditioniert sind. Außerdem bietet die Firmware ausreichend Flexibilität, um die Heizbedingungen so zu konfigurieren, dass weltweiten Messnetzanforderungen entsprochen werden kann.

Der Messbereich des Modells 5030i liegt zwischen 0 und 10.000 μ g/m³.

Eine vollständige Staubmessgerät-Anordnung besteht aus den folgenden Hauptkomponenten.

- SHARP Optik-Modul
- SHARP Beta-Modul
- Einlass-System zur Probenahme aus der Umgebungsluft (PM₁₀, PM_{2.5}, PM_{1.0})
- Dynamische Heizung
- Diaphragma-Vakuumpumpe
- Externe Umgebungstemperatur- /Luftfeuchte Sensorbaugruppe
- Interne Datenaufzeichnungseinheit und externe Kommunikationsports
- Optionale ca. 1,80 m lange Verlängerungsrohre für die Probenahme
- Optionales Stativ
- Optionales Set zur Dachmontage

Das Modell 5030*i* kombiniert bewährte Technologie, eine einfach zu bedienende, menügeführte Firmware und erweiterte Diagnosefunktionen, um unübertroffene Flexibilität und Zuverlässigkeit zu gewährleisten. Das Modell 5030*i* bietet folgende Eigenschaften:

- 320 x 240 pixel Grafik-Display
- Menügeführte Firmware
- Feldprogrammierbare Bereiche
- Zahlreiche, benutzerdefinierte Analogausgänge
- Analogeingangsoptionen
- Linearität über alle Bereiche
- Vom Bediener auswählbare, digitale Eingangs-/Ausgangsmöglichkeiten

- Standard-Kommunikationseigenschaften incl. RS-232/485 und Ethernet
- C-Link, MODBUS, Geysitech (Bayern-Hessen), ESM Protokoll, Streaming-Daten und NTP (Network Time Protocol) Protokolle. Gleichzeitige Verbindungen von verschiedenen Standorten über Ethernet.
- Radon-Aktivitätsmessung (Rn-222; Edelgas) und Massenveredelung
- Flexible Konfigurationen zur Speicherung von Daten
- Volumetrische Luftdurchsatzsteuerung / -regelung mit Konzentrationsdatenausgabe unter aktuellen Standardbedingungen
- Prozessor-gesteuerte Kalibrierung aller Sensoren
- 880 nm Lichtstreuungs-Nephelometer
- Lebensdauer des Beta-Detektors ca. ~10 Jahre
- C-14 Aktivität unter in den USA zugelassenen Grenzwerten; versandt als Nicht-Gefahrgut gemäß UN-Nr. 2911; leichte Handhabung von Strahler und Messgerät. In den meisten Ländern keine Lizenz notwendig.

Weiterführende Informationen und Details zum Funktionsprinzip und Produktdaten finden Sie in den Abschnitten:

- "Funktionsprinzip" auf Seite 1-5
- "Technische Daten" auf Seite 1-11

Thermo Fisher Scientific freut sich, seinen Kunden dieses System zur kontinuierlichen Messung von Aerosolen in der Umgebungsluft anbieten zu können. Thermo hat sich auf die Herstellung von Messinstrumenten spezialisiert, die im Hinblick auf Qualität, Leistung und Verarbeitung höchsten Standards entsprechen. Das Servicepersonal unserer Firma steht Ihnen selbstverständlich gerne zur Verfügung, falls beim Gebrauch des Geräts Fragen oder Probleme jeglicher Art auftreten sollten. Weitere Informationen zum Service finden Sie im Kapitel "Service".

Funktionsprinzip

Das Modell 5030*i* basiert auf dem Prinzip der Aerosol-Lichtstreuung (Nephelometrie) und der Beta-Abschwächung (Modell 5014*i* Beta) zur exakten und präzisen Messung von Aerosolkonzentrationen in der Umgebungsluft. Den Weg, den die Aerosolprobe innerhalb des Geräts vom Typ 5030*i* SHARP nimmt, finden Sie in Abb. 1–1.

Abb. 1–1. Weg der Probe im SHARP Monitor

Die Optikbaugruppe des SHARP misst das Licht, das durch das Aerosol gestreut wird, welches einen 880 nm-Lichtstrahl passiert. Das nephelometrische Ansprechverhalten ist linear zur Aerosolkonzentration, jedoch unabhängig von der Probendurchflussrate. Es wird fortlaufend ein minütlicher Mittelwert und ein dynamischer Mittelwert berechnet. Ein Sensor für die Messung der relativen Luftfeuchte befindet sich auf dem Probenahme-Filterband, der eine repräsentative Messung der Aerosol-Aufbereitung vor der Echtzeit-Massenbestimmung gewährleistet.

Hiernach wird das Aerosol auf einem Glasfaserfilterband abgeschieden. Auf dem Filterband wird die Aerosolprobe bis zu einem Schwellwert hin angesammelt, wobei das Filterband vor Erreichen der Sättigung automatisch vorgespult wird. Während Aerosole auf dem Filterband gesammelt werden, bedient sich das SHARP Messgerät des radiometrischen Prinzips der Beta-Abschwächung durch einen definierten Probenbereich, um die abgelagerte Masse kontinuierlich zu sammeln und nachzuweisen. Zusätzlich misst die Beta-Abschwächungskammer Alpha-Emissionen aus den akkumulierten Aerosolen und schließt negative Masse-Artefakte aus, die auf die Existenz von Tochternukliden herrührend vom Zerfall von Radongas zurückzuführen sind, um so eine "verfeinerte Massenmessung" zu erreichen. Gleichzeitig durchgeführte "verfeinerte" Massenmessungen von Aerosolproben auf dem Filterband und Probevolumen-Messungen durch eine kalibrierte Blendenöffnung liefern als Ergebnis eine kontinuierliche Messung der sich in der Umgebungsluft befindlichen Massenkonzentration.

Abb. 1. Nephelometer Probenahme und Null-Durchfluss (schematische Darstellung)

Mindestens alle 24 Stunden wird ein sauberer Filterfleck mittels automatischen Filterwechsels in die kombinierte Probenahmeund Detektionskammer eingeführt (normalerweise um Mitternacht). Für die TÜV- und US-EPA Zulassungsprüfung ist das Intervall für den Filterwechsel sowohl für PM10 als auch für PM2,5 auf 8 Stunden festgelegt. Der automatische Filterwechsel wird von der Firmware des Geräts gesteuert. Die Firmware stoppt den Betrieb der Pumpe, senkt die Platte der Vakuumkammer, hebt diese wieder an, startet den Betrieb der Pumpe und löst die Nullung der Probenahmestelle aus. Sofort nach einem Filterwechsel wird ein neuer Messzyklus mit automatischem Nullabgleich des Massesignals ausgelöst. Das Intervall für den Filterwechsel sowie die Uhrzeit des Filterwechsels können vom Bediener eingestellt werden. Zusätzlich wird ein automatischer Filterwechsel ausgelöst, wenn die Masse auf dem Filter seit dem letzten Filterwechsel 1.500 ug übersteigt oder wenn die Durchflussrate durch das Filterband um mehr als 5% reduziert ist (z.B. aufgrund einer möglicherweise einschränkenden Abscheidung von Partikeln).

Zieht man die Überwachung von PM_{2.5} Teilchen als Beispiel heran, so wird Umgebungsluft durch einen 10 µm größenselektiven Einlass, der 50% der Partikel mit einem entsprechenden aerodynamischen Durchmesser von mehr als 10 um aussortiert. Dieser Einlass wurde bereits vorher durch die U.S. Umweltbehörde EPA anerkannt und zugelassen (RFPS-0699-130, 131, und 132) und wird im Code of Federal Regulations, Titel 40, Teil 50, Anhang L als 10-MIKROMETER-EINLASS geführt (inkl. Modell SA246b). Eine weitere Partikeldiskriminierung wird erreicht, indem man ein PM2.5 Zyklon zwischen dem 10-Mikrometer Einlass und dem Probenahmerohr einsetzt. Es sind aber auch Einlässe nach europäischer Bauart für das Messgerät Modell 5030*i* verfügbar. Der Volumenstrom an der Öffnung des Einlasses beträgt 16,67 Liter pro Minute (1 m³/Std.). Außerdem werden Umgebungstemperatur und relative Luftfeuchte über einen selbstansaugendes Strahlungsschutz und einen standardmäßigen Sensor als Bestandteil der Volumenstromsteuerung und des dynamischen Heizsystems gemessen.

Der Feinstaub aus der Umgebungsluft wird nach unten durch ein senkrecht montiertes, beheiztes Probenahmerohr gezogen. Die auf die Probe wirkende Hitze / Temperatur kann entweder auf einen festen Temperaturwert oder ein Schwellwert für die relative Luftfeuchte am Filterfleck eingestellt werden. Mit der Beheizung der Probe wird das Ziel verfolgt, das an die Partikel gebundene Wasser zu reduzieren und die relative Luftfeuchte des Probenstroms zu verringern. Somit wird die positive Beeinflussung der Messung (Artifakte) reduziert, die möglicherweise infolge von Kondenswasserbildung auf dem Filterband oder aufgrund von Bedingungen mit erhöhter Feuchtigkeit auftritt. Die Heizung wird von der CPU gesteuert und die angelegte Leistung ist entspricht den Bedingungen.

Unterhalb des beheizten Rohres befindet sich die Nephelometer-Baugruppe. Der Feinstaub passiert den isolierten Nephelometer in einer flächenhaften Bahn und gelangt dann in das radiale Rohr oberhalb des Beta-Abschwächungskopfes. Die Nephelometer-Baugruppe besteht aus einer 880 nm gepulsten Lichtquelle, einem Referenzdetektor zur Steuerung der Lichtleistung, einem Hybrid-Silikon Photodetektor, einem Temperatursensor, einem Sensor für die relative Luftfeuchte, einer programmierbaren Leiterplatte und einem Kommunikationskabel.

Die Nephelometer-Baugruppe bietet sechs Messbereiche, die automatisch gewählt werden, um die Messwerte möglichst genau anzuzeigen. Während der zeitlich festgelegten Nullabgleichsroutinen wird ein rückseitig montiertes Nullabgleichs-Magnetventil aktiviert und dem Nephelometer HEPA-gefilterte Luft zugeführt, wobei jeder Bereich wiederum genullt wird. Die Ergebnisse des Nullabgleichs können am Display abgelesen werden bzw. sind als C-Link Lesebefehle verfügbar.

An der Stelle, an der das Nephelometer am Gehäuse des Messgeräts 5030*i* angebracht ist, trifft ein radiales, isoliertes Rohr auf das Probenahmerohr zur Sammel-/Auffangbehälter. Der Feinstaub wird auf das Filterband aus Glasfasermaterial gesaugt, das sich zwischen dem Proportionaldetektor und dem ¹⁴C Beta-Strahler befindet. Der Beta-Strahl geht von unten nach oben durch das Filterband und der sich angesammelten Feinstaubschicht. Die Intensität des Beta-Strahls wird durch die zunehmende Massenbelastung abgeschwächt, was wiederum zu einer verminderten Beta-Intensität führt, die vom Proportionaldetektor gemessen wird. Die Masse auf dem Filterband wird von aus einer kontinuierlich integrierten Zählrate errechnet. Während der Probenahme ist die Masse auf dem Filterfleck immer bekannt und der Kumulierungsgrad an Feinstaub wird beobachtet.

Eine kontinuierliche Messung des Durchflusses bestimmt das Probenahmevolumen. Um den Probenahmedurchfluss auf seinem Sollwert zu halten, wird ein Proportionalventil verwendet. Die Feinstaubkonzentration wird aus dem Probenahmevolumen und der Massenbestimmung. Zu einem beliebigen, festgelegten Zeitpunkt liefert das Ausgangssignal die Feinstaubkonzentration für die aktuellen oder für Normbedingungen.

Die Ausgabe der Feinstaubkonzentration am erfolgt am Display auf der Vorderseite des Messgeräts Modell 5030*i* als SHARP-, PM-, und NEPH-Werte. Hierbei handelt es sich entsprechend um die Hybrid-, Beta-Abschwächung und Nephelometer-abgeleiteten Feinstaubkonzentrationen. Die angezeigten Konzentrationen und Analogausgänge können auch als Daten über serielle oder Ethernet-Verbindung zur Verfügung gestellt werden.

Zusätzlich spricht der proportionale Strahlungsdetektor Modell 5030*i* auf natürliche Alpha-Aktivität von Aerosolen an, die sich durch das Probenahmesystem bewegen. Die zusätzliche Alpha-Zählrate dient zur Messung der Anwesenheit von Radon und last auf Radon-Tochternuklide schließen. Diese Tochternuklide erzeugen eine geringe Beta-Emission. Diese extern Probe genommene Beta-Emission wird vom Detektor als höhere Zählrate erkannt. Je höher die Zählrate, desto geringer ist die offensichtlich erkannte Masse. Indem man die natürliche Alpha-Aktivität hervorgerufen durch Radon misst, werden die proportionale Beta-Interferenz der Tochternuklid-Emissionen von der Zählrate subtrahiert, um eine verfeinerte Massenmessung zu gewährleisten. Dieser potentielle Fehler durch die Radon-Interferenz kann (bei radioaktiven Geräten niedrigerer Stärke; z.B.; $<100 \mu$ Ci) genauso hoch sein wie die aktuellen Partikelkonzentrationen, insbesondere nach einem Filterwechsel oder wenn sich die natürliche Aktivitätskonzentration ändert. Das Modell 5030i verwendet dieses Verfahren, um die natürliche Aktivität in den Aerosolen separate zu bestimmen und um diesen Fehler zu eliminieren. Verglichen mit ähnlichen Methoden ermöglicht dieses Verfahren dem Modell 5030i auch, eine stabile Anzeige von Messwerten bei niedrigeren Feinstaubkonzentrationen in der Umgebungsluft zu gewährleisten. Des Weiteren wird aus diesen Informationen die Aktivitätskonzentration des natürlichen Edelgases Radon abgeleitet.

Die Beta-Messkammer beinhaltet einen RTD-Temperatursensor (Widerstandstemperatursensor). Der T-Sensor misst direkt die Temperatur des ankommenden Probenahmestroms zur kontinuierlichen Luftmassenkompensation und das Strömungssystem. Die Strom- und die Umgebungssensormessungen sind in einem Firmware-Algorithmus kombiniert, um eine genaue Messung und Steuerung des Volumenstroms am Einlass und durch die Differenzdruckblende aufrechtzuerhalten. Das Modell 5030i ist zudem mit drei Drucksensoren ausgerüstet, um den Differenzdruck über der Ultraschallblende, das Vakuum unter dem Filterband und den barometrischen Druck zu messen. Der P-Durchflusssensor wird nur zur Messung zum Zwecke der Durchflusssteuerung einsetzt. Der Vakuumsensor dient zur Luftmassenkompensation und als Anzeigeelement für eine evtl. Verstopfung des System. Er befindet sich in der Volumenstromsteuerung. Der barometrische P-Sensor wird zur Luftmassenkompensation und zur Volumenstromregelung eingesetzt.

Das Volumenstromsystem baut auf einem kalibrierten Feedbacksignal von der CPU an das Signal des Proportionalventils auf. Durch den Einsatz dieser Durchflusssteuerung kann die Stabilität des Durchflusses problemlos aufrechterhalten werden.

Bei der Hybridmethode des 5030i SHARP Messgeräts werden die Konzentrationen des Nephelometer und der Beta-Abschwächung berechnet und beide Werte werden digital gefiltert (z.B. gemittelt) mit einer elastischen Zeitkonstante, die eine Funktion der Echtzeitkonzentrationen ist. Die Zeitkonstante dieses dynamischen, digitalen Filters variiert mit den Konzentrationswerten. Diese beiden digital gefilterten Konzentration zueinander ins Verhältnis gesetzt ergeben den dynamischen Korrekturfaktor für den Echtzeit-Nephelometer und das Produkt dieses Korrekturfaktors und des Nephelometers ergibt die Konzentrationen des SHARP Messgeräts.

Error! Not a valid bookmark self-reference. liefert einen Überblick über die techn. Daten des Messgeräts Modell 5030*i*.

Technische Daten

Tabelle 1–1. Modell 5030*i* – Technische Daten

Sicherheit / Elektrische Kennzeichnungen

Für die Einhaltung folgender Normen konzipiert:

CE: EN 61326:1997 + A1:1998 + A2:2001 + A3:2003, EN:61010-1

UL: 61010-1:2004

CSA: C22.2 Nr. 61010-1:2004

FCC: Teil 15 Unterabschnitt B, Klasse B

Strahler und Detektor

IR LED, 6mW, 880 nm Silikon-/Hybrid-Verstärker Photodetektor β Strahler: Carbon-14, <3,7 MBq (<100 μCi), Sealed Source Device Proportionaler Strahlungsdetektor

Standard-Systemkonfiguration

Menügesteuerte Software zur Benutzerkommunikation über ein 320 x 240 pixel großes Grafikdisplay

Verbindungs- und Schnittstellenkabel sowie Vakuumpumpe

0,9 m langes, beheiztes Probenahmerohr

Baugruppe Umgebungstemperatur / rel. Luftfeuchte

Verbrauchsmaterial für das erste Betriebsjahr (durchschnittl.)

iPort Software für lokale oder Remote-Kommunikation

Probenahme-Heizung

0,9 m langes, isoliertes Heizrohr

3 Arten von Heizungs- steuerung	OFF – Heizung wird bei nicht kondensierender Umgebung abgeschaltet
	TEMP – feste Probenahmetemperatur
	RH – Dynamisches Heizen der Probe bei eingestelltem Schwellwert für die rel. Luftfeuchte (e.g., 50% rel. Luftfeuchte)
Leistung Gerät (16,67 l/mi	n, 1s, stabile Bedingungen)
Messbereich:	0 bis 1,0 / 2,0 / 3,0 / 5,0 / 10,0 mg/m ³
	0 bis 100, 1.000, 2.000, 3.000, 5.000, 10.000

	µg/m*
Min. Nachweisgrenze:	<0,5 μg/m³ (1 Std.) @ 2 σ
	<0,2 μg/m³ (24-Std.) @ 2 σ

Auflösung: 0,1 µg/m³ (nicht zu verwechseln mit Genauigkeit)

Genauigkeit: ±2,0 µg/m³ <80 µg/m³; ±5 µg/m³ >80 µg/m³ (24-Std.)

Präzision für Massenmessung: ±5%, mit NIST-rückverfolgbaren Masse-Foliensatz

Mittelung und Ausgabe von Daten

von Daten

Echtzeit-Massenkonzentrationsmittelwert: 1 Minute

Langzeit-Mittelung: 60 bis 3.600 Sek. Und 24-Std.

Datenausgabeintervall: jede Sekunde

Betriebsbereiche

Die Temperatur der aus der Luft entnommenen Probe kann zwischen -30 und 50 °C liegen. Die Geräte vom Typ 5030*i* müssen im Bereich von 4 °C bis 50 °C witterungsgeschützt sein.

Witterungsschutz durch optionales, vollständiges Outdoor-Gehäuse.

Nicht kondensierend; <95% relative Feuchte im Inneren des 5030i

Probendurchsatz

Die Volumenstrom-Steuerung verwendet eine kalibrierte, Ultraschall-

Präzisionsblende und die gemessene Temperature sowie den gemessenen Druck, um einen konstanten Volumenstrom zu gewährleisten.

Nominaler Durchsatz: 16,67 L/Min.

Durchfluss-Präzision ±2% des gemessenen Wertes

Durchfluss-Genauigkeit <5% des gemessenen Wertes

Speichern von Daten

Interne Messdatenerfassung der vom Bediener spezifizierten Variablen; Kapazität von bis zu 190.000 Datensätzen.

Filtermedien

Probenahmefiler: Glasfaserfilter (Breite 40 mm; Länge: 17 m) Whatman, Inc.

Ca. 650 Filterbandwechsel pro Rolle.

Zubehör für Einlass

Europäische oder U.S. EPA PM10 Einlässe

Europäische oder U.S. EPA PM2.5 Einlass-Konfigurationen

PM2.5 VSSC™

PM1.0 SCC

Stativ

Datenaus- / eingänge

iPort Software zum Anzeigen und Wechseln des Systembetriebs vom PC

Ausgänge: wählbare Spannung, RS232/RS485, TCP/IP, 10 Status-Relais sowie Anzeige für Netzausfall (Standard). 0-20 oder 4-20 mA isolierter Stromausgang (optional)

Eingänge: 16 Digitaleingänge (Standard), acht 0 bis 10 VDC Analogeingänge (optional), 8 benzutzerdefinierte Analogausgänge (0 - 1 oder 0 - 5 VDC)

Protokolle: C-Link, MODBUS, Geystitech (Bayern-Hessen), ESM Protokoll, Streaming-Daten und NTP (Network Time Protocol) Protokolle. Gleichzeitige Verbindungen von verschiedenen Standorten über Ethernet.

2 benutzerdefinierte Kontaktschluss-Alarmkreise

4 gemittelte Analogeingänge (0–5 VDC) mit benutzerdefinierter Konvertierung in physikalische Messgrößen/-einheiten

Speicherung von Daten

Max. 190.000 Konentrations-Datensätze mit Datum, Zeit und Flags

Bis zu 32 Arten von protokollierten Datenparametern, eine größere Anzahl von Parameters reduziert die Anzahl von Datensätzen

Leistungsbedarf

Modelll 5030*i*: 100-240 VAC, 50-60 Hz (muss im Auftrag festgelegt werden) be specified upon order)

Pumpe: 115 VAC, 50-60 Hz, 4,25 A

Max. Leistung: 805 Watt (115V); 880 Watt (220-240V)

Abmessungen

B: 42,5 cm x T: 58,4 cm x H: 21,9 cm

Gewicht: 19 kg

Optional / Zubehör

1,8 m langes Verlängerungsrohr

Stativ

Messcontainer mit HLK (Heizung, Lüftung und Klimatisierung)

Chapter 2 Installation

Der im Folgenden dargestellte Ablauf für die Installation des Messgeräts Modell 5030i beschreibt die notwendigen Vorgehensweisen zum Verpacken, Hochheben und Entpacken des Messgeräts sowie das Aufstellen und die Installation einschließlich des Probenahmerohrs und der Pumpe und das Anschließen der Analog- und/oder Digitalausgänge an ein Aufzeichnungsgerät. Nach der Installation sollte immer eine Kalibrierung des Messgeräts erfolgen, wie im Kapitel "Kalibrierung" dieses Handbuchs beschrieben.

Zur Installation des Messgeräts beachten Sie bitte die nachfolgend aufgelisteten, in diesem Kapitel beschriebenen Schritte:

- "Verpackung und Transport" auf Seite 2-1
- "Heben" auf Seite 2-2
- "Entpacken und Überprüfung" auf Seite 2-2
- "Abnahme und Inbetriebnahme" auf Seite 2-3
- "Aufstellung" auf Seite 2-11
- "Anschluss externer Geräte" auf Seite 2-19
- "Inbetriebnahme" auf Seite 2-24
- "Dateninhalt" auf Seite 2-26
- "Herunterfahren" auf Seite 2-26
- "Wichtige Tipps" auf Seite 2-26

Verpackung und Transport

Das Messgerät Modell 5030i, Stromversorgungskabel und die Bedienungsanleitung werden in einer ISTA 2A zertifizierten Verpackung versandt (US-Standard); alle anderen Teile/Zubehör werden getrennt versandt. Die ISTA 2A zertifizierte Verpackung besteht aus dem Gerät, das sich in einem inneren Behältnis befindet, welches wiederum in einem äußeren Behältnis eingebettet ist, das mit Schaumstoffkappen und Eckversteifungen geschützt ist. In dieser Konfiguration ist die Verpackung bereit für eine Versendung im Inland oder Ausland per Spedition. Beim inneren Behälter, in welchem sich das Messgerät befindet, handelt es sich um eine ISTA 1A zertifizierte Verpackung, die für den Transport des Messgeräts zu den jeweiligen Aufstellungsorten auf den örtlichen gepflasterten/geteerten Straßen geeignet ist. Entsprechende Vorkehrmaßnahmen sind zu treffen, damit die Verpackung während des Transports nicht hin- u. herrutschen kann.

Zum Transport des Messgeräts über schlechte Straßen oder auf Autobahnen wird dringend empfohlen, eine ISTA-2A Verpackung zu verwenden.

Heben Zum Heben bzw. Anheben des Geräts sollte eine geeignete Vorgehensweise und Methode gewählt werden, die auf das Heben schwerer Gegenstände ausgerichtet ist bzw. dafür konzipiert wurde. Achten Sie also beim Heben darauf, in die Knie zu gehen und den Rücken dabei stets gerade zu halten. Das Messgerät sollte an der Unterseite jeweils vorne und hinten gegriffen werden. Obwohl das Gerät normalerweise von einer Person gehoben werden kann, ist es ratsam, das Gerät immer zu zweit hochzuheben. Eine Person sollte das Gerät am Boden vorne, die andere am Boden hinten tragen.

Schäden am Gerät Bitte das Messgerät nicht an der Abdeckung oder anderen externen Anschlüssen anheben. •

Entpacken und Überprüfung

Sollten Sie bei der Anlieferung des Gerätes feststellen, dass der Versandbehälter offensichtliche Schäden aufweist, so benachrichtigen Sie bitte umgehend die Spedition und halten Sie das Gerät für eine Sichtkontrolle / Prüfung bereit. Für alle während des Transports entstandenen Schäden ist das Transportunternehmen verantwortlich.

Zum Entpacken und zur Sichtkontrolle des Gerätes bitte wie folgt vorgehen:

- 1. Entnehmen Sie das Messgerät dem Versandbehälter und stellen Sie es auf einen Tisch oder eine Werkbank, der/die einen leichten Zugang sowohl zur Vorderseite als auch zur Rückseite des Gerätes ermöglicht.
- 2. Entfernen Sie die Abdeckung, um die Komponenten im Geräteinneren freizulegen.

3. Nehmen Sie das Verpackungsmaterial aus dem Messgerät heraus (Abb. 2–1).

Gerät ohne optionale I/O-Karte

Gerät mit optionaler I/O-Karte

Abb. 2–1. Verpackungsmaterial entfernen

- 4. Überprüfen Sie das Gerät auf mögliche Transportschäden.
- 5. Prüfen Sie alle Stecker und Platinen auf festen Sitz.
- 6. Setzen Sie die Abdeckung wieder auf das Gehäuse.
- 7. Entfernen Sie Schutzmaterial aus Plastik außen am Gehäuse.
- 8. Nehmen Sie die externe Pumpe aus ihren Versandbehälter und stellen Sie diese in die Nähe des Messgeräts.

Abnahme und I Inbetriebnahme

Das Messgerät Modell 5030*i* wurde vor dem Versand im Werk auf einem Prüfstand getestet und kalibriert. Die Massensensoren, der Sensor für die rel. Luftfeuchte, der Durchflussmesser-Temperatursensor, die externen Sensoren für die Umgebungstemperatur, der Luftdruck und der Volumenstrom wurden auf rückverfolgbare Standards kalibriert. Um schnell mit dem Gerät arbeiten zu können, fahren Sie bitte direkt mit der "Inbetriebnahme" fort und überspringen Sie einfach die "Abnahmeprüfung".

	Um Daten von höchster Qualität zu gewährleisten, empfehlen wir jedoch eine Abnahmeprüfung durchzuführen. Häufig ist eine Abnahme Teil eines Qualitätssicherungsprogrammes und wird demnach vor der Aufstellung vor Ort durchgeführt. Hier kann das Messgerät hervorragend mit den vom Endnutzer verwendeten primären und Transfernormalen verglichen werden. Eine Abnahmeprüfung bietet die Möglichkeit zu gewährleisten, dass das Messgerät gemäß den technischen Leistungsangaben des Herstellers funktioniert.
	Nach Abnahme ist zur Komplettierung der Installation noch eine abschließende Überprüfung des Volumendurchsatzes erforderlich.
Abnahme	Vor der Installation des Messgeräts Modell 5030 <i>i</i> sollten Sie eine Abnahmeprüfung durchführen. Diese Tests werden ausgeführt, um die Leistung des Gerätes unmittelbar nach Erhalt/Auspacken zu überprüfen, vor der endgültigen Aufstellung vor Ort notwendige Kalibrierungen vorzunehmen und den Bediener mit der Menüstruktur vertraut zu machen.
	Um eine Abnahme am Prüfstand durchzuführen, bitte wie folgt vorgehen.
	Benötigte Ausrüstung:
	Modell 5030 <i>i</i>
	Stromversorgungskabel
	Baugruppe Umgebungstemperatur- / Rel. Luftfeuchte Kabel
	Baugruppe Vakuumpumpe
	Baugruppe Durchflussadapter
	NIST-rückverfolgbares Thermometer
	NIST-rückverfolgbares Hygrometer
	NIST-rückverfolgbares Barometer
	NIST-rückverfolgbare(s) Manometer(s)
	NIST-rückverfolgbaren Volumenstrom-Transfernormal
	(Baugruppe beheiztes Probenahmerohr hier noch nicht verwenden.)
	9. Stellen Sie das Messgerät Modell 5030 <i>i</i> und Zubehör nach dem Auspacken auf einen Tisch oder eine Werkbank in einer

stabilen Umgebung innerhalb eines Gebäudes. Entfernen Sie die seitliche Abdeckung und überprüfen Sie das Filterband. Lassen Sie die seitliche Abdeckung weg, bis die Abnahme abgeschlossen wurde.

Hinweis Bevor Sie mit der Abnahme fortfahren, sollte genügend Zeit vorgesehen werden, damit sich die Temperatur des Gerätes samt Zubehörteile an die Raumtemperatur anpassen kann, um so Temperaturschwankungen während des Transports und/oder der Lagerung auszugleichen. •

10. Schließen Sie nachfolgend das Stromversorgungskabel auf der Rückseite des Gerätes und an einer korrekt geerdeten Stromversorgung an.

Hinweis Schaltet sich das Gerät Modell 5030*i* zum jetzigen Zeitpunkt EIN, dann schalten Sie den Netzschalter auf "AUS" und fahren anschließend fort. •

- Schließen Sie den Ansaugstutzen der Pumpe an auf der Gerätrückseite angebrachten Vakuum-Port an. Verwenden Sie hierzu den 3/8" Vakuumschlauch mit dem T-Fitting aus Plastik. Verbinden Sie das Pumpenauslassrohr mit Port #2 des 3-Wege Magnetventil auf der Geräterückseite.
- 12. Schließen Sie nun Port #1 des rückseitig montierten 3-Wege Magnetventils an die 3/8" Klemmringverschraubung des 5/8" x 3/8" Reduzier-T-Stücks an. Verwenden Sie hierzu den 3/8" Vakuumschlauch mit dem HEPA-Filter.
- 13. Schließen Sie das Stromversorgungskabel der Vakuumpumpe an die weiße, runde geerdete Stromversorgung an (mit PUMPE beschriftet). Letztere befindet sich auf der Geräterückseite.
- 14. Schließen Sie das 4-pol. Temperatur-/rel. Luftfeuchte-Kabel an den 4-pol. Anschluss auf der Geräterückseite an. Der Anschluss ist mit RH/TEMP beschriftet.
- 15. Vergewissern Sie sich, dass die Kippschalter des Drucksensor-Kalibrierports auf der Geräterückseite nach außen gedrückt

sind, d.h. weg von den mit Widerhaken versehenen +/- Delta P.

16. Schalten Sie dann den Netzschalter des Messgeräts auf "EIN".

Während des Einschaltens erscheint am Bildschirm das *i*Series Startbild, gefolgt von einem mechanischen Filterbandwechsel und dem periodischen Durchlauf der Pumpe.

Um mit der Abnahme fortzufahren, gehen Sie bitte wie folgt vor:

• Wählen Sie im Hauptmenü "Diagnostics > RH/Temperature" (= Diagnose > Rel. Luftfeuchte / Temperatur).

Im dazugehörigen Screen (nur Anzeige) wird die aktuelle rel. Luftfeuchte in % und die Temperatur in °C angezeigt. Die Platinentemperatur (= board temp.) ist die Temperatur der Luft, gemessen von einem Sensor, der sich auf der Mess-Interface-Karte befindet.

 Um in das Menü "Diagnostics" (= Diagnose) zurückzukehren, drücken Sie bitte auf und wählen Sie dann "Pressure/Vacuum" (= Druck / Vakuum).

PRESSURE/	VACUUM:	
BAROMETR	IC 760.1 mmHg	
VACUUM	60.5 mmHg	
FLOW	21.5 mmHg	
RANGE AV	g DIAGS ALARM	

In diesem Screen (nur Anzeige) werden der barometrische Druck, der Vakuumdruck und der Durchflussdruck in mmHg angezeigt. Der Druck wird von einem Druckfühler gemessen. Das Vakuum ist das Vakuum unter dem Filterband. Der Durchflussdruck ist der Differenzdruck über der Blende.

Tabelle 2–1.	Umrechnung	Druckeinheiten
--------------	------------	----------------

Umrechnung Druckeinheiten		
mmHg = atm x 0.75006		
mmHg = inHg x 25.4		
mmHg = hPa x 0.75006		

Unter der Annahme, dass genügend Zeit verstrichen ist, damit sich das Gerät stabilisiert und an die Temperatur angepasst hat (ca. 1 Std.) und die Vakuumpumpe Raumluft ins Gerät eingesaugt hat, vergleichen Sie bitte nun die Umgebungstemperatur mit dem NIST—rückverfolgbaren Thermometer, das sich am Einlassrohr befindet (siehe Abb. 2–2).

Hinweis Bitte stellen Sie sicher, dass weder Pumpenauslass noch andere Wärmequellen die Anzeigewerte der Sensoren der vorkonfektionierten Kabelsatzes "Temperatur-/ rel. Luftfeuchte" verfälschen oder in irgendeiner Weise beeinflussen. Vergewissern Sie sich, dass die seitliche Abdeckung min. 60 Minuten vorher entfernt wurde.

Abb. 2–2. Modell 5030*i* Probenahme aus der Raumluft unter stabilen Bedingungen

1-Punkt Temperaturüberprüfung

Notieren Sie die mit dem Gerät Modell 5030*i* gemessenen Anzeigewerte und vergleichen Sie diese mit den Werten des NISTrückverfolgbaren Thermometers. Jeder dieser Messwerte sollte sich in einem Toleranzbereich von ± 2 °C bewegen. Liegen die Werte in diesem Bereich, dann haben die entsprechenden Temperatursensoren die Abnahme erfolgreich bestanden.

Liegen die von den Sensoren gelieferten Werte leicht außerhalb des Toleranzbereiches (±3 °C), dann sollte die Abnahmeprüfung als grenzwertig klassifiziert werden. Ist die Leistung des/der Sensor(en) noch weiter außerhalb des Toleranzbereichs, dann muss der Temperatursensor kalibriert werden.

Weitere Informationen zur Kalibrierung des Temperatursensors finden Sie im Kapitel "Kalibrierung".

1-Punkt Überprüfung des Sensors für die rel. Luftfeuchte

 1-Punkt ung des s für die s für die tfeuchte
 Notieren Sie die Anzeigewerte des Sensors für die rel. Luftfeuchte in der Umgebungsluft und die des Nephelometer-Sensors für die relative Luftfeuchte und vergleichen Sie diese mit den Werten des NIST-rückverfolgbaren Hygrometers. Die Werte der Sensoren des Geräts Modell 5030*i* für die relative Luftfeuchte sollte innerhalb eines Toleranzbereichs von ±2% verglichen zum ReferenzHygrometer liegen. Ist dies der Fall, dann ist die Abnahme erfolgreich bestanden.

Hinweis Die Überprüfung der Temperatursensoren sollte vor der Überprüfung des Sensors für die rel. Luftfeuchte stattfinden, da auf letzteren Sensor eine Temperaturkompensation wirkt. Versuchen Sie Vergleiche der rel. Luftfeuchte von <30% und >80% zu vermeiden.

Liegen Die Werte der Sensoren für die rel. Luftfeuchte leicht außerhalb der Toleranz, ±5%, dann sollte die Abnahme als grenzwertig eingeordnet werden. Ist der Wert außerhalb dieses Toleranzbereichs, dann müssen die Sensoren kalibriert werden.

Weitere Informationen hierzu finden Sie im Kapitel "Kalibrierung".

1-Punkt Überprüfung des Luftdrucks

1-Punkt Überprüfung des Volumenstroms

Notieren Sie sich bitte den Anzeigewert des Luftdrucks, der vom entsprechenden Sensor des Geräts Modell 5030*i* gemessen wurde. Dieser Wert wird in mmHg angezeigt. Verwenden Sie, falls notwendig, die Umrechnungstabelle (Tabelle 2–1), um die Werte der Referenzmessung in die Einheit mmHg umzurechnen, damit die Werte entsprechend verglichen werden können. Der im Modell 5030*i* verwendete Luftdrucksensor sollte sich in einem Toleranzbereich von $\pm 10,0$ mmHg bewegen (in Bezug auf das Referenz-Barometer). Wird dieses Toleranzkriterium erfüllt, ist/war die Abnahmeprüfung erfolgreich.

Liegt der Sensorwert leicht außerhalb dieses Bereichs, ±12 mmHg, dann ist die Abnahme als grenzwertig einzuordnen. Liegt der Wert noch weiter außerhalb dieser Toleranz, dann muss eine Kalibrierung des Sensors durchgeführt werden.

Infos über die Kalibrierung des Luftdrucksensors finden Sie im Kapitel "Kalibrierung".

Auch der Durchfluss/Durchsatz des Modell 5030*i* sollte während der Abnahme überprüft werden. Vor diesem Test ist es wichtig, dass die anderen Tests (Temperatur und Druck) vollständig abgeschlossen wurden. Sollte eine Kalibrierung der Sensoren für Umgebungstemperatur, Durchflusstemperatur oder Luftdruck notwendig sein, dann sollte diese vor der Überprüfung der Durchflussrate erledigt werden.
Drücken Sie auf , um zum Menü "Diagnostics" (= Diagnose) zurückzukehren und wählen Sie dann "Flows" (= Durchfluss).

FLOW:	16.67 LPM	
PANCE		

In diesem Screen (nur Anzeige) wird der Volumenstrom in Litern pro Minute angezeigt. Der Durchfluss wird von den internen Sensoren auf der Druckplatine gemessen.

Schließen Sie den kleinen Probenahmerohr-Adapter an den Einlass des Modell 5030*i* an. Abhängig von Ihren NISTrückverfolgbaren Volumenstrom-Transferstandard (FTS = flow transfer standard), können Sie den Transferstandard entweder jetzt anschließen oder den Durchfluss-Prüfadapter, um daran einen Schlauch anzuschließen, der für den Volumenstrom-Transferstandard evtl. erforderlich ist. Warten Sie 60 Sekunden, bis sich der Durchfluss soweit stabilisiert hat.

Notieren Sie den Volumendurchsatz des Modells 5030*i* als Qm und den entsprechenden Referenzwert (FTS) als Qi und stellen Sie sicher, dass beide Werte in Litern/Min. angegeben werden. Lesen Sie jeweils drei (3) Werte von Qm und Qi ab und bilden Sie jeweils den Mittelwert. Berechnen Sie dann anhand der folgenden Gleichung den prozentualen Unterschied:

$$\%D = 100 \times \frac{Qm - Qi}{Qi}$$

Liegt %D innerhalb einer Toleranz von ± 4 %, dann gilt die Abnahme als erfolgreich bestanden. Ist der Volumendurchsatz leicht außerhalb dieser Toleranz, d.h. liegt er bei ± 5 %, dann ist die Abnahme als grenzwertig zu klassifizieren. Liegt der Wert weiter außerhalb der Toleranz, dann führen Sie eine Kalibrierung des Volumenstroms durch.

Weitere Details hierzu finden Sie im Kapitel "Kalibrierung".

Dichtigkeitsprüfung	Eine Dichtigkeitsprüfung beim 5030 <i>i</i> SHARP wird durchgeführt, indem zunächst der Volumenstrom am Einlass-Adapter gemessen wird. Stecken Sie dann den vom Hersteller mitgelieferten Dichtigkeitsprüfadapter auf den Einlass-Adapter und befestigen Sie dann darauf den Durchflussmesser. Vergleichen Sie den Volumenstrom des 5030 <i>i</i> mit dem Anzeigewert des Durchflussmessers und berechnen Sie die Differenz. Beträgt die Differenz weniger als 0,80 L/Min. (80 ml/Min.), dann war die Dichtigkeitsprüfung erfolgreich. Ist der Wert größer als 80 ml/Min., überprüfen Sie bitte das System auf Undichtigkeiten, indem Sie die zahlreichen Anschlussstücke oberhalb des Messkopfes überprüfen. Kann die Ursache der Leckage nicht entdeckt werden, dann muss das Gerät von einem geschulten Techniker gewartet werden.
Überprüfung der Nephelometer Lichtquelle	Die Lichtquelle des Nephelometers wurde werksseitig auf ca. 65 mA eingestellt. Liegt der Wert außerhalb des Bereichs von 60–70 mA liegen, dann muss der Wert für den Strom im Kalibriermenü eingestellt werden.
Nephelometer Nullkontrolle	Das Messgerät Modell 5030 <i>i</i> verfügt über eine Auto-Zero Funktion. Es ist normal, dass diese Auto-Zero Funktion während der Installation des Geräts unterbrochen wird. Um den Nullpunkt des 5030 <i>i</i> zu untersuchen, bringen Sie bitte einen HEPA-Filter für die Dauer von ca. 5 Minuten oder solange, bis sich der Konzentrationswert stabilisiert hat, am Einlass an. Der Konzentrationswert des Nephelometers sollte $\pm 1 \ \mu g/m^3$ betragen. Falls nicht, muss der HEPA-Filter entfernt und das Nephelometer genullt werden. Nach der erneuten Nullung bitte nochmals die o.g. Schritte zur Nullkontrolle durchführen.
Aufstellung	Das Aufstellen des Messgeräts umfasst die Aufstellung an einem Standort, der den Anforderungen der örtlichen Behörden entspricht, die Installation eines wasserbeständigen Einlass- Systems mit vertikalem Ständerprofil/Träger, den Anschluss des Einlass-Systems über die dynamische Heizung an das Messgerät, den Anschluss der Vakuumleitungen, das Einrichten der Messwerterfassung bzw. eines Dataloggers und den Anschluss an die Stromversorgung.
Einlass-System	Bei der Festlegung des Standorts für das Einlass-System, sollte man zunächst den Standort des Geräts und die Höhe in der

Luftüberwachungsstation ermitteln. Von der für die Aufstellung des Geräts ausgewählten Fläche (Rack oder Tischoberfläche), addieren Sie bitte ca. 61 cm in der Höhe hinzu, damit die Gesamthöhe des Messgeräts Modell 5030*i* entsprechend berücksichtigt ist.

Berücksichtigen Sie dann noch ca. gut 1 m für die Montage des beheizten Probenahmerohrs, das oben auf dem 5030*i* mit Hilfe von 5/8" Rohrverbindern (Außendurchmesser) und Teflon-Klemmringen befestigt ist.

Auch ist es wichtig, dass die Installation des Dachflanschs vertikal zum Geräteeinlass ausgerichtet ist. Betrachtet man die Draufsicht auf das Gerät (Abb. 2–3), so muss der Dachflansch mittig und direkt mit dem 5/8" Rohr (Außendurchmesser) ausgerichtet sein, das in das Messgerät Modell 5030*i* hineingeht.

Abb. 2-4. Modell 5030*i* Draufsicht – Zoll [Millimeter]

Heizung Wurden die X-Y-Koordinaten für Gerät und Dachflansch ermittelt und der Dachflansch wasserbeständig installiert, dann führen Sie bitte einen Trockenlauf durch, indem Sie das beheizte Probenahmerohr auf der 5030*i* Grundplatte anbringen. Steht das beheizte Probenahmerohr durch den Dachflansch heraus, dann muss das Gerät entweder tiefer gestellt werden oder die Heizung muss mit einer verlängerte PVC-Muffe und einer Abdeckung abgedeckt werden, damit die Anordnung noch wasserdicht ist. Es wird jedoch davon ausgegangen, dass die Heizung genau unter die Deckenhöhe der Luftüberwachungsstation passt.

> Basierend auf den Anforderungen an die vertikale Höhe, verwenden Sie bitte ein zusätzliches 5/8"-Edelstahlrohr (Außendurchmesser) und Verbindungsstücke, um die Differenz zwischen der gewünschten Einlasshöhe und der Heizung oben auszugleichen.

Ein zusätzlicher Verlegungsaufwand ist für die Baugruppe des Umgebungsluft- /rel. Luftfeuchte-Sensors erforderlich.

Abb. 2-5. Modell 5030i Senkrechte Ansicht

Verlängerung Probenahmerohr	Die Standardlänge für das beheizte Probenahmerohr beträgt einen Meter (1 m). Verlängerungsstücke für das Probenahmerohr können verwendet werden, um zusätzliche Höhe zu erreichen.
Montage in einem Einbaugehäuse (optional)	Ein einschränkender Faktor bei der Standortauswahl für das Messgerät Modell 5030 <i>i</i> ist die Aufstellung in einem standardmäßigen 19"-Einbaugehäuse. Bei der Planung sollte daher im Rack die oberste Position/der oberste Einschub für das Messgerät reserviert werden, da das Probenahmerohr direkt vom Dach vertikal oben in das Modell 5030 <i>i</i> geführt wird. Des Weiteren muss vor der Installation eine Änderung des Einbaugehäuses berücksichtigt werden, damit der senkrechte Rohranschluss ebenfalls untergebracht werden kann. Weitere Details finden Sie im Kapitel "Optionale Ausrüstungsteile".
	Vor der Montage vor Ort bitte die folgenden Installationsschritte nochmals einzeln durchgehen.
Installation Messgerät	Wurden alle Anforderungen bzgl. Höhe erfüllt, dann führen Sie bitte die folgenden Schritte durch, um die Installation zu komplettieren:
	1. Nehmen Sie die Gehäuseabdeckung vom 5030 <i>i</i> ab und überprüfen Sie, ob das Filterband korrekt eingelegt wurde.
	2. Positionieren Sie das 5030 <i>i</i> beabsichtigten Betriebsstandort.
	3. Verbinden Sie die Heizrohr-Baugruppe (isoliert) mit dem 5/8" Rohr (Außendurchmesser) oben auf dem 5030 <i>i</i> (Abb. 2–6).

Abb. 2-6. Baugruppe Heizung

- 4. Bringen Sie einen zweiten Rohrverbinder oben auf dem Heizrohr an.
- 5. Schieben Sie nun vorsichtig das zusätzliche 5/8" Edelstahlrohr (Außendurchmesser) durch den Dachflansch und lassen Sie es in den Rohrverbinder oben auf der Heizung gleiten.
- 6. Noch freiliegende Stellen des 5/8" Edelstahlrohrs sollten mit zusätzlicher Rohrisolierung im Schutzraum isoliert werden.
- 7. Schieben Sie eine zusätzliche wasserbeständige Abdeckung über das Rohr, das nun über die Dachlinie hinausragt.

- 8. Schieben Sie den weißen Delrin-Plastik-Adapter für das Stativ über das 5/8" Rohr (Außendurchmesser) auf eine geeignete Höhe, um das Stativ an die Baugruppe "Temperatur/rel. Feuchte Sensor" anzupassen. Ziehen Sie mit Hilfe der beiden Feststellschrauben den Adapter gegen das Stahlrohr fest.
- 9. Schieben Sie das Stativ über den Stativ-Adapter auf die richtige Höhe und ziehen Sie es fest. Bei der Verwendung eines Stativs, senken Sie die Einlassrohr-Baugruppe mit Hilfe der einstellbaren Füße entsprechend ab.
- 10. Befestigen Sie die weiße Temp./rel. Feuchte-Sensor Strahlungsschutz-Baugruppe an einem Teile des freiliegenden Stativ-Adapters.
- 11. Befestigen Sie das 5/8" auf 3/8" Reduzierstück (T-Stück) auf dem 5/8" Edelstahlrohr und ziehen Sie es fest.
- 12. Setzen Sie den PM_{10} oder $PM_{2.5}$ Einlass in das 5/8" Edelstahl-T-Fitting ein.
- 13. Führen Sie ein Ende des schwarzen 7,5 m langen T/RH-Kabels durch die Dachflansch-Bauruppe und schließen Sie es unten an der T/RH Baugruppe an.
- 14. Schließen Sie nun das andere Ende des T/RH-Kabels auf der Geräterückseite an (RH Temp).
- 15. Schließen Sie den Netzstecker der Heizung an HEATER 1 an.
- 16. Schließen Sie nun mit Hilfe des vorhandenen grünen 3/8"-Vakuumschlauchs den Pumpeneinlass an den Vakuum-Anschlussstutzen auf der Rückseite des 5030*i* an.
- 17. Stecken Sie das Netzkabel der Pumpe in die Buchse mit der Kennzeichnung " AC PUMP" (auf der Rückseite des 5030*i*).

Anschluss externer	Zum Anschließen externer Geräte an die Messinstrumente der <i>i</i> Series stehen mehrere Komponenten zur Verfügung.		
Geräte	Die folgenden Anschlussmöglichkeiten werden bereitgestellt:		
	Individuelle Klemmleisten-Leiterplatten-Baugruppen		
	Klemmleiste und Kabelsätze (wahlweise)		
	Maßgeschneiderte Kabel (optional)		
	Ausführliche Informationen zu den wahlweise erhältlichen Anschlusskomponenten finden Sie im Kapitel "Optionale Ausrüstungsteile". Die entsprechenden Teilenummern finden Sie unter "Komponenten zum Anschluss externer Geräte" auf Seite 7- 10.		
Klemmleisten- Leiterplatten- Baugruppen	Die Klemmleisten-Leiterplatten-Baugruppen sind Leiterplatten mit einem D-Sub-Steckverbinder auf der einen und einer Reihe von Schraubklemmen auf der anderen Seite. Diese Baugruppen sind beim Anschluss von Leitungen eines Datensystems an die I/O-Stecker des Messgerätes äußerst zweckmäßig.		
	Für Messgeräte der <i>i</i> Series stehen folgende Klemmleisten- Leiterplatten-Baugruppen zur Verfügung:		
	 37-polige I/O-Klemmleisten-Leiterplatten-Baugruppe (Standardausstattung) 		
	 37-polige D/O-Klemmleisten-Leiterplatten-Baugruppe (Standardausstattung) 		
	• 25-polige Klemmleisten-Leiterplatten-Baugruppe (Teil der optional erhältlichen I/O Erweiterungskarte)		
I/O Klemmleiste	Abb. 2–8 zeigt die empfohlene Vorgehensweise zum Anbringen des Kabels (kundenseitig bereitgestellt) auf der Klemmplatte mit Hilfe der mitgelieferten Befestigung und des Abstandhalters. Tabelle 2–2 gibt eine Übersicht über die Anschlussstifte und die jeweils dazugehörigen Signale.		
	Hinweis Nicht alle im Messgerät verfügbaren I/Os sind auf der gelieferten Klemmleiste angebracht. Werden mehr I/Os benötigt, so ist ein alternatives Anschlussmittel erforderlich. Siehe auch Abschnitt "Klemmleiste und Kabelsets". •		

Fertig bestückt

Abb. 2–8. Ansichten I/O Klemmleiste
Tabelle 2-2. I/O Klemmleiste - Pinbelegung

Pin	Beschreibung Signal	Pin	Beschreibung Signal
1	Analog1	13	Stromausfall_NC
2	Analog Masse	14	Stromausfall_COM
3	Analog2	15	Stromausfall_NO
4	Analog Masse	16	TTL_Eingang1
5	Analog3	17	TTL_Eingang2
6	Analog Masse	18	TTL_Eingang3
7	Analog4	19	TTL_Input4
8	Analog Masse	20	Digital Masse
9	Analog5	21	TTL_Eingang5
10	Analog Masse	22	TTL_Eingang6
11	Analog6	23	TTL_Eingang7
12	Analog Masse	24	Digital Masse

Die Analogausgänge sind auf dem rückseitigen Stecker – wie in Abb. 2–9 dargestellt – angebracht. Die Kanäle und Pinbelegungen entnehmen Sie bitt der Tabelle 2–3.

Abb. 2–9. Pins Steckverbindung Geräterückseite Tabelle 2–3. Standard Analogausgänge

Kanal	Pin Stecker	I/O Anschlussstift	Beschreibung
1	14	1	Feinstaub
2	33	3	Durchschnittl. Feinstaub
3	15	5	NEPH
4	34	7	Durchschn. NEPH
5	17	9	SHARP
6	36	11	Durchschn.SHARP
Masse	16, 18, 19, 35, 37	2, 4, 6, 8, 10, 12	Signal Masse

Hinweis Alle Kanäle können vom Bediener definiert werden. Wurden die Analogausgänge individuell, kundenspezifisch konfiguriert, dann ist die Standardauswahl nicht mehr gültig.

D/O Klemmleiste Abb. 2–10 zeigt die empfohlene Vorgehensweise zum Anbringen des Kabels (kundenseitig bereitgestellt) auf der Klemmplatte mit

Hilfe der mitgelieferten Befestigung und des Abstandhalters. Tabelle 2–4 gibt eine Übersicht über die Anschlussstifte und die jeweils dazugehörigen Signale.

Abb. 2–10. Ansichten D/O Klemmleiste **Tabelle 2–4** D/O Klemmleiste – Beschreibung

Pin	Beschreibung Signal	Pin	Beschreibung Signal
1	Relais1_KontaktA	13	Relais7_KontaktA
2	Relais1_KontaktB	14	Relais7_KontaktB
3	Relais2_KontaktA	15	Relais8_KontaktA
4	Relais2_KontaktB	16	Relais8_KontaktB
5	Relais3_KontaktA	17	Relais9_KontaktA
6	Relais3_KontaktB	18	Relais9_KontaktB
7	Relais4_KontaktA	19	Relais10_KontaktA
8	Relais4_KontaktB	20	Relais10_KontaktB
9	Relais5_KontaktA	21	(nicht verwendet)
10	Relais5_KontaktB	22	+24V
11	Relais6_KontaktA	23	(nicht verwendet)
12	Relais6_KontaktB	24	+24V

25-pol. Klemmleiste Die 25-pol. Klemmleiste ist im Lieferumfang der I/O Erweiterungsplatine enthalten. Abb. 2–11 zeigt die empfohlene Vorgehensweise zum Anbringen des Kabels (kundenseitig bereitgestellt) auf der Klemmplatte mit Hilfe der mitgelieferten Befestigung und des Abstandhalters. Tabelle 2–5 gibt eine Übersicht über die Anschlussstifte und die jeweils dazugehörigen Signale.

Fertig bestückt

Abb. 2–11. Ansichten 25-pol. Klemmleiste

Tabelle 2–5. 25-pol. Klemmleiste – Beschreibung Pinbelegung

Pin	Beschreibung Signal	Pin	Beschreibung Signal
1	IOut1	13	Analog_In1
2	Isolierte Masse	14	Analog_In2
3	IOut2	15	Analog_In3
4	Isolierte Masse	16	Masse
5	IOut3	17	Analog_In4
6	Isolierte Masse	18	Analog_In5
7	IOut4	19	Analog_In6
8	Isolierte Masse	20	Masse
9	IOut5	21	Analog_In7

Pin	Beschreibung Signal	Pin	Beschreibung Signal
10	Isolierte Masse	22	Analog_In8
11	IOut6	23	Masse
12	Isolierte Masse	24	Masse

Netzanschluss

S Vor Anschluss des Geräts an das Netz, bitte sicherstellen, dass der Netzschalter auf der Gerätevorderseite auf "AUS" steht. Überprüfen Sie auch, dass das Netz vor Ort den Angaben auf dem Typenschild auf der Geräterückseite entspricht.

ACHTUNG Das Messgerät Modell 5030*i* wird mit einem 3adrigen geerdeten Stromkabel geliefert. Das Erdungssystem darf unter keinen Umständen zerstört bzw. außer Kraft gesetzt werden.

Inbetriebnahme

Nehmen Sie das Messgerät wie folgt in Betrieb:

- 1. Schalten Sie das Gerät EIN und warten Sie 12 Std., bis sich der Beta-Detektor an die Umgebungsverhältnisse angepasst hat.
- Obwohl das Messgerät werksseitig kalibriert wurde, müssen die Temperatursensoren überprüft werden, wenn das Messgerät ins Gleichgewicht gebracht / ausbalanciert wurde. (Vergewissern Sie sich, dass die Heizung aus ist und dass das Messgerät bei konstanter Temperatur über den Zeitraum von 1 – 2 Stunden Proben aus der Raumluft nimmt. Die Gehäuseabdeckung sollte dabei entfernt sein.)
- 3. Nach Ablauf der 12 Std. führen Sie bitte die folgenden Schritte durch:
 - a. Wählen Sie im Hauptmenü "Instrument Controls" (= *Gerätesteuerung*). Hier bitte folgende Einstellungen vornehmen:
 - i. Durchfluss auf 16,67 L/Min. einstellen
 - ii. Heizungssteuerung auf RH (= rel. Feuchte) mit einem Schwellwert von 50–58% einstellen.
 - iii. Massengrenzwert des Filterbandes auf 1.500 μg einstellen

- iv. Filterband–nächster Zeitpuntk; Startdatum sollte vorhanden sein.
- v. Die Filterbandperiode sollte auf 8 Std. für $PM_{2.5}$ und PM_{10} eingestellt werden
- vi. Die volumetrischen Bedingungen für Temperatur (Temp) und Druck (Press) sollten auf ATC eingestellt werden
- vii. Für die Messwerterfassung sollten Lrecs und Srec gewählt und alle Parameter sollten in der Reihenfolge ausgewählt werden, in der sie erscheinen von "Konzentrationen" bis "Andere Messungen". Standard Lrecs werden auf 60 Minuten Messwerterfassung mit 30% Speicherzuordnung und Srecs auf 5 Minuten Messwerterfassung mit 70% Speicherzuordnung eingestellt. Bei Änderungen bitte sicherstellen, dass der Inhalt gespeichert wird.
- b. Wählen Sie dann im Hauptmenü "Service". Unter "Service" bitte die nachfolgend genannten Schritte durchführen.

Hinweis Wird der Service-Modus nicht angezeigt, lesen Sie bitte den Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 und gehen Sie dann wieder zum Anfang des Schritts zurück.

- i. Überprüfen/kalibrieren Sie die Umgebungstemperatur, Nephelometer-Temperatur und Durchflusstemperatur
- ii. Überprüfen/kalibrieren Sie die rel. Luftfeuchte des Nephelometers
- iii. Überprüfen/kalibrieren Sie den Messbereich des Luftdrucks
- iv. Überprüfen/kalibrieren Sie die Durchflusskalibrierung
- v. Führen Sie eine autom. Kalibrierung des Beta-Detektors durch (30 Minuten)
- vi. Führen Sie eine Kalibrierung der Massenfolie durch (werksseitig kalibriert)
- vii. Massekoeffizienten werden werksseitig eingestellt.
- viii. Führen Sie eine Nullkalibrierung des Nephelometers durch (5 Minuten)

DateninhaltVerwenden Sie den iPort, um auf den Daten-Download vom
Messgerät zuzugreifen.HerunterfahrenBeim Herunterfahren des Messgeräts bitte die folgenden Schritte
in der genannten Reihenfolge ausführen.1. Gerät ausschalten.2. Geräte-Ports abdecken, wenn diese nicht genutzt werden.

Wichtige BITTE NICHT

Tipps

- Das Messgerät unter Druck setzen.
 - Keine Flüssigkeiten in den Probenahme-Port eindringen lassen.
 - Das Gerät übermäßigen Erschütterungen oder magnetischen Störfeldern aussetzen
 - Die Beta-Abschwächungskammer des 5030*i* entfernen / einstellen.
 - Bzw. niemals den C-14 Strahler entfernen.

SONDERN

- Das Messgerät in einer klimatisierten Umgebung betreiben (4–50 °C).
- Das DHCP auf EIN stellen, wenn Sie die IP Adresse ändern.

Chapter 3 Betrieb

Dieses Kapitel beschreibt die Displayanzeigen auf der Gerätevorderseite, die Tasten auf der Gerätevorderseite und die menügesteuerte Firmware. Einzelheiten finden Sie unter den folgenden Themengebieten:

- "Display" auf Seite 3-1
- "Drucktasten" auf Seite 3-2
- "Firmware " auf Seite 3-5
- "Menü "Range" auf Seite 3-11
- "Integrationszeit" auf Seite 3-16
- "24-Std. Mittel" auf Seite 3-17
- "Menü "Kalibrierfaktoren" auf Seite 3-17
- "Menü "Gerätesteuerung" auf Seite 3-22
- "Menü "Diagnose" auf Seite 3-73
- "Alarm Menü" auf Seite 3-84
- "Service Menü" auf Seite 3-107
- "Passwort-Menü" auf Seite 3-130

Display
 Die 320 x 240 pixel große Flüssigkristallanzeige (LCD) zeigt die Probenkonzentrationen, Geräteparameter, Gerätesteuerfunktionen, Hilfsmenüs und Fehlermeldungen an. Einige Menüs enthalten mehr Informationen als gleichzeitig auf dem Display angezeigt werden können. Mit Hilfe der Tasten

 ↓ und ↓ können Sie den Cursor nach oben und unten bewegen, um auf jeden einzelnen Menüpunkt zu gelangen.

Abb. 3–1. Front Panel Display

VORSICHT Bei Beschädigung der LCD-Anzeige ist der Kontakt von Haut und Kleidung mit dem Flüssigkristall zu vermeiden. Wenn das Flüssigkristall mit Haut oder Kleidung in Berührung gelangt, ist es sofort mit Wasser und Seife abzuwaschen.

Drucktasten

Mit Hilfe der Drucktasten kann sich der Benutzer durch die verschiedenen Bildschirmanzeigen/Menüs bewegen.

Abb. 3–2. Drucktasten auf der Gerätevorderseite

Tabelle 3–1 zeigt eine Liste der Drucktasten auf der Gerätevorderseite und deren Funktion.

Tabelle 3-1. Druck	tasten auf der	Gerätevorderseite
--------------------	----------------	-------------------

Tastenbezeichnung	Funktion
= Soft Keys	Über (Soft Keys) werden Tastenkombinationen bereitgestellt, mit denen der Benutzer zu von ihm wählbaren Menüanzeigen springen kann. Ausführliche Informationen zur Belegung von Soft Keys finden sie an späterer Stelle unter "Soft Keys".
► = Run	Mit der
🕒 = Menü	Über diese Taste Bugger Gelangen Sie von der RUN-Anzeige ins Hauptmenü oder zurück ins vorige Untermenü. Weitere Informationen zum Thema Hauptmenü finden Sie unter "Hauptmenü" weiter hinten in diesem Kapitel.
? = Hilfe	Die ? -Taste ist kontextabhängig, d.h. hier werden zusätzliche Informationen zum jeweils angezeigten Bildschirm gegeben. Durch Drücken der ? -Taste erhalten Sie eine kurze Erklärung zur aktuellen Anzeige oder Menü. Hilfsmeldungen werden in Kleinbuchstaben angezeigt, damit sie leicht von den Bedienanzeigen zu unterscheiden sind. Zum Verlassen des Hilfsmenüs drücken Sie iede beliebige Taste; durch Drücken der - Taste gelangen Sie zurück in die "Run"-Anzeige.
 Image: A state of the state of t	Mit Hilfe der Pfeiltasten (
= Eingabe	Mit der -Taste können Sie einen Menüpunkt auswählen, eine Änderung akzeptieren/einstellen/speichern und/oder Funktionen ein- bzw. ausschalten.

Softkeys

Softkeys sind Multifunktionstasten, die einen Teil des Displays nutzen, um ihre jeweilige Funktion anzuzeigen. Die Aufgabe der Soft Keys ist es, über eine Tastenkombination direkten und schnellen Zugang zu den am häufigsten benutzten Menüs und Anzeigen zu ermöglichen. Sie befinden sich direkt unter dem Display; vom Benutzer definierte Beschriftungen im unteren Teil der Anzeige machen die aktuelle Tastenbelegung deutlich.

Um die Belegung eines Softkeys zu ändern, stellen Sie den Cursor ">" auf den Menüpunkt des ausgewählten Menüs oder Bildschirms, den Sie einstellen möchten. Drücken Sie die → -Taste und direkt anschließend den ausgewählten Softkey für 1 Sekunde. Es folgt die Aufforderung, die Konfiguration des Softkeys neu zu beschriften: "EDIT SOFT KEY PROMPT".

Hinweis Nicht alle Menüpunkte können Softkeys zugeordnet werden. Wenn ein Menü oder Bildschirm nicht zugeordnet werden kann, erscheint nach Eingabe der Tastenkombination Pfeiltaste - Softkey keine Zuordnungsmaske. Den Menüpunkten im Service-Menü (einschließlich dem Menü selbst) können keine Softkeys zugeordnet werden.•

Programmierbare Softkeys

Alphanumerischer Eingabebildschirm Zeichen einger Tasten kann d

Auf dem alphanumerischen Eingabebildschirm können Zeichenfolgen bestehend aus Buchstaben, Zahlen und anderen Zeichen eingegeben werden. Mit Hilfe der \blacklozenge und \blacklozenge -Tasten kann der Cursor in die Eingabezeile gestellt werden. Wird ein Zeichen über ein bestehendes Zeichen eingegeben, wird das bestehende überschrieben. Mit den Tasten \blacklozenge und \blacklozenge können Sie zwischen Eingabezeile und Tastatur hin- und herspringen und sich auf der Tastatur hin- und herbewegen. Wenn Sie ein Zeichen hinzufügen wollen, stellen Sie den Cursor mit Hilfe der Cursortasten über das gewünschte Zeichen, drücken dann die \blacklozenge -Taste, um das Zeichen in der Eingabezeile hinzuzufügen. Auf der rechten Seite der Tastatur befinden sich Sondertasten. Mit der BKSP (Backspace = Rück) -Taste wird der Cursor in der Eingabezeile eine Stelle nach links gerückt, wobei das Zeichen links vom Cursor gelöscht wird und alle Zeichen rechts vom Cursor eine Stelle nach links gerückt werden. Die PAGE-Taste fungiert als Umschalttaste. Damit wird die Groß- bzw. Kleinschreibung der Buchstaben aktiviert. SAVE speichert die Zeichenfolge aus der Eingabezeile als Parameter. Alternativ kann – wenn der Cursor in die Eingabezeile gestellt wird – durch Drücken der ← -Taste die Zeichenfolge aus der Eingabezeile als Parameter gespeichert werden.

 Eingabezeile
 ABCDEFGHIJKLMN BKSP

 Tastatur
 ABCDEFGHIJKLMN BKSP

 OPQRSTUVWXYZ PAGE
 Opqrstuvwxyz PAGE

 0123456789 ./- SAVE
 0123456789 ./- SAVE

 RANGE AVG DIAGS ALARM
 RANGE AVG DIAGS ALARM

Firmware Übersicht

Das Messgerät Modell 5030*i* verwendet menügeführte Firmware wie im Flussdiagramm in Abb. 3-3 dargestellt. Der oben im Flussdiagramm abgebildete Startbildschirm erscheint sobald das Gerät eingeschaltet wird. Er wird angezeigt, solange das Gerät sich aufwärmt und Selbsttestroutinen durchläuft. Nach Ende der Aufwärmphase erscheint automatisch die Run-Anzeige. Die Run-Anzeige ist die Standardanzeige für den Normalbetrieb. Hier werden normalerweise die SHARP Konzentrationswerte angezeigt. Es gibt aber auch zusätzliche Screens zur Anzeige der Umgebungsbedingungen, Probenahmebedingungen und Massensensordaten. Von der Run-Anzeige aus gelangt man durch Drücken der (•)-Taste ins Hauptmenü, welches seinerseits aus einer Reihe von Untermenüs besteht. Jedes Untermenü beinhaltet die damit im Zusammenhang stehenden Geräteeinstellungen. In diesem Kapitel werden alle Untermenüs und deren Bildschirmanzeigen ausführlich vorgestellt und erklärt. Detailliertere Informationen zu einzelnen Punkten finden Sie jeweils in den entsprechenden Abschnitten.

Power-up Screen

Password	Set Pass word Cock Instrument Change Password Remove Password Unlock Password
Servic	RH/TEMP Calibration Ambient RH Ambient Temp Sample Temp Flow Temp Vac/Flow Flow Calibration Auto Manual Mass Calibration Auto Manual Mass Calibration Auto Manual Mass Coefficient Mass Coefficient Mass Coefficient Mass Coefficient Mass Coefficient Mass Coefficient Mass Coefficient Auto Manual Menh RH Neph Restore Iserory Defaults Restore Factory Defaults Restore Factory Defaults
Aam	Alarms Detected Instrument Alarms Filter Tape Counter Bench Moherboard Status Bench Moherboard Status IO E XP Status Detector Alarms Bera Neph Sample Neph Alarms Bera Neph Alarms Bera Neph Alarms Alpha Bera Neph RH LED Current RHIT emp Neph RH Ambient R
Diamostics	Program Versions Program Versions Voltages Motherboard Interface Board Detector Board RH/Temperatures Ambient RH Ambient RH Ambient RH Ambient RH Ambient RH Sample Temp Flow Temp Flow Temp Flow Temp Flow Temp Flow Sample Status Mass Alpha Barourtic Flows Flow Status Mass Alpha Beta Alpha Beta Corr Beta Alpha Beta Corr Beta Alpha Beta Corr Beta Alpha Reat Status Mass Alpha Beta Corr Beta Alpha Beta Corr Beta Corr Beta Alpha Coutact Info Output 1-10 Output 1-10 Output 1-10 Output 1-10 Output 1-10 Output 1-10 Output 1-10 Output 1-16 Detector A Albetector A Analog Input Readings AlL Output 1-10 Output 1-16 Detector A Albetector A Albetector A Contact Info Contact Info Contact Info
Serreen Serreen Run Screens Main Menu Instrument Controls	Measurement Mode Set Flow/Pump Set Heater Control RH Temp Threshold HT Threshold FILEN Tape Control Manual Bench Manual Bench Marual Bench Tape? Mass Limit Next Time Start Date/Time Start Date/Time Period Counter Tape/Zero Ratio Voltmetric Conditions Start Date/Time Period Counter Tape/Zero Ratio Voltmetric Conditions Temperature Pressure Period Control Co
Calibration Factors	SHARP Bkg SHARP Coef Neph Bkg Neph Mode Sample Sample Cal Span Values Restore Prev Values
24Hr Averages	Avg SHARP Avg Time
Integration Time	e e e e
	Conc Units SHARP Range Set Custom Ran

Abb. 3-3. Flussdiagram - menügesteuerte Firmware

Startbildschirm Der Startbildschirm erscheint, sobald das Messgerät Modell 5030*i* eingeschaltet wird. Er wird angezeigt, während sich die internen Gerätekomponenten aufwärmen und Selbsttestroutinen durchlaufen werden (siehe unten).

"Run"-Anzeige

Im "Run"-Screen werden die SHARP Konzentrationswerte, Umgebungsbedingungen, Probenahmebedingungen und Massensensordaten angezeigt. In der Statusleiste werden die Zeit (24-Std.-Format), das Passwortsymbol (Vorhängeschloss), das Servicesymbol (Schraubenschlüssel), das Alarmsymbol (Glocke) und – falls installiert – der Status des optionalen Null-Luft/Prüfgas-Magnetventils angezeigt.

Der "Run"-Screen zeigt normal die aktuellen SHARP Konzentrationswerte an. Es gibt aber auch zusätzliche Run-Screens für die Umgebungsbedingungen, Probenahmebedingungen und die Massensensordaten. Mit Hilfe der ▲ und ↓ Taste kann man sich durch die verschiedenen "Run"-Screens bewegen.

"Run"-Screen Umgebungsbedingungen

In der "Run"-Anzeige "Umgebungsbedingungen" werden der Echtzeitwert des Volumenstroms am Einlass, die Umgebungstemperatur, der Luftdruck und die relative Luftfeuchte angezeigt.

3-8 Modell 5030*i* SHARP Instruction Manual

"Run"-Screen Probenahmebedingungen

In der "Run"-Anzeige "Probenahmebedingungen" werden die Temperatur des Probenahmefilters, dessen rel. Luftfeuchte, der Differenzdruck über der Blende und das Vakuum unter dem Filterband angezeigt.

"Run"-Screen Massensensordaten

Im "Run"-Screen "Massensensordaten" finden Sie die Echtzeit-Beta-Counts während der Abschwächung und die ursprünglichen Beta-Counts eines neuen Filterflecks.

 "Run"-Screen
 Hybriddaten
 Im "Run"-Screen "Hybriddaten" werden die Massenkonzentrations-werte der Echtzeit-Beta-Abschwächungsmethode (PM) und der Echtzeit-Nephelometermethode (NEPH) angezeigt. Diese Werte werden in den dynamisch-digitalen Filteralgorithmus eingegeben, um das Nephelometer in Echtzeit zu kalibrieren.

- **Hauptmenü** Das Hauptmenü besteht aus einer Reihe von Untermenüs. Geräteparameter und -einstellungen können entsprechend ihrer Funktion innerhalb dieser Untermenüs abgelesen und verändert werden. Die Konzentrationswerte erscheinen über dem Hauptund den Untermenüs auf jedem Bildschirm. Das Service-Menü erscheint nur, wenn das Gerät im Service-Modus ist. Weitere Informationen zum Thema Service-Modus finden Sie unter "Service Modus" weiter hinten in diesem Kapitel.
 - Drücken Sie die

 und -Tasten, um den Cursor nach oben oder unten zu bewegen.
 - Drücken Sie die 🛩 -Taste, um eine Auswahl zu bestätigen.
 - Drücken Sie die
 -Taste, um ins Hauptmenü bzw. die
 -Taste um zur "Run"-Anzeige zurückzukehren.

RANGE AVG DIAGS ALARM

SERVICE PASSWORD

Menü "Range" Im "Range"-Menü (= Messbereich) hat der Bediener die Möglichkeit, die Einheiten für die Konzentrationswerte, die PM Standardmessbereiche und kundenspezifische Messbereiche einzustellen.

• Wählen Sie im Hauptmenü "Range" (= Messbereich)

RANGE:		
>CONC UNITS	μg/m3	SHARP
RANGE 10000		
SET CUSTOM RAN	IGES	
		_
RANGE AVG DIAC	GS ALARI	Л

Maßeinheiten
KonzentrationAuf dem Bildschirm "Concentration Units" wird die Einheit
festgelegt, in der die Konzentrationswerte angezeigt werden. Es
stehen folgende Einheiten für die Konzentrationswerte zur
Verfügung: Mikrogramm pro Kubikmeter (μg/m³) und
Milligramm pro Kubikmeter (mg/m³).

Wenn man in die ausgewählten Einheiten schaltet, dann werden die Analogbereiche des Messgeräts standardmäßig alle auf the höchsten Bereich eingestellt. Schaltet man von mg/m³ zu μ g/m³, dann wird 10000 μ g/m³ als Standardeinstellung übernommen. Überprüfen Sie daher die Bereichseinstellungen, wenn Sie von einer Einheit zur anderen wechseln.

Hinweis Wenn Einheiten verändert werden, muss das Gerät neu kalibriert werden. Es erscheint ein entsprechender Warnhinweis. •

• Wählen Sie im Hauptmenü: Range > Conc Units (= *Bereich* > *KonzEinheiten*).

CONC UNITS: CURRENTLY: mg/m3 SET TO: µg/m3 ?
♣♣ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

SHARP Bereich Im Screen "SHARP Range" wird der Konzentrationsbereich der Analogausgänge festgelegt. Ein SHARP-Bereich von 0–100 µg/m³ beispielsweise stellt den Analogausgang standardmäßig auf Konzentrationen zwischen 0 und 100 µg/m³ ein.

Im Display erscheint der aktuelle SHARP-Bereich. In der nächsten Zeile kann man den Bereich ändern.

Tabelle 3–2 zeigt eine Liste der Standardbereiche.

• Wählen Sie im Hauptmenü: Range > SHARP Range.

mg/m ³	μg/m³
0.1	100
1.0	1000
2.0	2000
3.0	3000
5.0	5000
10.00	10000
C1	C1
C2	C2
C3	C3

|--|

C1, C2 und C3 sind kundenspezifische Messbereiche. Weitere Information hierzu erhalten Sie im Abschnitt "Kundenspez. Messbereiche einstellen".

Die Analogausgänge sind auf dem Anschlussteil auf der Geräterückseite so angeordnet, wie in Abb. 3–4 dargestellt. Kanäle und Pin-Belegung finden Sie in

Tabelle 3–**3**.

Kanal	Pin	I/O Klemmleisten- Stift	Beschreibung
1	14	1	PM
2	33	3	Neph
3	15	5	Durchfluss
4	34	7	Umgebungstemperatur
5	17	9	Durchflusstemperatur
6	36	11	Rel. Luftfeuchte
Masse	16, 18, 19, 35, 37	2, 4, 6, 8, 10, 12	Signal Masse

Tabelle 3–3.	Standard-Ana	logausgänge
--------------	--------------	-------------

Hinweis Alle Kanäle sind vom Benutzer definierbar. Wenn bei der Analogausgang-Konfiguration individuelle Einstellungen vorgenommen wurden, treffen die Standardeinstellungen u.U. nicht mehr zu. •

Kundenspez. Bereich einstellen

Im Menü "Set Custom Ranges" (= kundenspez. Bereich einstellen) finden Sie drei kundespezifische Bereich, die vom Bediener definiert werden können. Im mg/m³ Modus kann ein beliebiger Wert zwischen 0,1 mg/m³ und 10,00 mg/m³ als Bereich eingestellt werden. Im μ g/m³ Modus, kann ein beliebiger Wert zwischen 100 μ g/m³ und 10000 μ g/m³ festgelegt werden.

• Wählen Sie im Hauptmenü: Range > Set Custom Ranges (= Bereich > Kundenspze. Bereich einstellen).

CUSTOM RANGES: >CUSTOM RANGE 1 CUSTOM RANGE 2 CUSTOM RANGE 3	555.6 1875.0 8125.0
RANGE AVG DIAGS	ALARM

Kundenspez.
BereicheDer "Custom Ranges"-Bildschirm dient dazu, kundenspezifische
Bereiche einzustellen.

Die Anzeige gibt den aktuellen kundenspezifischen Bereich wieder. Mit der nächsten Zeile der Anzeige wird der Bereich geändert. Weitere Informationen zum Thema Auswahl von Bereichen finden Sie im vorherigen Abschnitt "SHARP Bereich".

 Wählen Sie im Hauptmenü: Range > Set Custom Ranges > Custom Range 1, 2 oder 3 (= Bereich > Kundenspez. Bereiche einstellen > Kundenspez. Bereich 1, 2 oder 3).

Integrationszeit Im "Integration Time" Screen kann der Bediener die Mittelwertbildung der Beta-Abschwächungsmasse und Konzentration einstellen. Als Default-Wert sollte 20 Minuten gesetzt werden. Dieser kann zwischen 15 und 60 Minuten eingestellt werden. Im nachfolgenden Screen wurden 15 Min. als Wert eingestellt. In der darunterliegenden Zeile kann die Zeiteinstellung verändert werden.

• Wählen Sie im Hauptmenü: Integration Time (= Integrationszeit).

INTEGRATION TIME: CURRENTLY: 15 MIN SET TO: 20 MIN? CHANGE VALUE SAVE VALUE RANGE AVG DIAGS ALARM

24-Std. Mittel In der Anzeige "24-Hour Average" (= 24-Std. Mittel) kann der Bediener einen Startzeitpunkt festlegen für einen Zeitraum, in dem die Konzentrationsmessung über einen Zeitraum von 24 Std. gemittelt wird. Die durchschnittliche Konzentration der anfänglichen Anzeigewerte für diesen Zeitraum wird berechnet und gemittelt. Ein neuer 24-Std. Mittelwert der Konzentration wird einmal täglich angezeigt. Das Display zeigt den aktuellen 24-Std. Mittelwert der SHARP Konzentration. In der darauffolgenden Zeile kann der 24-Std. Mittelwert geändert werden.

• Wählen Sie im Hauptmenü: 24HR Averages (= 24-Std. Mittelwert).

24-Std. Mittel Startzeit

- tel In diesem Screen kann der Bediener den Startzeitpunkt für die24-Std. Mittelwertbildung einstellen.
 - Wählen Sie im Hauptmenü: 24HR Averages > Avg Time (= 24-Std. Mittelwerte > Mittelungszeit)

```
24HR AVERAGE START TIME:

CURRENTLY: 00:00

SET TO: 01:00 ?

→ SET HOURS

↑ CHANGE VALUE ← SAVE '

RANGE AVG DIAGS ALARM
```

Menü "Kalibrierfaktoren"

Kalibrierfaktoren werden während der automatischen und manuellen Kalibrierung festgelegt und zur Korrektur der angezeigten Konzentrationswerte verändert. Das Menü "Calibration Factors" (= Kalibrierfaktoren) zeigt die Kalibrierfaktoren an. Die Kalibrierfaktoren können mit Hilfe der Funktionen in diesem Menü auch manuell eingestellt werden. Weitere Informationen hierzu finden Sie im Kapitel 4, "Kalibrierung".

Die Kalibrierfaktoren für "SHARP BKG (offset)" und "SHARP COEF (slope)" werden standardmäßig auf 0,0 und 1,0 eingestellt. Falls regionale Einstellungen eine Einstellung dieser Werte erforderlich machen, dann können diese Werte jetzt eingestellt werden, sofern behördliche Genehmigungen bzw. Zulassungen für das Gerät dadurch NICHT beeinträchtigt werden.

• Wählen Sie im Hauptmenü: Calibration Factors' (= Kalibrierfaktoren).

CALIBRATION I	FACTORS:	
>PM BKG	0.0	
PM COEF	1.000	
SHARP BKG	0.0	
SHARP COEF	1.000	
NEPH BKG VA	LUES	
RANGE AVG	DIAGS ALARM	1

NEPH COEF 0.000

Feinstaub-Hintergrund Im "PM Background" Screen kann der Bediener die Feinstaub-Abscheidung manuelle einstellen. Um die Einstellung zu erleichtern, wir die Feinstaub-Konzentration basierend auf dem Faktor "SET BKG TO" (= Hintergrund setzen auf) angezeigt. Die im Run-Teil angezeigte Feinstaub-Konzentration wird von dem Faktor SET BKG nicht beeinflusst, bis der Wert gespeichert ist.

• Wählen Sie im Hauptmenü: Calibration Factors > PM Bkg (= Kalibrierfaktoren > Feinstaub-Hintergrund).

PM BACKGROUND: CURRENTLY: 0.0 SET TO: 0.7
♦ MOVE CURSOR ♦ CHANGE VALUE SAVE '
RANGE AVG DIAGS ALARM

Feinstaub-
KoeffizientIm "PM Coefficient" Screen kann der Bediener den Feinstaub-
Koeffizienten manuell einstellen. Um die Einstellung zu

erleichtern, wird die Feinstaub-Konzentration angezeigt basierend auf den Faktor "SET COEF TO" (= Koeffizienten setzen auf). Die im Run-Teil angezeigte Feinstaub-Konzentration wird vom Faktor SET COEFF nicht beeinflusst, bis der Wert gespeichert ist.

• Wählen Sie im Hauptmenü: Calibration Factors > PM Coeff. (= Kalibrierfaktoren > Feinstaub-Hintergrund)

PM COEFFICIENT: CURRENTLY: 1.000 SET TO: 1.02?
♦ MOVE CURSOR ♦ CHANGE VALUE SAVE '
RANGE AVG DIAGS ALARM

SHARP Hintergrund Im "SHARP Background" Screen kann der Bediener die SHARP-Abscheidung manuelle einstellen. Um die Einstellung zu erleichtern, wir die SHARP-Konzentration angezeigt basierend auf dem Faktor "SET BKG TO" (= Hintergrund setzen auf). Die im Run-Teil angezeigte SHARP-Konzentration wird von dem Faktor SET BKG nicht beeinflusst, bis der Wert gespeichert ist.

> • Wählen Sie im Hauptmenü: Calibration Factors > SHARP Bkg. (= Kalibrierfaktoren > SHARP Hintergrund)

SHARP BACKGROUND:
CURRENTLY: 0.0
SET TO: 0.7 ?
←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

SHARP
KoeffizientIm "SHARP Coefficient" Screen kann der Bediener den SHARP-
Koeffizienten manuell einstellen. Um die Einstellung zu
erleichtern, wir die SHARP-Konzetration angezeigt basierend auf
den Faktor "SET COEF TO" (= Koeffizienten setzen auf). Die im
Run-Teil angezeigte SHARP-Konzentration wird von dem Faktor
SET COEFF nicht beeinflusst, bis der Wert gespeichert ist.
• Wählen Sie im Hauptmenü: Calibration Factors > **SHARP Coef**.

(= Kalibrierfaktoren > SHARP Coef.)

Nephelometer Hintergrundwerte

Die Nephelometer-Hintergrundwerte werden während der automatischen und der manuellen Kalibrierung ermittelt und dienen dazu, einen stabilen Nullwert aufrecht zu erhalten. Das Menü "Nephelometer Hintergrund" finden Sie nachfolgend. Mit Hilfe dieses Menüs kann das Gerät auch manuell kalibriert werden. Siehe hierzu auch Kapitel 4, "Kalibrierung".

 Wählen Sie im Hauptmenü: Calibration Factors > Neph Bkg Values.

(= Kalibrierfaktoren > Neph Hintergrundwerte).

NEPHELOMETER BKG: >NEPH MODE VALUES RESTORE PREV VALUES

RANGE AVG DIAGS ALARM

Nephelometer ModusIn der Bildschirmanzeige "Nephelometer Mode" kann der
Bediener für den Nephelometer eine von drei Betriebsarten
einstellen. Zur Verfügung stehen die Betriebsarten: "Sample (=
Probenahme), Zero (= Null) und Stdby (= standby). Im
Probenahme-Modus wird die photometrische Erfassung gestartet.
Der Null-Modus beginnt startet einen Nullsetzvorgang, der mit
einem Filterfleckwechsel beginnt. Im Standby-Modus werden die
Nephelometer-Messungen abgeschaltet.

Wählen Sie im Hauptmenü: Calibration Factors > Neph Bkg > Neph Mode
 (= Kalibrierfaktoren > Neph Hintergrund > Neph Modus).

NEPHELOMETER MODE: CURRENTLY: STDBY SET TO: SAMPLE ? CHANGE VALUE SAVE VALUE RANGE AVG DIAGS ALARM

- Werte Im Screen "Values" werden die optionalen Hintergrundwerte für jeden Bereich des Nephelometers angezeigt. Diese Werte können vom Bediener zur Kontrolle aufgezeichnet werden, um damit die Auswertung einer möglichen Drift zu unterstützen.
 - Wählen Sie im Hauptmenü: Calibration Factors > Neph Bkg > Values

(= Kalibrierfaktoren > Neph Hintergrund > Werte).

BEFORE AFTER 1 0.00278 0.00277 2 0.00278 0.00277 3 0.01119 0.01122 4 0.04452 0.04459 5 0.17809 0.17808 RANGE AVG DIAGS ALARM

Vorherige Werte wiederherstellen Im Screen "Restore Previous Values" (= vorherige Werte wiederherstellen) kann man die vorherigen Hintergrundwerte wiederherstellen (im Fall einer schlechten Nullung).

> Wählen Sie im Hauptmenü: Calibration Factors > Neph Bkg > Restore Prev Values
>
> (= Kalibrierfaktoren > Neph Hintergrund > vorherige Werte wiederherstellen).

RESTORE PREV BKG VALUES?

← RESTORE

RANGE AVG DIAGS ALARM

RESTORE PREV BKG VALUES?

← RESTORE ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM RESTORE

RANGE AVG DIAGS ALARM

Nephelometer Koeffizient

Im Screen "Nephelometer Coefficient" (= Nephelometer-Koeffizient) kann der Bediener den Nephelometer-Koeffizienten manuell einstellen. Um die Einstellung zu erleichtern, wird die Nephelometer-Konzentration basierend auf dem Faktor SET COEF TO angezeigt. Die im Run-Teil des Screens angezeigte Nephelometer-Konzentration wird vom Faktor SET COEF nicht beeinträchtigt, bis der Wert gespeichert ist.

 Wählen Sie im Hauptmenü: Calibration Factors > Neph Coef. (= Kalibrierfaktoren > Neph Koef.)

Menü "Gerätesteuerung"

Das "Instrument Controls"-Menü enthält eine Reihe von Menüpunkten, mit deren Auswahl verschiedene Betriebsparameter des Messgerätes gesteuert werden können. Die in diesem Menü verzeichneten Firmware-Steuereinrichtungen aktivieren die Steuerung der aufgeführten Gerätefunktionen.

• Wählen Sie im Hauptmenü: Instrument Controls (= Gerätesteuerung).

INSTRUMENT CONTROLS: >SET FLOW/PUMP SET HEATER FILTER TAPE CONTROL VOLUMETRIC CONDITIONS DATALOGGING SETTINGS

RANGE AVG DIAGS ALARM

COMMUNICATION SETTINGS I/O CONFIGURATION SCREEN CONTRAST SERVICE MODE DATE/TIME TIMEZONE

Durchfluss / Pumpe einstellen

Im Menü "Set Flow/Pump" (= Durchfluss / Pumpe einstellen) kann der Bediener manuell die Durchflusswerte einstellen und den Betriebsstatus der Pumpe ändern (EIN oder AUS).

• Wählen Sie im Hauptmenü: Instrument Controls > Set Flow/Pump

(= Gerätesteuerung > Durchfluss / Pumpe einstellen).

- **Durchfluss** Der Screen "Flow" (=Durchfluss) dient zur Anzeige bzw. zur Einstellung des Durchflusses.
 - Wählen Sie im Hauptmenü: Instrument Controls > Set Flow/Pump > Flow (= Gerätesteuerung > Durchfluss/Pumpe einstellen > Durchfluss).

- **Pumpe** In diesem Screen kann der Bediener die Pumpe ein- oder ausschalten.
 - Wählen Sie im Hauptmenü: Instrument Controls > Set Flow/Pump > Pump (= Gerätesteuerung > Durchfluss/Pumpe einstellen > Pumpe).

PUMP: CURRENTLY: SET TO:	ON OFF ?
← TOGGLE'VALUE	
RANGE AVG	DIAGS ALARM

Heizung einstellen

Im Menü "Set Heater" (= Heizung einstellen) kann der Bediener den Status der Heizung, den Schwellwert für die rel. Luftfeuchte und den Schwellwert für die Temperatur in verschiedenen Modi einstellen.

• Wählen Sie im Hauptmenü: Instrument Controls > Set Heater (= *Gerätesteuerung > Heizung einstellen*).

HEATER: >CONTROL OFF RH THRESHOLD 40 % TEMP THRESHOLD 30 °C
RANGE AVG DIAGS ALARM

- **Steuerung** Im Screen "Control" (= Steuerung) kann der Betriebszustand der Heizung EIN/AUS, der Schwellwert für die rel. Luftfeuchte bzw. der Schwellwert für die Temperatur eingestellt werden.
 - Wählen Sie im Hauptmenü: Instrument Controls > Set Heater > Control
 - (= Gerätesteuerung > Heizung einstellen > Steuerung).

HEATER CONTROL:
CURRENTLY: OFF
SET TO: RH ?
★ CHANGE VALUE
RANGE AVG DIAGS ALARM

Schwellwert rel.Im "RH Threshold" Screen kann man den Schwellwert für die rel.LuftfeuchteLuftfeuchte (in %) ändern. Dieser Wert ist typischerweise

kompatibel zur gravimetrischen Methode, die zum Vergleich genutzt wird.

Wählen Sie im Hauptmenü: Instrument Controls > Set Heater • > RH Threshold

(= Gerätesteuerung > Heizung einstellen > Schwellwert rel. Luftfeuchte).

RH THRESHOLD: CURRENTLY: 65 % SET TO: 35 %?	
↑ INC/DEC ← SAVE VAL'UE	
RANGE AVG DIAGS ALARM	

Schwellwert Temperatur

- Im "Temperature Threshold" Screen kann der Schwellwert für die Temperatur geändert werden.
 - Wählen Sie im Hauptmenü: Instrument Controls > Set Heater • > Temp Threshold (= Gerätesteuerung > Heizung einstellen > Schwellwert Temperatur).

Filterband-Im Menü "Filter Tape Control" (= Steuerung Filterband) kann der Bediener manuell die nächste Zeitspanne für die Bandsteuerung Steuerung verändern bzw. einstellen.

> Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape • Control

(= Gerätesteuerung > Steuerung Filterband).

FILTER TAPE CONTROL: >MANUAL MASS LIMIT 1,500 µg NEXT TIME 05MAY08 00:00 PERIOD 8 HRS COUNTER 0 RANGE AVG DIAGS ALARM

- **Manuell** In diesem Screen kann der Bediener das Filterband bewegen oder anhalten und den Messplatz/Messkopf öffnen oder schließen.
 - Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Manual

(= Gerätesteuerung > Steuerung Filterband > Manuell).

- **Massengrenzwert** Im "Mass Limit" Screen kann der Bediener den Massengrenzwert einstellen. Standardmäßig ist ein Wert von 1500 µg (oder 1.5 mg) eingestellt.
 - Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Mass Limit (= Gerätesteuerung > Steuerung Filterband > Massengrenzwert).

MASS LIMIT: CURRENTLY: 1500 SET TO: 150 <mark>1</mark> ?
←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

Nächster Zeitpunkt

Der "Next Time" Screen ermöglicht es dem Bediener, Startdatum und Zeit (im 24-Std. Format) für den nächsten Filterbandwechsel anzuzeigen und einzustellen.

 Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Next Time (= Gerätesteuerung > Steuerung Filterband > nächster Zeitpunkt).

START DATE AND TIME: 05 MAY 2008 00:00 PRESS ← TO EDIT RANGE AVG DIAGS ALARM

RANGE AVG DIAGS ALARM

- **Zeitraum** In diesem Anzeigefenster kann der Bediener den Zeitraum einstellen. Der nächste Filterbandwechsel wird dann für den Zeitpunkt nach Ablauf der Anzahl Stunden festgelegt, der als Zeitraum eingestellt wurde. Üblicherweise wird für Feinstaub der Kategorie PM_{2.5} und für PM₁₀ von 8 Std. eingestellt.
 - Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Period
 (= Gerätesteuerung > Steuerung Filterband > Zeitraum).

- Zähler Im "Counter" Screen kann der Bediener den aktuellen Zählerstand des Filterbandes aufzeichnen und den Zähler für das Filterband wieder auf null zurücksetzen.
 - Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Counter (= Gerätesteuerung > Steuerung Filterband > Zähler).

FILTER TAPE COUNTER: 0

← RESET TO ZERO

RANGE AVG DIAGS ALARM

Verhältnis Band/NullIm "Tape/Zero Ratio" Screen kann der Bediener die Häufigkeit
der Nullung für das Nephelometer nach X Filterwechseln
einstellen. Für Feinstaub der Kategorie $PM_{2.5}$ wird X = 42 und für
 PM_{10} X = 14 eingestellt, basierend auf einem 2-wöchigen
Nullungszyklus. Bei einem konservativen Verhältnis von 1:1
würde das Nephelometer bei jedem Filterbandwechsel genullt.

 Wählen Sie im Hauptmenü: Instrument Controls > Filter Tape Control > Tape/Zero Ratio (= Gerätesteuerung > Steuerung Filterband > Verhältnis Band/Nullung).

```
TAPE/NEPH ZERO RATIO:
CURRENTLY: 1:1
SET TO: 2:1 ?

 CHANGE VALUE

 SAVE VAL'UE

RANGE AVG DIAGS ALARM
```

Volumetrische Bedingungen

Das Menü "Volumetric Conditions" ermöglicht es dem Bediener, den Temperatur- /Druckausgleich ein und auszuschalten und in den verschiedenen Modi die Werte für Standarddruck bzw. Standardtemperatur einzugeben.

- Wählen Sie im Hauptmenü: Instrument Controls > Volumetric Conditions
 - (= Gerätesteuerung > Volumetrische Bedingungen).

VOLUMETRIC CONDITIONS:		
>TEMPERATURE	ACT	
PRESSURE	STD	

RANGE AVG DIAGS ALARM

Temperaturausgleich Im "Temperature" Screen kann die Einstellung für die Temperaturkorrektur vorgenommen werden (aktuelle oder Standard).

• Mit der Taste 🛏 können Sie hin- und herschalten und den Temperaturausgleich auf aktuell oder Standard einstellen.

TEMPERATURE: >COMPENSATION ACT STANDARD 25 °C
RANGE AVG DIAGS ALARM

Standardtemperatur Hier kann die Standardtemperatur eingestellt werden.
 Wählen Sie im Hauptmenü: Instrument Controls > Volumetric Conditions > Temperature > Standard
 (= Gerätesteuerung > Volumetrische Bedingungen > Temperatur > Standard).

STANDARD TEMPERATURE: CURRENTLY: 25 °C SET TO: 0.0 °C ?
▲ INC/DEC◆ SAVE VALUE
RANGE AVG DIAGS ALARM

Druckausgleich Im "Pressure Compensation" Screen kann die Einstellung für die Druckkorrektur eingestellt werden (aktuell oder Standard).

Mit der [🛏] Taste können Sie hin- und herschalten und die • Einstellung für den Druckausgleich festlegen (aktuelle oder Standard).

PRESSURE: >COMPENSATION 760 mmHg STANDARD 760 mmHg
RANGE AVG DIAGS ALARM

Standarddruck Hier kann der Wert für den Standarddruck eingestellt werden.

> Wählen Sie im Hauptmenü: Instrument Controls > Volumetric Conditions > Pressure > Standard (= Gerätesteuerung > Volumetrische Bedingungen > Druck > Standard).

STANDARD PRESSURE: CURRENTLY: ACT SET TO: 760 mmHg? **▲** INC/DEC ← SAVE VALUE RANGE AVG DIAGS ALARM

Messwerterfassung

Einstellungen Die Messgeräte der i-Serie enthalten als Standardausrüstung eine eingebaute Messwerterfassung. Der Benutzer hat die Möglichkeit, zwei verschiedene Datensatztypen zu erzeugen, die aus geschichtlichen Gründen "lrecs" (langes Format) und "srecs" (kurzes Format) genannt werden. Jeder Datensatz kann bis zu 32 verschiedene Felder oder Datenelemente enthalten und Datensätze können in benutzerdefinierten Intervallen von 1 bis 60 Minuten generiert werden.

> Die Datensatzgenerierung ist mit der Echtzeituhr des Messgerätes verbunden. Wenn beispielsweise die Erfassungsperiode für "srecs" auf 30 Minuten eingestellt ist, wird stündlich und halbstündlich ein neuer "srec"-Datensatz generiert (10.00, 10.30, 11.00 Uhr, usw.) "Lrecs" und "srecs" werden unabhängig voneinander erstellt. So könnte beispielsweise alle 5 Minuten ein "srec" erzeugt werden, der nur den aktuellen SHARP-Pegel

beinhaltet, während ein "lrec" mit einem vollen Satz an Diagnosedaten einmal pro Stunde erzeugt werden könnte.

Die Rechneranlage des Messgerätes umfasst einen 3 MB Flash-Speicher, was ausreicht, um einen kompletten "lrec"-Datensatz mit 32 Datenelementen und einen kompletten "srec"-Datensatz mit 32 Datenelementen einmal pro Minute eine Woche lang zu speichern (> 20.000 Datensätze insgesamt). Wenn sich die Erfassung auf den minimalen Inhalt von Datum, Uhrzeit, SHARP-Konzentration und Fehler-Flags beschränkt, vermag das Messgerät minütlich erfasste Daten über einen Zeitraum von 4 Monaten zu speichern (> 190.000 Datensätze insgesamt).

Über das "Datalogging Settings"-Menü kann der Benutzer flexibel einstellen, wie Daten gespeichert und aufgezeichnet werden sollen.

• Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings

(= Gerätesteuerung > Einstellungen Messwerterfassung).

DATALOGGING: >SELECT SREC/LREC SREC VIEW LOGGED DATA ERASE LOG SELECT CONTENT COMMIT CONTENT RANGE AVG DIAGS ALARM

RESET TO DEFAULT CONTENT CONFIGURE DATALOGGING

Srec/Lrec Datensatz
auswählenDer "Select Srec/Lrec"-Bildschirm dient dazu, den Datensatztyp
für andere Funktionen in diesem Menü auszuwählen.

 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Srec/Lrec. (= Gerätesteuerung > Einstellungen Messwerterfassung >Srec/Lrec auswählen). SELECT LOG TYPE: CURRENTLY: SREC SET TO: LREC ?

← TOGGLE VALUE

RANGE AVG DIAGS ALARM

Erfasste Daten anzeigen Uber den "View Logged Data"-Bildschirm kann ausgewählt werden, wo die Anzeige der erfassten Daten entweder nach Anzahl der Datensätze oder nach Datum und Uhrzeit beginnen soll. Bitte beachten Sie, dass nicht beide Datensatztypen gleichzeitig angesehen werden können, nur der ausgewählte Datensatztyp.

> Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > View Logged Data. (= Gerätesteuerung > Einstellungen Messwerterfassung >erfasste Daten anzeigen).

> > SELECT START POINT BY: SET TO: # OF RECS ♣ CHANGE ← ACCEPT RANGE AVG DIAGS ALARM

Anzahl Datensätze Im "Number of Records"-Bildschirm wird die Anzahl der Datensätze ausgewählt, die angezeigt werden soll (jeweils mit dem neuesten Datensatz endend). Es wird auch die Gesamtanzahl an Datensätzen angezeigt, die für den ausgewählten Datensatztyp insgesamt erfasst wurden.

SET # BACK FROM CURRENT:	
000000	
TOTAL LRECS: 20	
←→ MOVE CURSOR	
♣♣ CHANGE VALUE	
RANGE AVG DIAGS ALARM	

Der "Record Display"-Bildschirm (nur Anzeige) zeigt die ausgewählten Datensätze an.

time date flags 10:01 01/20/09 8105151 10:02 01/20/09 8105151 10:03 01/20/09 8105151 10:04 01/20/09 8105151 ▲ PGUP/DN ↔ PAN L/R RANGE AVG DIAGS ALARM

Datum und Zeit Über den "Date and Time"-Bildschirm kann der Zeitpunkt mit Datum und Uhrzeit eingegeben werden, ab dem erfasste Daten angezeigt werden sollen. Wenn zum Beispiel der 20. Jan 2009 10:00 Uhr eingegeben wird, ist der erste angezeigte Datensatz derjenige, der als erstes nach dieser Uhrzeit erfasst wurde. Wenn Daten minütlich aufgezeichnet werden, wäre das am 20. Jan 2009 10:01 Uhr.

> DATE AND TIME: 20 JAN 2009 10:00 ↑↓ CHG DAYS → SET CURSOR TO MONTHS ← ACCEPT AS SHOWN RANGE AVG DIAGS ALARM

Der "Record Display"-Bildschirm (nur Anzeige) zeigt die ausgewählten Datensätze an.

time date flags 10:01 01/20/09 8105151 10:02 01/20/09 8105151 10:03 01/20/09 8105151 10:04 01/20/09 8105151 ▲ PGUP/DN ↔ PAN L/R RANGE AVG DIAGS ALARM

Erfasste Daten löschen

Der "Erase Log"-Bildschirm dient dazu, alle gespeicherten Daten nur für den jeweils ausgewählten Datensatztyp (nicht für beide Typen, "srecs" und "lrecs") zu löschen.

• Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Erase Log.

(= Gerätesteuerung > Einstellungen Messwerterfassung > erfasste Daten löschen).

ERASE LREC LOG FILE DATA?	ERASE LREC LOG FILE DATA?
← ERASE '	← ERASE ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM ERASURE
RANGE AVG DIAGS ALARM	RANGE AVG DIAGS ALARM

Inhalt auswählen Das Untermenü "Select Content" zeigt eine Liste mit 32 Datensatzfeldern, mit denen die Daten, die erfasst werden sollen, konfiguriert werden können. Wenn ein Feld ausgewählt wird, erscheint ein Unterverzeichnis mit zur Auswahl stehenden Datenelementen, die den Feldern zugeordnet werden können. Diese Datenelemente sind: "Concentrations" (Konzentrationen), "Other Measurements" (andere Messungen) und "Analog Inputs" (Analogeingänge, wenn die I/O-Erweiterungskarte installiert ist). Diese Datensatzfelder umfassen eine vorläufige Liste mit Datenelementen für den ausgewählten Datensatztyp, die über das "Datalogging"-Menü gespeichert werden müssen, bevor die Änderungen zum Tragen kommen. Beachten Sie, dass das Speichern jeglicher Änderung in dieser Liste dazu führt, dass alle zu dem Zeitpunkt für den ausgewählten Datensatztyp erfassten Daten gelöscht werden, da sich das Format der gespeicherten Daten verändert hat.

> Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Content.
> (= Gerätesteuerung > Einstellungen Messwerterfassung > Inhalt auswählen).

LREC FIELDS:		
>FIELD 1	SHARP	
FIELD 2	AVG SHARP	
FIELD 3	FLOW VOL	
FIELD 4	AMB RH	
FIELD 5	BARO PRESS 🖶	
RANGE A	AVG DIAGS ALARM	

Felddaten auswählen	 Das "Choose Field Date"-Untermenü zeigt eine Liste an Datentypen, die für das jeweilige Feld erfasst werden können. Zur Auswahl stehen: "Concentrations" (Konzentrationen), "Other Measurements" (andere Messungen) und "Analog Inputs" (Analogeingänge, wenn die I/O-Erweiterungskarte installiert ist). Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Content > Field 1–32. (= Gerätesteuerung > Einstellungen Messwerterfassung > Inhalt auswählen > Feld 1-32). 	
	DATA IN SREC FIELD 1: >CONCENTRATIONS OTHER MEASUREMENTS ANALOG INPUTS RANGE AVG DIAGS ALARM	
Konzentrationen	 Über den "Concentrations"-Bildschirm kann der Benutzer dem ausgewählten Datensatzfeld einen der möglichen Konzentrationswerte zuordnen. Das ausgewählte Element wird durch "<" gekennzeichnet. Beachten Sie, dass zu diesem Zeitpunkt durch Drücken der ← -Taste angezeigt wird, dass es sich um vorgeschlagene Änderungen im Gegensatz zu implementierten Änderungen handelt. Wie das ausgewählte Datensatzformat geändert und erfasste Daten gelöscht werden können, finden Sie im Abschnitt "Inhalt speichern". Im Display wird die aktuelle Heizung für den ausgewählten Modus (PM) angezeigt. Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Content > select Field > Concentrations. (= Gerätesteuerung > Einstellungen Messwerterfassung > Inhalt auswählen > Feld auswählen > Konzentrationen). 	

CONCENTR	RATIONS:	
>NONE		
PM	<	
AVG PM		
NEPH		
SHARP		
RANGE A\	VG DIAGS ALARM	

AVG SHARP AVG NEPH

Andere Messungen Über den "Other Measurements"-Bildschirm kann der Benutzer dem ausgewählten Datensatzfeld einen der anderen möglichen Messtypen zuordnen. Das ausgewählte Element wird durch "<--" gekennzeichnet. Die angezeigten Element werden durch die installierten Optionen festgelegt. Erklärungen zu den allgemeinen Flags und den Detektorflags finden Sie in Abb. 3−5 und Abb. 3−6. Beachten Sie, dass zu diesem Zeitpunkt durch Drücken der ← Taste angezeigt wird, dass es sich um vorgeschlagene Änderungen im Gegensatz zu implementierten Änderungen handelt. Wie das ausgewählte Datensatzformat geändert und erfasste Daten gelöscht werden können, finden Sie im Abschnitt "Inhalt speichern".

 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Content > select Field > Other Measurements.

(= Gerätesteuerung > Einstellungen Messwerterfassung > Inhalt auswählen > Feld auswählen > andere Messungen). OTHER MEASUREMENTS: >NONE BARO PRES VACUUM FLOW PRES AMB RH RANGE AVG DIAGS ALARM

SAMP RH AMB TEMP **BRD TEMP** FLOW TEMP FLOW VOL BETA BETA RAW ALPHA RAW MASS **BETA ZERO** EXT ALARMS NEPH TEMP NEPH RH NEPH IRED NEPH REF **BETA REF** COMMON FLAGS DET FLAGS MASS COMP

Abb. 3–6. Flags Detektor A

Analogeingänge Über den "Analog Inputs"-Bildschirm kann der Benutzer dem ausgewählten Datensatzfeld ein analoges Eingangssignal (keines oder Analogeingänge von 1–8) zuordnen. Das ausgewählte Element wird durch "<---" gekennzeichnet. Beachten Sie, dass zu diesem Zeitpunkt durch Drücken der 🕶 -Taste angezeigt wird, dass es sich um vorgeschlagene Änderungen im Gegensatz zu implementierten Änderungen handelt. Wie das ausgewählte Datensatzformat geändert und erfasste Daten gelöscht werden können, finden Sie im nachfolgenden Abschnitt "Inhalt speichern".

> Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Select Content > select Field > Analog Inputs.

(= Gerätesteuerung > Einstellungen Messwerterfassung)

ANALOG INPUTS: >NONE ANALOG IN 1 ANALOG IN 2 ANALOG IN 3 ANALOG IN 4 RANGE AVG DIAGS ALARM

- Inhalt speichern Der "Commit Content"-Bildschirm dient dazu, alle Änderungen, die bei den Datensatzfeldern für den ausgewählten Datensatztyp gemacht wurden, zu speichern. Die Speicherung der Änderungen führt dazu, dass für diesen Datensatztyp erfasste Daten gelöscht werden. Wenn keine Änderungen vorgenommen wurden, erscheint die Meldung: "NO CHANGES TO RECORD LIST" (Datensatzliste unverändert). Weitere Informationen zum Thema Auswahl des Feldinhalts von erfassten Daten finden Sie im Abschnitt "Inhalt auswählen" weiter vorne in diesem Kapitel.
 - Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Commit Content. (= Gerätesteuerung > Einstellungen Messwerterfassung > Inhalt speichern).

CHANGE LREC ERASE LREC I	C DATA AND LOG FILE DATA? MMIT		CHANGE LREC DATA AND ERASE LREC LOG FILE DATA? ← COMMIT ARE YOU SURE YOU WANT TO? PRESS ➡ TO CONFIRM ERASURE
RANGE AVG	DIAGS ALARM		RANGE AVG DIAGS ALARM
Inhalt auf Standardeinstellung zurücksetzen	Der "Reset to Default Co der Datensatzfelder in do des ausgewählten Daten Informationen zum The Daten finden Sie im Abs diesem Kapitel.	onto er 1 sat ma chi	ent"-Bildschirm dient dazu, alle Inhalte Messwerterfassung auf Standardwerte ztyps zurückzusetzen. Weitere Auswahl des Feldinhalts von erfassten nitt "Inhalt auswählen" weiter vorne in
	• Wählen Sie im Haup Datalogging Settings (= Gerätesteuerung Inhalt auf Standarde	tm >] > E ein	enü: Instrument Controls > Reset to Default Content. Einstellungen Messwerterfassung > stellung zurücksetzen).
RESET LREC I ERASE LREC I	DATA AND _OG FILE DATA?		RESET LREC DATA AND ERASE LREC LOG FILE DATA?

RESET LREC DATA AND ERASE LREC LOG FILE DATA? ← RESET ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM RESET

RANGE AVG DIAGS ALARM

RANGE AVG DIAGS ALARM

Messwerterfassung
konfigurierenDer "Configure Datalogging"-Bildschirm befasst sich mit der
Konfiguration der Messwerterfassung für den aktuellen
Datensatztyp.

 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Configure Datalogging. (= Gerätesteuerung > Einstellungen Messwerterfassung > Messwerterfassung konfigurieren).

	DATALOGGING SETTINGS: >LOGGING PERIOD MIN 60 MEMORY ALLOCATION % 50 DATA TREATMENT AVG FLAG STATUS DATA ON RANGE AVG DIAGS ALARM	
Erfassungsperiode in Minuten	Der "Logging Period Min"-Bildschirm dient dazu, die Aufzeichnungsperiode in Minuten für das jeweils gewählte Datenformat (srec oder lrec) festzulegen. Zur Auswahl stehen: off, 1, 5, 15, 30 und 60 Minuten (Standardwert).	
	 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Configure Datalogging > Logging Period Min. (= Gerätesteuerung > Einstellungen Messwerterfassung > Messwerterfassung konfigurieren > Erfassungsperiode in Min. 	
	SET PERIOD FOR SREC: CURRENTLY: 5 MIN SET TO: OFF ? ★♥ CHANGE VALUE ← SAVE '	
	RANGE AVG DIAGS ALARM	
Speicherzuordnung in Prozent	Auf dem "Memory Allocation Percent"-Bildschirm wird ein Prozentsatz festgelegt, den der ausgewählte Datensatztyp (lrecs oder srecs) im gesamten Speicher in Anspruch nehmen darf. Es stehen Prozentsätze von 0 bis 100 % in 10er-Schritten zur Verfügung. Die Änderung dieses Wertes führt dazu, dass erfasste	

Daten für beide Datensatztypen gelöscht werden, und die Änderung des Prozentsatzes bei einem Datensatztyp führt automatisch zur Änderung des anderen.
Wählen Sie im Hauptmenü: Instrument Controls >

 Wahlen Sie im Hauptmenu: Instrument Controls > Datalogging Settings > Configure Datalogging > Memory Allocation %

(= Gerätesteuerung > Einstellungen Messwerterfassung >

Messwerterfassung konfigurieren > Speicherzuordnung in %).

 SET PERCENT LRECS:
 SET PERCENT LRECS:

 CURRENTLY:
 50%

 SET TO:
 30% ?

 CHANGE VALUE
 SAVE

 RANGE AVG DIAGS ALARM
 RANGE AVG DIAGS ALARM

Datenaufbereitung Der "Data Treatment"-Bildschirm dient dazu, die Art der Aufbereitung für den gewählten Datensatztyp festzulegen: ob die Daten über das Intervall gemittelt werden sollen, ob das während des Intervalls gemessene Minimum oder Maximum oder der aktuelle Wert (zuletzt gemessene Wert) angezeigt werden soll. Die Datenaufbereitung erfolgt nicht für alle Daten, sondern nur für die Konzentrationsmessung. Alle anderen Daten verzeichnen den aktuellen Wert am Ende des Intervalls.

Hinweis Alle Geräte der *i*Series besitzen dieses Merkmal, es wird jedoch empfohlen, dass **nur** die Einstellung auf den aktuellen Wert ("cur") verwendet wird, da die Mittelung der Messwerterfassung zusätzlich zur normalen Mittelung der Konzentrationswerte durchgeführt wird.

 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Configure Datalogging > Data Treatment.
 (= Carätastauarung > Finstallungan Massuartarfassu

(= Gerätesteuerung > Einstellungen Messwerterfassung > Messwerterfassung konfigurieren > Datenaufbereitung).

```
SET LREC DATA TYPE:

CURRENTLY: AVG

SET TO: CUR ?

↑♥ CHANGE VALUE ← SAVE '

RANGE AVG DIAGS ALARM
```

Daten Flag-Status

Im "Flag Status Data" Screen können die Daten des Flag-Status für den ausgewählten Datensatztyp entweder auf EIN oder AUS eingestellt werden.

 Wählen Sie im Hauptmenü: Instrument Controls > Datalogging Settings > Configure Datalogging > Flag Status Data.

(= Gerätesteuerung > Einstellungen Messwerterfassung Messwerterfassung konfigurieren > Daten Flag-Status).

```
SET LREC FLAG STATUS DATA:
CURRENTLY: OFF
SET TO: ON ?
★↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM
```

Einstellungen Kommunikation

Über das "Communication Settings"-Menü kann die Kommunikation gesteuert und konfiguriert werden.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings (= Gerätesteuerung > Einstellungen Kommunikation).

COMMUNICATION SETTINGS:
>SERIAL SETTINGS
INSTRUMENT ID
GESYTEC SERIAL NO
COMMUNICATION PROTOCOL
STREAMING DATA CONFIG

RANGE AVG DIAGS ALARM

TCP/IP SETTINGS

- **Serielle Einstellungen** Über das "Serial Setting"-Untermenü kann die serielle Kommunikation gesteuert und konfiguriert werden.
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings> Serial Settings
 (= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen).

SERIAL SETTING	GS:	
>BAUD RATE	9600	
DATA BITS	8	
PARITY	NONE	
STOP BITS	1	
RS-232/485 SEL	RS-232	
RANGE AVG DIAGS ALARM		

- **Baudrate** Auf dem "Baud Rate"-Bildschirm wird die Baudrate der RS-232/RS-485-Schnittstelle eingestellt. Es stehen folgende Baudraten zur Verfügung: 1200, 2400, 4800, 9600, 19200, 38400, 57600 und 115200. Werkseitig ist eine Baudrate von 9600 voreingestellt, um eine Rückwärtskompatibilität zu den Vorgängergeräten der C-Serie zu gewährleisten.
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Serial Settings > Baud Rate (= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen > Baudrate).

```
BAUD RATE:

CURRENTLY: 9600

SET TO: 19200 ?

CHANGE VALUE

CHANGE VALUE

RANGE AVG DIAGS ALARM
```

- **Datenbits** Auf dem "Data Bits"-Bildschirm kann die Zahl der seriellen Datenbits auf 7 bzw. 8 (Standardwert) eingestellt werden.
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Serial Settings > Data Bits. (= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen > Datenbits).

```
DATA BITS:

CURRENTLY: 8

SET TO: 7?

CHANGE VALUE

SAVE VALUE

RANGE AVG DIAGS ALARM
```

Parität

Auf dem "Parity"-Bildschirm kann das Paritätsbit für den seriellen Port auf "None" (keine = Standardeinstellung), "Even" (gerade) oder "Odd" (ungerade) eingestellt werden.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Serial Settings > Parity (= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen > Parität)

PARITY: CURRENTLY: SET TO:	NONE ODD ?
♣ CHAN ♠ SAVE \	IGE VALUE /AL ['] UE
RANGE AVG	DIAGS ALARM

- **Stoppbits** Auf dem "Stop Bit"-Bildschirm kann die Anzahl der Stoppbits für den seriellen Port auf 1 (Standardwert) oder 2 eingestellt werden.
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Serial Settings > Stop Bits (= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen > Stoppbits)

STOP BITS: CURRENTLY: SET TO:	1 2 ?
♣♣ CHAN ♣ SAVE	IGE VALUE /AL ['] UE
RANGE AVG [DIAGS ALARM

RS-232/RS-485 auswählen

Auf dem "RS-232/RS-485"-Bildschirm kann der Benutzer zwischen der Schnittstellenspezifikation RS-232 und RS-485 für die serielle Datenkommunikation wählen.

Schäden am Gerät. Bevor Sie die Wahl der Schnittstelle RS-232 oder RS-485 ändern, ziehen Sie bitte das serielle Kabel, um Schäden an Geräten, die zum aktuellen Zeitpunkt mit dem Messgerät verbunden sind, zu vermeiden. •

• Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Serial Settings > RS-232/485 Selection.

(= Gerätesteuerung > Einstellungen Kommunikation > serielle Einstellungen > RS-232/485).

RS-232/RS-485 SELECT: ** WARNING ** DISCONNECT THE SERIAL CABLES BEFORE CHANGING THE SELECTIONI ← TO CONTINUE

RANGE AVG DIAGS ALARM

RS-232/RS-485 SELECT: CURRENTLY: RS-232 SET TO: RS-485 ? MAKE SURE THAT THE CABLE IS OFF: PRESS → TO CONFIRM ← TOGGLE VALUE

RANGE AVG DIAGS ALARM

Gerätekennnummer (ID)

Auf dem "Instrument ID"-Bildschirm kann der Benutzer die Gerätekennnummer bearbeiten. Mit der Kennnummer wird das Gerät identifiziert, wenn C-Link- oder MODBUS-Protokolle zur Steuerung des Gerätes oder zur Datenerhebung verwendet werden. Die Bearbeitung der Kennnummer kann notwendig werden, wenn zwei oder mehr Geräte desselben Modells an einen Computer angeschlossen sind. Gerätekennnummern von 0 bis 127 sind zulässig. Werkseitig ist für das Messgerät Modell 5030*i* standardmäßig 14 als ID-Nr. eingestellt. Ausführliche Informationen zum Thema Gerätekennnummer finden Sie im Anhang B "C-Link Protokoll" oder Anhang C "MODBUS Protokoll".

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Instrument ID (= Gerätesteuerung > Einstellungen Kommunikation > Geräte ID).

INSTRUMENT ID: CURRENTLY: 14 SET TO: 16 ?	
♣ CHANGE VALUE← SAVE VALUE	
RANGE AVG DIAGS ALARM	
	-
m "Gesytec Serial Number" Screen wird die	Seriennum

Gesytec Seriennummer Im "Gesytec Serial Number" Screen wird die Seriennummer des Gesytec-Protokolls eingestellt. Die Standard-Einstellung ist Null. Weitere Infos über die Seriennummer finden Sie in Anhang D, "Gesytec (BH) Protokoll".

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Gesytec Serial No. (= Gerätesteuerung > Einstellungen Kommunikation > Gesytec Seriennr.).

```
GESYTEC SERIAL NO:

CURRENTLY: 0

SET TO: 1 ?

CHANGE VALUE

SAVE VALUE

RANGE AVG DIAGS ALARM
```

Kommunikations-
protokollAuf dem "Communication Protocol"-Bildschirm kann das
Protokoll für serielle Kommunikation geändert werden. Folgende
Einstellungen sind möglich: C-Link, MODBUS, Geysitech und
Streaming-Daten.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Communication Protocol. (= Gerätesteuerung > Einstellungen Kommunikation > Kommunikationsprotokoll). COMMUNICATION PROTOCOL: CURRENTLY: CLINK SET TO: STREAMING ? CHANGE VALUE SAVE VALUE

RANGE AVG DIAGS ALARM

Streaming-Daten konfigurieren

Mit Hilfe des "Streaming Data Configuration"-Menüs können die 8 Ausgänge für die Streaming-Daten, das Streaming-Intervall, das aktuelle Datenformat und die Einstellung des aktuellen Zeitstempels konfiguriert werden. Das "Choose Stream Data"-Untermenü enthält ein Verzeichnis der Analogausgang-Signalgruppen, aus denen ausgewählt werden kann. Zur Auswahl stehen: "Concentrations" (Konzentrationen), "Other Measurements" (sonstige Messungen) und "Analog Inputs" (Analogeingänge, wenn die optionale I/O-Erweiterungskarte installiert ist).

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config. (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten).

STREAMING D	ATA CONFIG	
>INTERVAL	10 SEC	
ADD LABELS	NO	
PREPEND TIM	IESTAMP YES	
ADD FLAGS	YES	
ITEM 1	PM ₽	
RANGE AVG	DIAGS ALARM	

Streaming-Daten	Auf dem "Streaming Data Interval"-Bildschirm kann eingestellt
Intervall	werden, wie häufig ein neuer Datensatz erzeugt werden soll.
	Folgende Intervallzeiten stehen zur Auswahl: 1, 2, 5, 10, 20, 30,
	60, 90, 120, 180, 240 und 300 Sekunden.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config > Interval. (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten > Intervall).

	STREAMING DATA INTERVAL: CURRENTLY: 10 SEC SET TO: 20 SEC ? CHANGE VALUE SAVE VALUE	
	RANGE AVG DIAGS ALARM	
	KANGE AVG DIAGS ALANN	
	Hinweis "Add Labels" (Beschriftungen hinzufügen), "Prepend Timestamp" (Zeitstempel voranstellen) und "Add Flags" (Flags hinzufügen) sind Menüpunkte, die, wenn ausgewählt, ein- bzw. ausgeschaltet werden. •	
Streaming-Daten auswählen	Auf dem "Choose Stream Data"-Bildschirm wird eine Liste von Datentypen angeboten, die per Datenstreaming übertragen werden können. Zur Auswahl stehen: "Concentrations" (Konzentrationen), "Other Measurements" (sonstige Messungen) und "Analog Inputs" (Analogeingänge, wenn die I/O- Erweiterungskarte installiert ist).	
	 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config > Item 1–8. (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten > Element 1-8). 	
	CHOOSE STREAM DATA: >CONCENTRATIONS OTHER MEASUREMENTS ANALOG INPUTS	
	RANGE AVG DIAGS ALARM	
Konzentrationen	Über den "Concentrations"-Bildschirm kann der Benutzer dem ausgewählten Datenstreaming-Element einen der Konzentrationswerte zuordnen. Das aktuell ausgewählte Element wird durch "<" gekennzeichnet. Die Auswahl eines Elements wird durch Drücken der 🕶 -Taste gespeichert	
	• vvaluen Sie im Hauptmenu: instrument Controls >	

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config > select Item > Concentrations (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten > Element auswählen > Konzentrationen).

CONCENTRATIONS: >NONE PM < AVG PM		
NEPH SHARP		
RANGE AVC	G DIAGS ALARM	

AVG SHARP AVG NEPH

Andere Messungen
 Über den "Other Measurements"-Bildschirm kann der Benutzer dem ausgewählten Datenstreaming-Element einen der anderen zur Verfügung stehenden Messtypen zuordnen. Das aktuell ausgewählte Element wird durch "<--" gekennzeichnet. Die Auswahl eines Elementes wird durch Drücken der ← -Taste gespeichert. Beschreibungen der allg. Flags und der Flags für Detektor A finden Sie in Abb. 3–5 und Abb. 3–6.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config > select Item > Other Measurements (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten > Element auswählen > andere Messungen).

OTHER MEASUREMENTS: >NONE BARO PRES VACUUM FLOW PRES AMB RH
RANGE AVG DIAGS ALARM
SAMP RH AMB TEMP BRD TEMP FLOW TEMP FLOW VOL BETA BETA RAW ALPHA RAW MASS BETA ZERO EXT ALARMS NEPH TEMP NEPH RH NEPH RH NEPH REF BETA REF COMMON FLAGS DET FLAGS MASS COMP

- Analogeingänge
 Über den "Analog Inputs"-Bildschirm kann der Benutzer dem ausgewählten Streamingdaten-Element ein analoges Eingangssignal (keines oder Analogeingänge von 1−8) zuordnen. Das aktuell ausgewählte Element wird durch "<--" gekennzeichnet. Die Auswahl eines Elements wird durch Drücken der ← Taste gespeichert.
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > Streaming Data Config > select Item > Analog Inputs.
 (= Gerätesteuerung > Einstellungen Kommunikation > Konfiguration Streaming-Daten > Element auswählen > Analogeingänge).

	ANALOG IN 1 ANALOG IN 2 ANALOG IN 3 ANALOG IN 4		
	RANGE AVG DIAGS ALARM		
TCP/IP Einstellungen	Das "TCP/IP Settings"-Menü dient dazu, die für Ethernet- Kommunikation erforderlichen Parameter zu definieren.		
	Hinweis Wenn einer dieser Parameter geändert wird, muss das Messgerät aus- und wieder eingeschaltet werden, damit die Änderung wirksam wird. •		
	 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen). 		
	TCP/IP SETTINGS: >USE DHCP OFF IP ADDR 10.209.40.149 NETMASK 255.255.252.0 GATEWAY 10.209.42.1 HOST NAME ISERIES↓		
	RANGE AVG DIAGS ALARM		
	NTP SVR 10.209.43.237		
DHCP Protokoll verwenden	Über den "Use DHCP"-Bildschirm wird spezifiziert, ob das DHCP Protokoll (Dynamic Host Configuration Protocol) verwendet werden soll oder nicht. Wenn die DHCP-Einstellung aktiviert ist, erteilt das Netzwerk dynamisch eine IP-Adresse für das Messgerät.		
	• Wählen Sie im Hauptmenii: Instrument Controls >		

ANALOG INPUTS:

>NONE

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > Use DHCP (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > DHCP verwenden).

DHCP: CURRENTLY: SET TO:	OFF ON ?	
← TOGGLE VALUE CYCLE POWER TO CHANGE DHCP		
RANGE AVG DIAGS ALARM		

IP Adresse

Über den "IP Address"-Bildschirm wird die IP-Adresse bearbeitet. Die IP-Adresse kann nur verändert werden, wenn das DHCP-Protokoll ausgeschaltet ist. Wenn es eingeschaltet ist, erscheint die Nachricht "NOT SETTABE IF DHCP IS ON" (nicht einstellbar, wenn DHCP eingeschaltet ist). Ausführliche Informationen zum Thema DHCP-Protokoll finden Sie auf der vorherigen Seite unter "DHCP Protokoll verwenden".

• Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > IP Addr. (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > IP Adresse).

- Netzmaske Auf dem "Netmask"-Bildschirm kann die Netzmaske bearbeitet werden. Die Netzmaske dient dazu, das Subnetz festzulegen, über das das Messgerät direkt mit anderen Geräten kommunizieren kann. Die IP-Adresse kann nur verändert werden, wenn das DHCP-Protokoll ausgeschaltet ist. Wenn es eingeschaltet ist, erscheint die Nachricht "NOT SETTABE IF DHCP IS ON" (nicht einstellbar, wenn DHCP eingeschaltet ist). Ausführliche Informationen zum Thema DHCP-Protokoll finden Sie unter "DHCP Protokoll verwenden".
 - Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > Netmask

(= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > Netzmaske).

Standard-GatewayÜber den "Default Gateway"-Bildschirm wird die Gateway-
Adresse bearbeitet. Die Standardgateway-Adresse kann nur
verändert werden, wenn das DHCP-Protokoll ausgeschaltet ist.
Wenn es eingeschaltet ist, erscheint die Nachricht "NOT
SETTABE IF DHCP IS ON" (nicht einstellbar, wenn DHCP
eingeschaltet ist). Ausführliche Informationen zum Thema
DHCP-Protokoll finden Sie unter "DHCP Protokoll verwenden".
Jeder Datenverkehr an Adressen, die sich nicht auf dem lokalen
Subnetz befinden, wird an diese Adresse umgeleitet.

 Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > Gateway. (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > Gateway).

Host-Name Auf dem "Host Name"-Bildschirm kann der Host-Name bearbeitet werden. Wenn das DHCP-Protokoll aktiviert ist, wird dieser Name an den DHCP-Server weitergemeldet.

> Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > Host Name. (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > Host-Name).
HOST NAME: CURRENT: ISERIES SERIES ABCDEFGHIJKLMN BKSP OPQRSTUVWXYZ PAGE 0123456789 ./- SAVE RANGE AVG DIAGS ALARM

NTP-Server Auf dem "Network Time Protocol (NTP) Server"-Bildschirm kann die IP-Adresse des NTP-Servers bearbeitet werden. Ein NTP-Server wird eingesetzt, um die Echtzeituhr des Gerätes periodisch mit dem Standard zu synchronisieren. Ausführliche Informationen zum Thema NTP-Server sowie ein Verzeichnis öffentlicher Server finden Sie unter <u>http://www.ntp.org</u>.

> Wählen Sie im Hauptmenü: Instrument Controls > Communication Settings > TCP/IP Settings > NTP Svr. (= Gerätesteuerung > Einstellungen Kommunikation > TCP/IP Einstellungen > NTP Server).

I/O Konfiguration Das Menü "I/O-Konfiguration" dient zur Konfiguration des I/O-Systems des Messgerätes. Die Konfiguration der Analogeingänge wird nur angezeigt, wenn die optionale I/O Erweiterungskarte installiert ist.

> Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration.
> (= Gerätesteuerung > I/O Konfiguration).

I/O CONFIGURATION: >OUTPUT RELAY SETTINGS DIGITAL INPUT SETTINGS ANALOG OUTPUT CONFIG ANALOG INPUT CONFIG

RANGE AVG DIAGS ALARM

Einstellungen Ausgangsrelais Und Schultzeige ein Verzeichnis mit 10 verfügbaren digitalen Ausgangsrelais; hier können der logische Zustand und Geräteparameter für das ausgewählte Relais eingestellt werden.

> **Hinweis** Es kann bis zu einer Sekunde dauern, bis die digitalen Ausgänge den zugewiesenen Zustand anzeigen...

 Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Output Relay Settings (= Gerätesteuerung > I/O Konfiguration > Einstellungen Ausgangsrelais).

OUTPUT RELAY SETTINGS:			
>1	NOP	CONC ALARM	
2	NOP	LOCAL/REMOTE	
3	NOP	UNITS	
4	NOP	GEN ALARM	
5	NOP	NONE 🖶	
R/	ANGE	AVG DIAGS ALARM	

Logischer Zustand Das "Logic State"-Menü dient dazu, das ausgewählte I/O-Relais entweder auf normalerweise offen oder normalerweise geschlossen einzustellen. Im Standardzustand ist das Relais offen, was anzeigt, dass ein Relais zwischen dem digitalen Ausgangspin und der Masse normalerweise offen ist und sich schließt, um die digitale Ausgangsaktion auszulösen.

• Durch Drücken der 🔶 -Taste können Sie zwischen den logischen Zuständen hin- und herschalten und den Zustand auf normalerweise offen oder normalerweise geschlossen einstellen.

OUTPUT RELAY SETUP: >LOGIC STATE OPEN INSTRUMENT STATE

RANGE AVG DIAGS ALARM

Gerätezustand Über das "Instrument State"-Untermenü kann der Benutzer den Gerätezustand einstellen, der dem ausgewählten Relaisausgang zugeordnet ist. In einem Untermenü stehen in Form einer Liste Signaltypen von Alarm bzw. kein Alarm zur Auswahl.

> • Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Output Relay Settings > select Relay > Instrument State.

(= Gerätesteuerung > I/O Konfiguration > Einstellungen Ausgangsrelais > Relais auswählen > Gerätezustand).

CHOOSE SIGNAL TYPE: >ALARMS NON-ALARM

RANGE AVG DIAGS ALARM

- Alarme Auf dem "Alarms"-Bildschirm kann der Benutzer den Alarmzustand für den ausgewählten Relaisausgang einstellen. Das aktuell ausgewählte Element wird durch "<--" gekennzeichnet. Der Alarmzustand für die I/O-Karte wird nur angezeigt, wenn die optionale I/O-Erweiterungskarte installiert ist.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Output Relay Settings > select Relay > Instrument State > Alarms.
 (= Gerätesteuerung > I/O Konfiguration > Einstellungen Ausgangsrelais > Relais auswählen > Gerätezustand > Alarm).

ALARM STATUS ITEMS: >NONE GEN ALARM CONC ALARM <---INST ALARMS DET ALARMS BET ALARMS RANGE AVG DIAGS ALARM

NEPH ALARMS RH/TEMP ALARMS PRES/VAC ALARMS FLOW ALARMS

- **Kein Alarm** Auf dem "Non-Alarm"-Bildschirm kann der Benutzer den Zustand "kein Alarm" für den ausgewählten Relaisausgang einstellen. Das aktuell ausgewählte Element wird durch "<--" gekennzeichnet.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Output Relay Settings > select Relay > Instrument State > Non-Alarm.

(= Gerätesteuerung > I/O Konfiguration > Einstellungen Ausgangsrelais > Relais auswählen > Gerätezustand > Kein Alarm).

NON ALARM STATUS ITEMS:	
>NONE	
LOCAL/REMOTE	
SERVICE	
UNITS	

RANGE AVG DIAGS ALARM

Einstellungen Digitaleingänge Digitaleingänge Das "Digital Input Settings"-Menü zeigt ein Verzeichnis mit 16 verfügbaren digitalen Eingängen; hier können der logische Zustand sowie Geräteparameter für das ausgewählte Relais eingestellt werden.

Hinweis Die Digitaleingänge müssen mindestens eine Sekunde lang bestätigt werden, damit die Aktion aktiviert wird.

Hinweis Nicht alle im Messgerät verfügbaren I/Os sind auf der gelieferten Klemmleiste angebracht. Wenn mehr I/Os gewünscht werden, ist ein alternatives Anschlussmittel erforderlich. (Siehe auch Abschnitt "Klemmleiste und Kabelsets".) •

 Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Digital Input Settings. (= Gerätesteuerung > I/O Konfiguration > Einstellungen Digitaleingänge).

DIC	GITAL	INPUT SETTINGS:	
>1	NOP	AOUTS TO FS	
2	NOP	AOUTS TO ZERO	
3	NOP	PUMP CNTRL	
4	NOP	PRES CNTRL	
5	NOP	NONE 🖶	
RA	ANGE	AVG DIAGS ALARM	

Logischer Zustand Das "Logic State"-Menü dient dazu, das ausgewählte I/O-Relais entweder auf normalerweise offen oder normalerweise geschlossen einzustellen. Im Standardzustand ist das Relais offen, was anzeigt, dass ein Relais zwischen dem Pin des digitalen Eingangs und der Masse normalerweise offen ist und sich schließt, um die Aktion des digitalen Eingangs auszulösen.

• Durch Drücken der ← -Taste können Sie zwischen den logischen Zuständen hin- und herschalten und den Zustand auf normalerweise offen oder normalerweise geschlossen einstellen.

DIGITAL INPUT SETUP:			
>LOGIC STATE OPEN			
INSTRUMENT ACTION			
RANGE AVG DIAGS ALARM			

- **Geräteaktion** Mit Hilfe des "Instrument Action"-Untermenüs kann der Benutzer die Aktion des Messgerätes festlegen, die einem ausgewählten Digitaleingang zugeordnet werden soll.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Digital Input Settings > select Relay > Instrument Action.
 (= Gerätesteuerung > I/O Konfiguration > Einstellungen Digitaleingänge > Relais auswählen > Geräteaktion).

	CHOOSE ACTION: >NONE AOUTS TO ZERO < AOUTS TO FS FT COUNT FT CNTRL • RANGE AVG DIAGS ALARM PUMP CNTRL PRES CNTRL PRES CNTRL HT CNTRL A RH/TEMP CNTRL ALARM 1 ALARM 2 ALARM 3
Analogausgänge konfigurieren (Kanal auswählen)	 Das "Analog Output Configuration"-Menü enthält ein Verzeichnis der Analogausgangskanäle, die konfiguriert werden können. Zur Auswahl stehen: alle Spannungskanäle, alle Stromkanäle, einzelne Spannungskanäle 1 bis 6 und einzelne Stromkanäle 1 bis 6 (wenn die optionale I/O-Erweiterungskarte installiert ist). Wählen Sie im Hauptmenü: Instrument Controls > I/O
	Configuration > Analog Output Confi g. (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge). OUTPUT CHANNELS: >ALLOW OVER/UNDER RANGE ALL VOLTAGE CHANNELS
	ALL CURRENT CHANNELS ALL CURRENT CHANNELS VOLTAGE CHANNEL 1 VOLTAGE CHANNEL 2 RANGE AVG DIAGS ALARM

Werte über/unter Messbereich zulassen Über den "Allow Over/Under Range"-Bildschirm kann ausgewählt werden, ob die Analogausgänge den ausgewählten Maximalwert von 100 mV, 1 V, 5 V, 10 V bzw. 20 mA oder den ausgewählten Minimalwert von 0 V, 0 mA bzw. 4 mA überschreiten dürfen oder nicht. Diese Funktion ist standardmäßig eingeschaltet, d. h. für alle Analogausgänge sind 5 % über bzw. unter Messbereich zulässig. • Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Output Config > Allow Over/Under Range.

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge > über/unter Messbereich zulassen).

ALLOW OVER/UNDER RANGE: CURRENTLY: ON SET TO: OFF ?
← TOGGLE VALUE
RANGE AVG DIAGS ALARM

Analogausgang konfigurieren (Aktion auswählen)	Das "Analog Output Configuration"-Menü zeigt eine Liste an, aus der der Benutzer Parameter auswählen kann, die er für den gewählten Analogausgang programmieren möchte. Für die Konfiguration stehen zur Auswahl: "selecting range" (Bereich auswählen), "setting minimum/maximum values" (Minimum/Maximum einstellen) und "choose signal to output" (Signal zu Ausgang wählen).
	• Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Output Config > All Voltage Channels, All Current Channels, Voltage Channel 1–6 or Current Channel 1–6 (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge > Alle Spannungskanäle, alle Stromkanäle, Spannungskanäle 1-6, Stromkanäle 1-6).
	ANALOG OUTPUT CONFIG: >SELECT RANGE SET MINIMUM VALUE SET MAXIMUM VALUE CHOOSE SIGNAL TO OUTPUT
	RANGE AVG DIAGS ALARM
Densiek enersählen	

Bereich auswählen Der "Select Range"-Bildschirm dient dazu, den Hardware-Bereich für den ausgewählten Analogausgangskanal einzustellen. Für die Spannungsausgänge stehen folgende Bereiche zur Verfügung: 0-100 mV; 0-1; 0-5 und 0-10 V. Für die Stromausgänge stehen folgende Bereiche zur Verfügung: 0-20 mA und 4-20 mA.

• Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Output Config > select Channel > Select Range

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge > Kanal auswählen > Bereich auswählen).

SELECT OUTPUT RANGE:			
SELECTED OUTPUT: V ALL CURRENTLY: 0-10V			
SET TO: 0-100mV ?			
♣♣ CHANGE VALUE ← SAVE '			
RANGE AVG DIAGS ALARM			

Minimum und Maximum Waximum Waximum Maximum Wiber die "Minimum Value" und "Maximum Value"-Bildschirme werden jeweils der Null-Wert (O) und der Skalenendwert (100) in Prozent für den gewählten Analogausgangskanal eingestellt. In Tabelle 3–4 finden Sie eine Auswahlliste. Die Bearbeitung der Bildschirme "Set Minimum Output Value" und "Set Maximum Output Value" ist identisch. Das folgende Beispiel zeigt die Bearbeitung anhand des "Set Minimum Value"-Bildschirms.

> Wählen Sie im Hauptmenü: Instrument Controls > IO Configuration > Analog Output Config > select Channel > Set Minimum or Maximum Value (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge > Kanal auswählen > Min. oder max. Wert einstellen).

```
MINIMUM OUTPUT PERCENT:
SELECTED OUTPUT: V ALL
CURRENTLY: N/A %
SET TO: 0000.5 % ?
↑ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM
```

Tabelle 3–4. Analogausgänge – Null bis S	Skalenendwert
--	---------------

Ausgang	Nullwert (0 %)t	Skalenendwert 100%)
PM	Null (0)	Bereichseinstellung
PM Mittel	Null (0)	Bereichseinstellung

Ausgang	Nullwert (0 %)t	Skalenendwert 100%)
Neph	Null (0)	Bereichseinstellung
SHARP	Null (0)	Bereichseinstellung
SHARP Mittel	Null (0)	Bereichseinstellung
Neph Mittel	Null (0)	Bereichseinstellung
Luftdruck	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Vakuum	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Durchflussdruck	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Rel. Feuchte Umg.	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Rel. Feuchte Probenahme	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Umgebungs- temperatur	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Temp Platine	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Temp Durchfluss	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Durchfluss Vol	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Beta	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Beta (Roh)	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Alpha (Roh)	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Masse	-200	5,000
Beta Null	0	65,000

Ausgang	Nullwert (0 %)t	Skalenendwert 100%)
Ext Alarm	0	7,000
Temp Neph	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Rel. Feuchte Neph	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
IRED Neph	Vom Anwender eingestellter min. Alarmwert	Vom Anwender eingestellter max. Alarmwert
Neph Ref	350	2000
Beta Ref	0	65,000
Mass Komp	0	100

Signal zu Ausgang wählen

Der "Choose Signal to Output"-Bildschirm zeigt eine Liste mit den für das Analogausgangssignal zur Verfügung stehenden Wahlmöglichkeiten an. Sie sind in drei Kategorien eingeteilt: "Concentrations" (Konzentrationen), "Other Measurements" (andere Messungen) und "Analog Inputs" (Analogeingänge, wenn die optionale I/O-Erweiterungskarte installiert ist). Damit kann der Benutzer das Ausgangssignal wählen, das jedem Analogkanal zugeordnet werden soll. Nachfolgend ist der "Concentrations"-Bildschirm angezeigt. In Tabelle 3–5 finden Sie nachstehend eine Liste mit den für jede Signalgruppe möglichen Einstellungen.

 Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Output Config > select Channel > Choose Signal to Output (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogausgänge > Kanal auswählen > Signal zu Ausgang wählen).

> CHOOSE SIGNAL TYPE: >CONCENTRATIONS OTHER MEASUREMENTS ANALOG INPUTS

RANGE AVG DIAGS ALARM

CHOOSE SIGNAL - CONC
SELECTED OUTPUT: V1
CURRENTLY: PM
SET TO: NONE ?
♣♣ CHANGE VALUE
RANGE AVG DIAGS ALARM

Tabelle 3–5. Auswahl Signaltypen

Konzentrationen	Andere Messungen	Analogeingänge
Keine	Keine	Keine
Feinstaub	Luftdruck	Analogeingang 1 (wenn I/O- Erweiterungskarte installiert ist)
Feinstaub Mittel	Vakuum	Analogeingang 2 (wenn I/O- Erweiterungskarte installiert ist)
Neph	Durchflussdruck	Analogeingang 3 (wenn I/O- Erweiterungskarte installiert ist)
SHARP	Rel. Feuchte Umgb.	Analogeingang 4 (wenn I/O- Erweiterungskarte installiert ist)
SHARP Mittel	Rel. Feuchte Probenahme	Analogeingang 5 (wenn I/O- Erweiterungskarte installiert ist)
Neph Mittel	Umgebungs- temperatur	Analogeingang 6 (wenn I/O- Erweiterungskarte installiert ist)
	Temp Platine	Analogeingang 7 (wenn I/O- Erweiterungskarte installiert ist)
	Temp Durchfluss	Analogeingang 8 (wenn I/O- Erweiterungskarte installiert ist)
	Durchfluss Vol	
	Beta	
	Beta (Roh)	
	Alpha (Roh)	
	Masse	
	Beta Null	

Konzentrationen	Andere Messungen	Analogeingänge
	Ext. Alarm	
	Neph Temp	
	Neph rel. Feuchte	
	Neph IRED	
	Neph Ref	
	Beta Ref	
	Allg. Flags	
	Det Flags	
	Massenausgleich	

Analogeingänge konfigurieren

Das "Analog Input Configuration"-Menü enthält ein Verzeichnis der 8 Analogeingangskanäle, die konfiguriert werden können. Dieser Bildschirm wird nur angezeigt, wenn die optionale I/O-Erweiterungskarte installiert ist. Für die Konfiguration stehen zur Verfügung: Deskriptor, Einheiten, Dezimalstellen, Tabellenpunkte 1 bis 10 und eine entsprechende Anzahl an gewählten Punkten.

 Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config. (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge).

ANALOG INPUT CONFIG:		
>CHANNEL 1	IN1	
CHANNEL 2	IN2	
CHANNEL 3	IN3	
CHANNEL 4	IN4	
CHANNEL 5	IN5 ₽	
RANGE AVG DIAGS ALARM		

ANALOG INPUT 01 CONFIG:
>DESCRIPTOR IN1
UNITS V
DECIMAL PLACES 2
TABLE POINTS 2
POINT 1
RANGE AVG DIAGS ALARM

POINT 2

- **Deskriptor** Über den "Descriptor"-Bildschirm kann der Benutzer den Deskriptor oder die Bezeichnung für den ausgewählten Analogeingangskanal eingeben. Der Deskriptor wird in der Messwerterfassung und in den Streaming-Daten eingesetzt, um anzuzeigen, welche Daten gesendet werden. Er kann 1 bis 3 Zeichen lang sein und ist standardmäßig auf IN1 bis IN8 (Eingangskanalnummer des Benutzers) eingestellt.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > Descriptor.

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Deskriptor).

```
ANALOG INPUT DESCRIPTOR:
CURRENTLY: IN1
IN1
ABCDEFGHIJKLMN BKSP
OPQRSTUVWXYZ PAGE
0123456789 ./- SAVE
```

RANGE AVG DIAGS ALARM

- **Einheiten** Über den "Units"-Bildschirm kann der Benutzer die Einheiten für den ausgewählten Analogeingangskanal eingeben. Die Einheiten werden auf dem "Diagnostic"-Bildschirm und in der Messwerterfassung und den Streaming-Daten angezeigt. Die Einheiten können 1 bis 3 Zeichen lang sein, als Standardeinheit ist V (Volt) eingegeben.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > Units. (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Einheiten).

ANALOG INPUT UNITS: CURRENTLY: V ABCDEFGHIJKLMN BKSP OPQRSTUVWXYZ PAGE 0123456789 ./- SAVE RANGE AVG DIAGS ALARM

Dezimalstellen Auf dem "Decimal Places"-Bildschirm kann der Benutzer wählen, wie viele Stellen rechts vom Komma (bzw. Dezimalpunkt in der amerikanischen Darstellung) angezeigt werden. o bis 6 Stellen sind möglich, wobei 2 die Standardeinstellung ist.

• Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > Decimal Places.

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Dezimalstellen).

DECIMAL PLACES: CURRENTLY: 2 SET TO: 3? **↑** INC/DEC ← SAVE VALUE RANGE AVG DIAGS ALARM

AnzahlÜber den "Number of Table Points"-Bildschirm kann der
Benutzer festlegen, wie viele Punkte in der Konvertierungstabelle
der Analogeingänge für den gewählten Kanal verwendet werden.
Zwischen den Tabellenpunkten verwendet das Messgerät lineare
Interpolation, um - ausgehend von der Analogeingangsspannung
- den Ablesewert zu ermitteln. Jeder Punkt in der Tabelle besteht
aus einem Analogeingangsspannungswert (0-10,5 V) und einem
entsprechenden Ablesewert. Für lineare Eingaben sind nur zwei
Punkte notwendig; um nicht-lineare Eingaben anzunähern, kann
jedoch eine größere Anzahl von Punkten verwendet werden. Die
Punkte bewegen sich zwischen 2 und 10, wobei 2 die
Standardeinstellung ist.

• Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > Table Points. (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Tabellenpunkte).

TabellenpunkteIm "Table Point"-Untermenü kann der Benutzer individuelle
Tabellenpunkte einrichten.

 Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > Point 1–10

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Punkt 1-10)

TABLE POINT 01 CONFIG: >VOLTS 0.00 USER VALUE 0.00 RANGE AVG DIAGS ALARM

- **Volt** Im "Volt" Screen kann der Bediener die Eingangsspannung für den ausgewählten Tabellenpunkt in der Umrechnungstabelle einstellen (von 0,00 bis 10,50). Die Standardtabelle beinhaltet zwei Punkte. Punkt 1: 0,00 V = 000,0 U und Punkt 2: 10,00 V = 10,0 U, wobei U die vorher eingegebene Maßeinheit darstellt.
 - Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > select Point > Volts (= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Punkt auswählen > Volt).

```
      TABLE POINT 01 VOLTS:

      CURRENTLY:
      0.00

      SET TO:
      00.00

      ←→ MOVE CURSOR

      ↑ ← CHANGE VALUE
      ← SAVE '

      RANGE AVG DIAGS ALARM
```

Benutzerwert Auf dem "User Value"-Bildschirm kann der Benutzer den Ausgangswert für die entsprechende Eingangsspannung des gewählten Tabellenpunktes in der Konvertierungstabelle von -9999999 bis 99999999 einstellen. Die Standardtabelle besteht aus zwei Punkten mit Punkt 1: 0,00 V = 000,0 E und Punkt 2: 10,00 V = 10,0 E, wobei E für die zuvor eingegebene Maßeinheit steht.

> • Wählen Sie im Hauptmenü: Instrument Controls > I/O Configuration > Analog Input Config > select Channel > select Point > User Value

(= Gerätesteuerung > I/O Konfiguration > Konfiguration Analogeingänge > Kanal auswählen > Punkt auswählen > Benutzerwert).

```
TABLE POINT 01 USER VAL:

CURRENTLY: 0.00

SET TO: 00000.0

←→ MOVE CURSOR

↑♥ CHANGE VALUE ← SAVE '

RANGE AVG DIAGS ALARM
```

Bildschirmkontrast Über den "Screen Contrast"-Bildschirm kann der Kontrast der Anzeige geändert werden. Intensitätswerte zwischen 0 und 100 % in 5er-Schritten stehen zur Auswahl. Die Änderung des Bildschirmkontrastes kann notwendig sein, wenn das Gerät bei extremen Temperaturen betrieben wird.

Hinweis Die optimale Kontrasteinstellung ändert sich mit der Temperatur.

Hinweis Die optimale Kontrasteinstellung ist bei jeder LCD-Anzeige anders. Wenn das LCD-Display ausgetauscht wird, kann eine Neueinstellung des Kontrastes erforderlich sein. •

Hinweis Wenn der Anzeigekontrast nicht optimal ist, der Inhalt auf dem Bildschirm aber erkennbar ist, wählen Sie Instrument Controls > Screen Contrast und stellen Sie den Kontrast ein. Wenn der Inhalt auf dem Bildschirm nicht erkennbar ist, stellen Sie den Kontrast über den C-Link-Befehl "set contrast 10" auf "mid-range" ein und nehmen anschließend die Feineinstellung vor. Weitere Informationen zu diesem Befehl finden Sie in Anhang B unter "Kontraststufen", "C-Link Protokollbefehle".

• Wählen Sie im Hauptmenü: Instrument Controls > Screen Contrast.

(= Gerätesteuerung > Bildschirmkontrast).

Service Modus Im "Service Mode"-Bildschirm können Sie den Service-Modus ein- oder ausschalten. Das Einschalten des Service-Modus ("ON") blockiert alle Fernsteuerungsaktionen und eröffnet gleichzeitig den Zugang zu Parametern und Funktionen, die bei der Durchführung von Einstellungen und Diagnosen am Messgerät Modell 5030*i* hilfreich sind. Wenn der Service-Modus eingeschaltet ist, erscheint das Servicesymbol (Schraubenschlüssel) auf der Statuszeile. Weitere Informationen zum Thema Service-Modus finden Sie unter "Service Menü" an späterer Stelle in diesem Kapitel.

> **Hinweis** Der Service-Modus sollte nach Beendigung der Einstellungen wieder ausgeschaltet werden, da er den ferngesteuerten Betrieb nicht zulässt. •

• Wählen Sie im Hauptmenü: Instrument Controls > Service Mode.

(= Gerätesteuerung > Service Modus).

Datum/Zeit Im "Date/Time"-Bildschirm kann der Benutzer Systemdatum und -uhrzeit (im 24-Stunden-Format) anzeigen und ändern. Der Zeitgeber wird über eine eigene Batterie versorgt, wenn das Gerät ausgeschaltet ist.

• Wählen Sie im Hauptmenü: Instrument Controls > Date/Time (= *Gerätesteuerung > Datum/Zeit*).

DATE AND TIME: 19 MAR 2005 12:34:56 PRESS ← TO EDIT	DATE AND TIME: 19 MAR 2005 12:34:56 ? SETTING: DAYS → SET MONTHS ↓ CHANGE, VALUE ↓ SAVE VALUE
RANGE AVG DIAGS ALARM	RANGE AVG DIAGS ALARM

Zeitzone Auf dem "Timezone"-Bildschirm kann die Zeitzone für den NTP-Server eingestellt werden. Hier wird die Zeitzone, in der das Messgerät bedient wird, eingestellt. Wenn die genaue Zeitzone auf der Liste nicht angezeigt wird, kann sie über den C-LINK "tz"-Befehl (siehe Ausführungen in Anhang B) eingegeben werden. Folgende Zeitzonen stehen zur Auswahl: UTC (GMT), EST (GMT+5), CST (GMT+6), MST (GMT+7), PST (GMT+8), YST (GMT+9), HST (GMT+10), NST (GMT+11), DLW (GMT+12), CET (GMT-1), EET (GMT-2), BST (GMT-3), DLT (GMT-4), ECH (GMT-5), FOX (GMT-6), GLF (GMT-7), CCT (GMT-8), JST (GMT+9), GST (GMT-10), LMA (GMT-11), DLE (GMT-12), EDT (GMT+5/4), CDT (GMT+6/5), MDT (GMT+7/6), and PDT (GMT+8/7).

Hinweis Im Feld für die aktuelle Zeitzone kann "NULL" stehen,
wenn die Zeitzone zum ersten Mal eingestellt wird oder wenn die
Zeitzone mit einem C-Link-Befehl gelöscht wurde. •

• Wählen Sie im Hauptmenü: Instrument Controls > Timezone (= *Gerätesteuerung* > *Zeitzone*).

RANGE AVG DIAGS ALARM

Menü "Diagnose" Über das "Diagnostics"-Menü erhält man Zugang zu den Diagnoseinformationen und -funktionen. Dieses Menü ist bei der Fehlersuche und -behebung am Gerät hilfreich. Ablesewerte und Spannungswerte der Analogeingänge werden nur angezeigt, wenn die optionale I/O-Erweiterungskarte installiert ist.

• Wählen Sie im Hauptmenü: Diagnostics (= Diagnose).

DIAGNOSTICS: >PROGRAM VERSIONS VOLTAGES RH/TEMPERATURE PRESSURE/VACUUM FLOW
RANGE AVG DIAGS ALARM
DETECTOR STATUS NEPHELOMETER STATUS CRn
ANALOG INPUT READINGS
ANALOG INPUT VOLTAGES
DIGITAL INPUTS
RELAY STATES
TEST ANALOG OUTPUTS
INSTRUMENT CONFIGURATION

Programm-Versionen Der "Program Versions"-Bildschirm (nur Anzeige) zeigt die Versionsnummern der installierten Programme an. Bitte notieren Sie sich die Modellbezeichnung Ihres Gerätes und die Programmversion, bevor Sie uns mit Fragen zu Ihrem Gerät kontaktieren.

• Wählen Sie im Hauptmenü: Diagnostics > Program Versions (= Diagnose > Programmversionen).

PROGRAM VERSIONS: PRODUCT: MODELL 5030i VERSION: 00.00.32.073 FIRMWARE: 10.22.95

RANGE AVG DIAGS ALARM

Spannungen Das Menü "Voltages" zeigt die aktuell festgestellten Spannungswerte an. Mit Hilfe dieser Anzeige kann die Stromversorgung schnell auf niedrige oder schwankende Spannungswerte überprüft werden, ohne dass dazu ein Spannungsmesser benutzt werden muss. Der Menüpunkt "I/O Board" wird nur angezeigt, wenn die optionale I/O-Erweiterungskarte installiert ist.

• Wählen Sie im Hauptmenü: Diagnostics > Voltages (= *Diagnose* > *Spannungen*).

VOLTAGES: >MOTHERBOARD INTERFACE BOARD I/O BOARD DETECTOR BOARD

RANGE AVG DIAGS ALARM

Spannungswerte
MotherboardDer "Motherboard"-Bildschirm (nur Anzeige) zeigt die
Spannungswerte des Motherboards an.

 Wählen Sie im Hauptmenü: Diagnostics > Voltages > Motherboard
 Diagnoses > Grammagen > Mathemboard

(= Diagnose > Spannungen > Motherboard).

MOTHERBOARD VOLTAGES:		
3.3 SUPPLY	3.3 V	
5.0 SUPPLY	5.0 V	
15.0 SUPPLY	15.0 V	
24.0 SUPPLY	24.1 V	
-3.3 SUPPLY	-3.3 V	
RANGE AVG D	DIAGS ALARM	

Spannungen

Interface-Karte

Der "Interface Board"-Bildschirm (nur Anzeige) zeigt die Spannungswerte der Mess-Interface-Karte an.

 Wählen Sie im Hauptmenü: Diagnostics > Voltages > Interface Board

(= Diagnose > Spannungen > Interface-Karte

INTERFACE BOARD VOLTAGES: 3.3 SUPPLY 3.3 V 5.0 SUPPLY 5.0 V 15.0 SUPPLY 15.0 V 24.0 SUPPLY 24.0 V -15.0 SUPPLY -15.0 V RANGE AVG DIAGS ALARM

Spannungen I/O-Karte

arte Der "I/O-Board"-Bildschirm (nur Anzeige) zeigt die Spannungswerte der I/O-Erweiterungskarte-Karte an. Dieser Bildschirm wird nur angezeigt, wenn die optionale I/O-Erweiterungskarte installiert ist.

> Wählen Sie im Hauptmenü: Diagnostics > Voltages > I/O Board (= Diagnose > Spannungen > I/O-Karte).

	I/O BOARD VOLTAGES: 3.3 SUPPLY 3.3 V 5.0 SUPPLY 5.0 V 24.0 SUPPLY 24.0 V -3.3 SUPPLY -3.3 V		
	RANGE AVG DIAGS ALARM		
Spannungen Detektor-Karte	Der "Detector Board"-Screen (nur Anzeige) zeigt die Spannungswerte auf der Detektor-Karte an.		
	 Wählen Sie im Hauptmenü: Diagnostics > Voltages > Detector Board (= Diagnose > Spannungen > Detektor-Karte). 		

DETECTOR BOARD:		
5.0 SUFFLT 5.0 V		
RANGE AVG	DIAGS ALARM	

Spannungen Nephelometer-Karte

Die Anzeige "Nephelometer-Karte" (nur Anzeige) zeigt die Spannungswerte auf der Nephelometer-Karte an.

 Wählen Sie im Hauptmenü: Diagnostics > Voltages > Nephelometer Board
 (= Diagnose > Spannungen > Nephelometer-Karte).

-7.5 SUPPLY -7.5 V

Rel. Luftfeuchte /Temperatur

Im Screen "RH/Temperature" (nur Anzeige) werden die Ablesewerte für aktuelle relative Luftfeuchte und Temperatur angezeigt. Die Platinen-Temperatur ist die von einem Sensor gemessene Lufttemperatur. Der Sensor befindet sich auf der Mess-Interface-Karte.

• Wählen Sie im Hauptmenü: Diagnostics > RH/Temperature (= Diagnose > Rel. Luftfeuchte/Temperatur).

RH/TEMPERATU	JRES:
>AMBIENT RH	40.0 %
SAMPLE RH	36.4 %
AMBIENT TEMP	22.9 °C
FLOW TEMP	23.9 °C
BOARD TEMP	24.9 °C ↓
RANGE AVG D	IAGS ALARM

Druck/Vakuum

Im "Screen Pressure/Vacuum" (nur Anzeige) werden die aktuellen Druckwerte angezeigt. Der Druck wird über einen Druckaufnehmer gemessen. Das Vakuum bezeichnet das Vakuum unter dem Filterband. Der Durchflussdruck ist die Druckdifferenz über der Blende.

 Wählen Sie im Hauptmenü: Diagnostics > Pressure/Vacuum (= Diagnose > Druck/Vakuum).

PRESSURE/VACUUM: BAROMETRIC 760.1 mmHg VACUUM 60.5 mmHg FLOW 21.5 mmHg
RANGE AVG DIAGS ALARM

- **Durchfluss** Im Screen "Flow" (nur Anzeige) wird der aktuelle Probenahmedurchfluss angezeigt. Der Durchfluss wird von den internen Sensoren auf der Druck-Platine gemessen.
 - Wählen Sie im Hauptmenü: Diagnostics > Flow (= *Diagnose* > *Durchfluss*).

FLOW: 16.67 LPM

RANGE AVG DIAGS ALARM

Detektorstatus Der "Detector Status" Screen (nur Anzeige) zeigt die folgenden Anzeigewerte an: aktuelle Probenahmemasse, Alpha- und Beta-Zählerstände.

> **Hinweis** Es wird nur dann eine Massenwert berechnet, wenn sich die Durchflussrate innerhalb der zulässigen Grenzwerte bewegt. Befindet sich das Gerät im Service-Modus, wird jedoch ein Massenwert errechnet, wenn die Pumpe ausgeschaltet ist.

• Wählen Sie im Hauptmenü: Diagnostics > Detector Status (= *Diagnose* > *Detektorstatus*).

DETECTOR STATUS:				
MASS	0 ug			
ALPHA	2 1/sec			
BETA 135	577 1/sec			
BETA CORR	13577 1/sec			
BETA ZERO	6500 1/sec			
RANGE AVG	DIAGS ALARM			

Nephelometer Status

Der "Nephelometer" Status Screen (nur Anzeige) zeigt den aktuellen Nephelometer Ablesewert an.

• Wählen Sie im Hauptmenü: Diagnostics > Nephelometer Status (= Diagnose > Nephelometer-Status).

NEPHELOMETER STATUS: NEPH TEMP 31.0 °C NEPH RH 36.6 % LED CURRENT 69.8 mA REF DETECTOR 867 mV RANGE AVG DIAGS ALARM Der "CRn" Screen (nur Anzeige) zeigt den aktuellen CRn Ablesewert an.

• Wählen Sie im Hauptmenü: Diagnostics > CRn (= *Diagnose* > *CRn*).

CRn	0.00 Bq/m3
RANGE	AVG DIAGS ALARM

Anzeigewerte Analogeingänge

CRn

Die "Analog Input Readings"-Bildschirm (nur Anzeige) zeigt die 8 benutzerskalierten Analogeingangswerte an (wenn die optionale I/O-Erweiterungskarte installiert ist).

• Wählen Sie im Hauptmenü: Diagnostics > Analog Input Readings

(= Diagnose > Anzeigewerte Analogeingänge).

ANALOG INPUT READINGS:			
>PM	1.2 mg/m3		
FLOW	16.67 LPM		
SAMPLE R	H 42 %		
MASS	279 ug		
IO5	0.0 V₽		
RANGE AVG DIAGS ALARM			

Spannungswerte Analogeingänge

Der "Analog Input Voltages"-Bildschirm (nur Anzeige) zeigt die 8 unbearbeiteten analogen Spannungswerte an (wenn die optionale I/O-Erweiterungskarte installiert ist).

• Wählen Sie im Hauptmenü: Diagnostics > Analog Input Voltages

(= Diagnose > Spannungswerte Analogeingänge).

S:
RM

Digitaleingänge Der "Digital Inputs"-Bildschirm (nur Anzeige) gibt Aufschluss über den Zustand der 16 Digitaleingänge. Alle Eingänge verfügen über sogenannte Pull-ups. Ist nichts an den Eingang angeschlossen wird (1) angezeigt, wird der Eingang auf Masse gezogen, dann wird (0) angezeigt.

• Wählen Sie im Hauptmenü: Diagnostics > **Digital Inputs** (= *Diagnose > Digitaleingänge*).

DIGITAL INPUTS	S:	
>INPUT 1	1	
INPUT 2	1	
INPUT 3	1	
INPUT 4	1	
INPUT 5	1₩	
RANGE AVG E	DIAGS ALARM	

- **Relaisstatus** Der "Relay States"-Bildschirm gibt den Status der 10 digitalen Ausgänge an und ermöglicht das Hin- und Herschalten zwischen den Zuständen EIN (1) und AUS (0). Beim Verlassen des Bildschirms nehmen die Relais wieder ihren ursprünglichen Status an.
 - Wählen Sie im Hauptmenü: Diagnostics > Relay States (= Diagnose > Relaisstatus).
 - Durch Drücken der ← -Taste wird das Relais auf OFFEN oder GESCHLOSSEN für den gewählten digitalen Ausgang gesetzt.

RELAY STATE	:	
>OUTPUT 1	0	
OUTPUT 2	0	
OUTPUT 3	0	
OUTPUT 4	1	
OUTPUT 5	1₽	
RANGE AVG	DIAGS ALARM	

Analogausgänge testen

Über das "Test Analog Output"-Menü kann jeder analoge Ausgangskanal auf Null oder Skalenendwert gestellt werden. Zur Wahl stehen alle Analogausgänge, 6 Spannungskanäle und 6 Stromkanäle (wenn die optionale I/O-Erweiterungskarte installiert ist.)

• Wählen Sie im Hauptmenü: Diagnostics > Test Analog Outputs (= Diagnose > Analogausgänge testen).

TEST ANALOG OUTPUTS: >ALL VOLTAGE CHANNEL 1 VOLTAGE CHANNEL 2 VOLTAGE CHANNEL 3 VOLTAGE CHANNEL 4

RANGE AVG DIAGS ALARM

- Analogausgänge einstellen Der "Set Analog Output"-Bildschirm bietet drei Möglichkeiten: "Set to full-scale" (auf Skalenendwert setzen), "set to zero" (auf Null setzen) oder "reset to normal" (auf normal zurücksetzen). Bei der ersten Option werden die Analogausgänge auf Skalenendwert der Spannung, bei der zweiten auf o Volt gesetzt; die dritte Option setzt den Ausgang auf Normalbetrieb. Nach Verlassen dieses Bildschirmes werden die Analogausgänge auf Normalbetrieb zurückgesetzt. Das Beispiel unten zeigt den Bildschirm, wenn alle Analogausgänge auf Normalbetrieb stehen.
 - Wählen Sie im Hauptmenü: Diagnostics > Test Analog Outputs > ALL, Voltage Channel 1–6, or Current Channel 1–6 (= Diagnose > Analogausgänge testen > Alle, Spannungskanal 1-6, Stromkanal 1-6).

SET ANALOG OUTPUTS: SETTING: ALL OUTPUT SET TO: NORMAL SET TO FULL SCALE SET TO ZERO RESET TO NORMAL

RANGE AVG DIAGS ALARM

Gerätekonfiguration Der "Instrument Configuration"-Bildschirm zeigt Informationen über die Hardware-Konfiguration des Gerätes an.

Hinweis Wenn sich das Gerät im Service-Modus befindet, kann der gewählte Menüpunkt durch Drücken der 🛩 -Taste zwischen "yes" und "no" hin- und hergeschaltet werden. •

 Wählen Sie im Hauptmenü: Diagnostics > Instrument Configuration (= Diagnose > Gerätekonfiguration).

> INSTRUMENT CONFIGURATION: >I/O EXPANSION BOARD YES DETECTOR SHARP ←→ CHANGE VALUE ← SAVE ' RANGE AVG DIAGS ALARM

Kontaktinformation

Über den "Contact Information"-Bildschirm werden Kundendienstinformationen angezeigt.

• Wählen Sie im Hauptmenü: Diagnostics > Contact Information (= *Diagnose* > *Kontaktinformationen*).

CONTACT INFORMATION:

CALL CENTER: 508-520-0430

http://WWW.THERMO.COM/AQI

RANGE AVG DIAGS ALARM

Alarm Menü

Das "Alarms"-Menü ermöglicht es eine Reihe von Alarmen für verschiedene Platinen zu überprüfen. Außerdem wird eine Liste von Punkten angezeigt, die vom Messgerät überwacht werden. Die Anzahl der entdeckten Alarme wird angezeigt, um darauf hinzuweisen, wie viele Alarme eingetreten sind. Wurde kein Alarm entdeckt, wird Null im Display angezeigt.

Wenn eine Komponente, die überwacht wird, den unteren oder oberen Grenzwert unter- oder überschreitet, verändert sich der Status dieser Komponente von "OK" zu "LOW" bzw. "HIGH". Wenn der Alarm kein Pegelalarm ist, ändert sich der Status von "OK" zu "FAIL". Die Anzahl der entdeckten Alarme wird angezeigt, um darauf hinzuweisen, wie viele Alarme eingetreten sind. Wurde kein Alarm entdeckt, wird Null im Display angezeigt.

Die Anzeige einer Komponente hängt von den installierten Optionen ab. Um den jeweils aktuellen Ablesewert einer Komponente und ihren unteren und oberen Grenzwert zu sehen, stellen Sie den Cursor auf die Komponente und drücken die -Taste. Über- bzw. unterschreiten die Anzeigewerte den min. oder max. Grenzwert, wird ein Alarm ausgelöst und im Display erscheint in der Statusleiste das Alarmsymbol (Glocke) im "Run"-Screen und im Hauptmenü.

Wenn Alarmzustände bestehen, erscheint rechts in der Statuszeile das Alarmsymbol (Glocke).

• Wählen Sie im Hauptmenü: Alarms (= Alarm).

ALARMS: ALARMS DETECTED 0 >INSTRUMENT ALARMS 0 DETECTOR ALARMS 0 NEPH ALARMS 0 RH/TEMPERATURE ALARMS 0 RANGE AVG DIAGS ALARM

PRESSURE/VACUUM ALARMS FLOW ALARMS 0 CONC ALARMS 0

Gerätealarm Im Untermenü "Instrument Alarms" kann der Bediener eine Reihe von Alarmen für verschiedene Platinen einsehen. Alarme bzgl. Filterbandwechsel, Heizleistung und Komponenten der Messstation (Motherboard, Interface-Karte und I/O- Erweiterungskarte) können nur abgelesen werden. Der Status des Motherboards, der Status der Interface- und der Status der I/O-Erweiterungskarte (falls installiert) zeigt an, dass die Stromversorgung funktioniert und die Verbindungen erfolgreich hergestellt werden konnten. Für diese Alarme können keine Einstellungen vorgenommen werden.

• Wählen Sie im Hauptmenü: Alarms > Instrument Alarms (= *Alarm* > *Gerätealarm*).

)K
<
OK₽
Л
OK ↓

INTERFACE STATUS OK I/O EXP STATUS OK

Filterbandzähler Im "Filter Tape Counter" Screen wird der aktuelle Werte des Filterbandzählers angezeigt und der max. Alarmgrenzwert eingestellt. Überschreitet der aktuelle Wert den max. Grenzwert, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

> Wählen Sie im Hauptmenü: Alarms > Instrument Alarms > Filter Tape Counter
> (= Alarm > Gerätealarm > Filterbandzähler).

FILTER TA ACTUAL >MAX	APE COUNTER: 0 650	
RANGE	AVG DIAGS ALARM	

Max. Filterbandzähler Im Bildschirm "Maximum Filter Tape Counter" kann man den max. Alarmgrenzwert für den Filterbandzähler ändern ((480 = 90% Verbrauch, 10% verbleibend).

• Wählen Sie im Hauptmenü: Alarms > Instrument Alarms > Filter Tape Counter > Max (= Alarm > Gerätealarm > Filterbandzähler > Max.)

- **Detektoralarme** Im Untermenü " Detector Alarms" kann der Bediener eine Reihe von Alarmen für die Detektor-Platine betrachten. Der Platinenstatus zeigt an, dass die Stromversorgungen funktionieren und die Verbindungen erfolgreich hergestellt werden konnten. Für diesen Alarm können keine Einstellungen gemacht werden.
 - Wählen Sie im Hauptmenü: Alarms > Detector Alarms (= *Alarm* > *Detektoralarm*).

DETECTOR A BOARD STAT	LARMS: US	ОК	
>ALPHA	OK		
BETA	OK		
RANGE AVG	DIAGS	ALARM	

Min. und max. Alpha-Alarm Im Screen "Alpha Alarms" kann der Bediener die min. und max. Parameter für den Alarm einsehen. Der zulässige Bereich der Alarmgrenzwerte liegt zwischen 0 und 100. Überschreitet der angezeigte Alpha-Zählwert den max. Grenzwert, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü

Wählen Sie im Hauptmenü: Alarms > Detector Alarms > Alpha.
 (= Alarm > Detektoralarm > Alpha).

ALPHA CC	OUNT:	
ACTUAL	0	
MIN	0	
MAX	100	
RANGE A	VG DIAGS ALARM	

Min. und max. Beta-
AlarmIm Screen "Beta Alarms" kann der Bediener die min. und max.
Parameter für den Alarm einsehen. Der zulässige Bereich der
Alarmgrenzwerte liegt zwischen 5000 to 20000. Überschreitet
der angezeigte Beta-Zählwert den max. Grenzwert, wird ein Alarm
ausgelöst und das Alarmsymbol (Glocke) erscheint in der
Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Detector Alarms > Beta (= *Alarm > Detektoralarm > Beta*).

BETA COU	NT:	
ACTUAL	0	
MIN	5000	
MAX	20000	
RANGE A	VG DIAGS ALARM	

Nephelometer
AlarmIm Untermenü " Nephelometer Alarms" kann der Bediener eine
Reihe von Alarmen für die Detektor-Platine betrachten und die
Parameter für einen Nephelometer-Alarm setzen bzw. einstellen.
Der Platinenstatus zeigt an, dass die Stromversorgungen
funktionieren und die Verbindungen erfolgreich hergestellt
werden konnten. Für die Temperatur und die rel. Luftfeuchte des
Nephelometers, den LED Strom und die Spannung des
Referenzdetektors können Alarme eingestellt werden, die
werksseitig bereits voreingestellt sind.

• Wählen Sie im Hauptmenü: Alarms > Neph Alarms (= *Alarm > Nephelometer-Alarm*).

NEPHELOMETER BOARD STATUS NEPH SAMPLE NEPH CAL >NEPH TEMP NEPH RH	ALARMS: OK OK OK OK	
RANGE AVG DI	AGS ALARM	
LED CURRENT	ОК	

OK

REF DET VOLT

Nephelometer
TemperaturIm "Nephelometer Temperature" Screen wird die aktuelle
Nephelometer-Temperatur angezeigt und min. bzw. max.
Grenzwerte für den Alarm können eingestellt werden. Zulässige
Grenzwerte liegen zwischen o und 60 °C. Überschreitet bzw.
unterschreitet die Nephelometer-Temperatur einen der
Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol
(Glocke) erscheint in der Statusleiste im "Run"-Screen und im
Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Neph Alarms > Neph Temp.

(= Alarm > Neph Alarm > Neph Temp.)

	METER TEMP: 25.0 °C	
MAX	60.0 °C	
RANGE A	VG DIAGS ALARM	

Min. und max.
Grenzwerte
Nephelometer
TemperaturIm "Minimum Nephelometer Temperature alarm limit" Screen
kann der min. Alarmgrenzwert für die Nephelometer-Temperatur
geändert werden. Die Funktion für den "Maximum nephelometer
temperature" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Neph Alarms > Neph Temp > Min or Max (= Alarm > Neph Alarm > Neph Temp > Min. oder Max.) NEPHELOMETER TEMP: ACTUAL MIN: 0.0 °C SET MIN TO: 5.0 °C? ↓↓ INC/DEC ↓ SAVE VAL'UE RANGE AVG DIAGS ALARM

Nephelometer relative Luftfeuchte

Im "Nephelometer RH" Screen wird die aktuelle rel. Luftfeuchte des Nephelometers angezeigt und min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 5 und 95%. Überschreitet bzw. unterschreitet die rel. Luftfeuchte des Nephelometers einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü

• Wählen Sie im Hauptmenü: Alarms > Neph Alarms > Neph RH (= Alarm > Neph Alarm > Neph rel. Luftfeuchte).

NEPHELOMETER RH:		
ACTUAL	0.0 %	
>MIN	5.0 %	
MAX	95.0 %	
RANGE A	VG DIAGS ALARM	

Min. und max. Grenzwerte für rel. Luftfeuchte Nephelometer Im "Minimum Nephelometer RH alarm limit" Screen kann der min. Alarmgrenzwert für die rel. Luftfeuchte des Nephelometers geändert werden. Die Funktion für den "Maximum nephelometer RH" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Neph Alarms > Neph RH > Min or Max (= Alarm > Neph Alarm > Neph rel. Luftfeuchte > Min. oder Max.)

	IEPHELOMETE ACTUAL MIN: SET MIN TO:	R RH: 5.0 % 5.5 %?
1 ↓ INC/DEC ← SAVE VAL'UE		
I	RANGE AVG DIAGS ALARM	

- **LED Strom** Im "LED Current" Screen wird der aktuelle Stromwert für die Nephelometer LED angezeigt und min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 50 und 70 mA. Überschreitet bzw. unterschreitet der angezeigte Wert für den LED-Strom einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.
 - Wählen Sie im Hauptmenü: Alarms > Neph Alarms > LED Current

(= Alarm > Neph Alarm > LED Strom).

LED SOURCE CURRENT: ACTUAL 65.0 mA >MIN 50.0 mA MAX 70.0 mA RANGE AVG DIAGS ALARM

Min. und max. Grenzwerte LED-Strom

Im "Minimum LED Source Current alarm limit" Screen kann der min. Alarmgrenzwert für den LED-Strom geändert werden. Die Funktion für den "Maximum LED Source Current" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Neph Alarms > LED Current > Min or Max (= Alarm > Neph Alarm > LED-Strom > Min. oder Max.)

LED SOURCE CURRENT: ACTUAL MIN: 50.0 mA SET MIN TO: 50.1 mA?	
 ▲ INC/DEC ◆ SAVE VALUE 	
RANGE AVG DIAGS ALARM	

SpannungIm "Reference Detector Voltage" Screen werden der aktuelle
Spannungswert des Referenzdetektors und die min. bzw. max.
Grenzwerte für den Alarm angezeigt. Zulässige Grenzwerte liegen
zwischen 350 und 2000 mV. Überschreitet bzw. unterschreitet
der angezeigte Spannungswert einen der Grenzwerte, wird ein
Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der
Statusleiste im "Run"-Screen und im Hauptmenü. Eine
Einstellung dieses Wertes ist nicht möglich.

• Wählen Sie im Hauptmenü: Alarms > Neph Alarms > Ref Det Volt

(= Alarm > Neph Alarm > Ref Detektor Volt).

REF DETECTOR VOLTAGE: ACTUAL 780 mV MIN 350 mV MAX 2000 mV

RANGE AVG DIAGS ALARM

Alarm rel. Luftfeuchte/ Temperatur

el. Im Untermenü "RH/Temperature Alarms" kann der Bediener die
te/ Parameter für einen Alarm bzgl. rel. Luftfeuchte und für den
Temperatur-Alarm anzeigen und einstellen.

• Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm

RH/TEMPERATURE ALARMS:		
>AMBIENT RH	OK	
SAMPLE RH	OK	
AMBIENT TEMP	OK	
FLOW TEMP	OK	
BOARD TEMP	OK₽	
RANGE AVG DIAGS ALARM		
Rel. Luftfeuchte Umgebungsluft

Im "Ambient RH" Screen wird der aktuelle Wert der rel. Luftfeuchte in der Umgebungsluft angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 5 und 95%. Überschreitet bzw. unterschreitet der angezeigte Wert der rel. Luftfeuchte einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > RH/Termperature Alarms > Ambient RH (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Rel. Luftfeuchte Umgebungsluft

AMBIENT R	RH:	
ACTUAL	27.4 %	
>MIN	5.0 %	
MAX	95.0 %	
RANGE A	VG DIAGS ALARM	

Min. und max. Grenzwerte rel. Luftfeuchte

Im "Minimum Ambient RH alarm limit" Screen kann der min. Alarmgrenzwert für die rel. Luftfeuchte in der Umgebungsluft geändert werden. Die Funktion für den "Maximum ambient RH" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms > Ambient RH > Min or Max.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Rel. Luftfeuchte Umgebungsluft > Min. oder Max.)

RELATIVE HUM ACTUAL MIN: SET MIN TO:	IDITY: 5.0 % 5.5 %?
▲ INC/DEC← SAVE VAL'UE	
RANGE AVG E	DIAGS ALARM

Rel. Luftfeuchte Probe

Im "Sample RH" Screen wird der aktuelle Wert der rel. Luftfeuchte der Probe angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 5 und 95%. Überschreitet bzw. unterschreitet der angezeigte Wert der rel. Luftfeuchte einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

 Wählen Sie im Hauptmenü: Alarms > RH/Termperature Alarms > Sample RH (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Rel. Luftfeuchte Probe)

SAMPLE R	RH:	
ACTUAL	0.0 %	
>MIN	5.0 %	
MAX	95.0 %	
RANGE A	VG DIAGS ALARM	

Min. und max. Grenzwerte rel. Luftfeuchte Probe

Im "Minimum Sample RH alarm limit" Screen kann der min. Alarmgrenzwert für die rel. Luftfeuchte der Probe geändert werden. Die Funktion für den "Maximum sample RH" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms > Sample RH > Min or Max.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Rel. Luftfeuchte Probe > Min. oder Max.)

> SAMPLE RH: ACTUAL MIN: 5.0 % SET MIN TO: 35 %? ↓↓ INC/DEC ↓ SAVE VAL'UE RANGE AVG DIAGS ALARM

UmgebungstemperaturIm "Ambient Temperature" Screen wird der aktuelle Wert der
Umgebungstemperatur angezeigt und die min. bzw. max.
Grenzwerte für den Alarm können eingestellt werden. Zulässige
Grenzwerte liegen zwischen -30 °C und 60 °C. Überschreitet bzw.
unterschreitet der angezeigte Wert der Umgebungstemperatur
einen der Grenzwerte, wird ein Alarm ausgelöst und das

Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

 Wählen Sie im Hauptmenü: Alarms > RH/Termperature Alarms > Ambient Temp.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Umgebungstemperatur)

Min. und max. Grenzwerte Umgebungstemperatur

Im "Minimum Ambient Temperature alarm limit" Screen kann der min. Alarmgrenzwert für die Umgebungstemperatur geändert werden. Die Funktion für den "Maximum ambient temperature" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms > Ambient Temp > Min or Max.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Umgebungstemperatur > Min. oder Max.)

AMBIENT TEMPERATURE: ACTUAL MIN: -30.0 °C SET MIN TO: -20.0 °C? ↓ INC/DEC ↓ SAVE VAL'UE RANGE AVG DIAGS ALARM

Durchflusstemperatur Im "Flow Temperature" Screen wird der aktuelle Wert der Durchflusstemperatur angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 5 und 60 °C. Überschreitet bzw. unterschreitet der angezeigte Wert der Durchflusstemperatur einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü. Wählen Sie im Hauptmenü: Alarms > RH/Termperature Alarms > Flow Temp.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Durchflusstemperatur).

Min. und max. Grenzwerte Durchflusstemperatur

Im "Minimum Flow Temperature alarm limit" Screen kann der min. Alarmgrenzwert für die Durchflusstemperatur geändert werden. Die Funktion für den "Maximum flow temperature" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms > Flow Temp > Min or Max.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Durchflusstemperatur > Min. oder Max.)

Platinentemperatur Im "Board Temperature" Screen wird der aktuelle Wert der Platinentemperatur angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 5 und 60 °C. Überschreitet bzw. unterschreitet der angezeigte Wert der Platinentemperatur einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > RH/Termperature Alarms > Board Temp.

(= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Platinentemperatur)

BOARD TEI ACTUAL >MIN MAX	MP: 26.1 °C 0.0 °C 60.0 °C	
RANGE A	/G DIAGS ALARM	

Min. und max. Grenzwerte Platinentemperatur Im "Minimum Board Temperature alarm limit" Screen kann der min. Alarmgrenzwert für die Platinentemperatur geändert werden. Die Funktion für den "Maximum board temperature" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > RH/Temperature Alarms > Board Temp > Min or Max.
 (= Alarm > Rel. Luftfeuchte / Temperatur-Alarm > Platinentemperatur > Min. oder Max.)

Druck-/ Vakuum-Alarm Über das Untermenü "Pressure/Vacuum Alarms" kann der Bediener die Parameter für einen Druckalarm anzeigen und einstellen.

• Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms (= *Alarm > Druck-/Vakuum-Alarm*).

PRESSURE/VACUUM ALARMS: >BARO PRES OK VACUUM OK FLOW OK

RANGE AVG DIAGS ALARM

- Luftdruck Im "Barometric Pressure" Screen wird der aktuelle Luftdruckwert angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 400 und 800 mmHg. Überschreitet bzw. unterschreitet der angezeigte Wert des Luftdrucks einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.
 - Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Baro Pres.
 (Alarma > Druch (Valarum Alarma > Luftdaruch)

(= Alarm > Druck-/Vakuum-Alarm > Luftdruck).

BAROMETRIC PRESSURE: ACTUAL 764.0 mmHg >MIN 400.0 mmHg MAX 800.0 mmHg

Min. und max. Ir

Grenzwerte Luftdruck

Im "Minimum Barometric Pressure alarm limit" Screen kann der min. Alarmgrenzwert für den Luftdruck geändert werden. Die Funktion für den "Maximum barometric pressure" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Baro Pres > Min or Max. (= Alarm > Druck-/Vakuum-Alarm > Luftdruck > Min. oder Max.) BAROMETRIC PRESSURE: ACTUAL MIN: 400.0 mmHg SET MIN TO: 400.1 mmHg?

♣ INC/DEC♠ SAVE VAL'UE

RANGE AVG DIAGS ALARM

- Vakuum Im "Vacuum" Screen wird der aktuelle Vakuumwert angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen -5 mmHg und 250 mmHg. Überschreitet bzw. unterschreitet der angezeigte Vakuumwert einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.
 - Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Vacuum.
 (Alarms > Durch (Walarms > Malarms))

(= Alarm > Druck-/Vakuum-Alarm > Vakuum).

VACUUM: ACTUAL >MIN MAX	60.8 mmHg -5.0 mmHg 250.0 mmHg	
RANGE A	VG DIAGS ALARM	

Min. und max.Im "Minimum Vacuum alarm limit" Screen kann der min.Grenzwerte VakuumAlarmgrenzwert für das Vakuum geändert werden. Die Funktion
für den "Maximum vacuum" Screen ist identisch.

Hinweis Der Max. Grenzwert für das Vakuum sollte nicht geändert werden, da dieser auch als Schutzeinrichtung für das Messgerät fungiert.

 Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Vacuum > Min or Max. (= Alarm > Druck-/Vakuum-Alarm > Vakuum > Min. oder Max.) VACUUM: ACTUAL MIN: -5.0 mmHg SET MIN TO: -4.9 mmHg? INC/DEC SAVE VAL'UE RANGE AVG DIAGS ALARM

Durchfluss Im "Flow" Screen wird der aktuelle Durchflusswert angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen -5 mmHg und 40 mmHg. Überschreitet bzw. unterschreitet der angezeigte Durchflusswert einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Flow.

(= Alarm > Druck-/Vakuum-Alarm > Durchfluss).

FLOW: ACTUAL 23.1 mmHg >MIN -5.0 mmHg MAX 40.0 mmHg

Min. und max.Im "MGrenzwert DurchflussAlarma

Im "Minimum Flow alarm limit" Screen kann der min. Alarmgrenzwert für den Durchfluss geändert werden. Die Funktion für den "Maximum Flow" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Pressure/Vacuum Alarms > Flow > Min or Max. (= Alarm > Druck-/Vakuum-Alarm > Durchfluss > Min. oder Max.) FLOW PRESSURE: ACTUAL MIN: -5.0 mmHg SET MIN TO: -4.9 mmHg?

RANGE AVG DIAGS ALARM

Durchfluss-Alarm

m Im Untermenü "Flow Alarms" kann der Bediener die Parameter für den Durchflussalarm anzeigen und einstellen.

• Wählen Sie im Hauptmenü: Alarms > Flow Alarms. (= *Alarm* > *Durchfluss-Alarm*).

FLOW ALARMS: >FLOW	ОК
RANGE AVG DI	AGS ALARM

- **Durchfluss** Im "Flow" Screen wird der aktuelle Durchflusswert angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 16,00 und 17,34 l/Min.. Überschreitet bzw. unterschreitet der angezeigte Durchflusswert einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.
 - Wählen Sie im Hauptmenü: Alarms > Flow Alarms > Flow. (= *Alarm* > *Durchfluss-Alarm* > *Durchfluss*).

FLOW: ACTUAL >MIN MAX	0.00 LPM 16.17 LPM 17.17 LPM	
RANGE A	VG DIAGS ALARM	

Min. und max. Grenzwerte Durchfluss	 Im "Minimum Flow alarm limit" Screen kann der min. Alarmgrenzwert für den Durchfluss geändert werden. Die Funktion für den "Maximum Flow" Screen ist identisch. Wählen Sie im Hauptmenü: Alarms > Flow Alarms > Flow > Min or Max. (= Alarm > Durchfluss-Alarm > Durchfluss > Min. oder Max.)
	FLOW: ACTUAL MIN: 16.00 LPM SET MIN TO: 16.17 LPM? ▲ INC/DEC
Konzentrations- Alarm	 Im Untermenü "Concentration Alarms" kann der Bediener die durchschnittliche 24-Std. Konzentration, die momentane PM (Feinstaub)- und SHARP-Konzentration sowie die Parameter für den Nephelometer-Alarm anzeigen und einstellen. Wählen Sie im Hauptmenü: Alarms > Conc Alarms (= <i>Alarm</i> > <i>Konz.Alarm</i>).
	CONC ALARMS: >AVG PM OK AVG SHARP OK AVG NEPH OK INST PM OK INST SHARP OK RANGE AVG DIAGS ALARM
Durchschnittl.	INST NEPH OK Im "Average PM" Screen wird die aktuelle, durchschnittliche
Feinstaubkonzentration	Feinstaubkonzentration angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige

Thermo Fisher Scientific

Grenzwerte liegen zwischen 0 und 10000 μ g/m³ bzw. 0 und 10

durchschnittliche Konzentration einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der

mg/m³. Überschreitet bzw. unterschreitet die angezeigte

Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg PM (= *Alarm > Konz.Alarm > Durchschnittl. Feinstaub*).

AVERAGE ACTUAL >MIN MAX	PM CONC: 0.0 0.0 10000	
RANGE A	VG DIAGS ALARM	

Min. und max. Grenzwerte für durchschnittl. Feinstaubkonzentration Im "Minimum Average PM Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die durchschnittl. Feinstaubkonzentration geändert werden. Die Funktion für den "Maximum average PM concentration" Screen ist identisch.

Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg PM
 > Min or Max.

(= Alarm > Konz.Alarm > Durchschnittl. Feinstaub > Min. oder Max.).

AVERAGE PM	CONC:
ACT MIN:	0.0
SET MIN:	10 0 ?
♦ MO	/E CURSOR
♦ CHANGE	VALUE ← SAVE '
RANGE AVG	DIAGS ALARM

Durchschnittl.Im "Average SHARP" Screen wird die aktuelle, durchschnittlicheSHARP KonzentrationIm "Average SHARP" Screen wird die aktuelle, durchschnittlicheSHARP-Konzentration angezeigt und die min. bzw. max.Grenzwerte für den Alarm können eingestellt werden. ZulässigeGrenzwerte liegen zwischen 0 und 10000 μg/m³ bzw. 0 und 10mg/m³. Überschreitet bzw. unterschreitet die angezeigtedurchschnittliche SHARP-Konzentration einen der Grenzwerte,wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheintin der Statusleiste im "Run"-Screen und im Hauptmenü.

 Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg SHARP.
 (= Alarm > Konz.Alarm > Durchschnittl. SHARP).

AVERAGE SHARP CONC:		
ACTUAL	0.0	
>MIN	0.0	
MAX	10000	

RANGE AVG DIAGS ALARM

Min. und max. Grenzwerte für durchschnittl. SHARP-Konzentration Im "Minimum Average SHARP Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die durchschnittl. SHARP-Konzentration geändert werden. Die Funktion für den "Maximum average SHARP concentration" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg SHARP > Min or Max.
 (= Alarm > Konz.Alarm > Durchschnittl. SHARP> Min. oder

Max.).

AVERAGE SH	ARP CONC:
ACT MIN:	0.0
SET MIN:	10 <mark>0</mark> ?
♦♦ MO\	VE CURSOR
♦€ CHANGE	VALUE ✦ SAVE '
RANGE AVG	DIAGS ALARM

Durchschnittl. Nephelometer-Konzentration

Im "Average Nephelometer" Screen wird die aktuelle, durchschnittliche Nephelometer-Konzentration angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen 0 und 10000 µg/m³ bzw. 0 und 10 mg/m³. Überschreitet bzw. unterschreitet die angezeigte durchschnittliche Nephelometer-Konzentration einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

 Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg Neph.
 (= Alarm > Konz.Alarm > Durchschnittl. Neph.)

I	AVERAG	E NEPH CONC:	
	ACTUAL	0.0	
	>MIN	0.0	
	MAX	10000	
	RANGE	AVG DIAGS ALARM	

Min. und max. Grenzwerte für durchschnittl. Nephelometer-Konzentration

Im "Minimum Average Nephelometer Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die durchschnittl. Nephelometer-Konzentration geändert werden. Die Funktion für den "Maximum average Nephelometer concentration" Screen ist identisch.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Avg Neph > Min or Max.

(= Alarm > Konz.Alarm > Durchschnittl. Neph. > Min. oder Max.)

AVERAGE NE ACT MIN: SET MIN:	PH CONC: 0.0 10 0 ?
♦ MO\ ♦ CHANGE	– /E CURSOR VALUE ← SAVE '
RANGE AVG	DIAGS ALARM

Momentane
Feinstaub-
KonzentrationIm "Instant PM" Screen wird die aktuelle, momentane Feinstaub-
Konzentration angezeigt und die min. bzw. max. Grenzwerte für
den Alarm können eingestellt werden. Zulässige Grenzwerte
liegen zwischen -10 und 10000 μg/m³ bzw. -.01 und 10 mg/m³.
Überschreitet bzw. unterschreitet die momentane Feinstaub-
Konzentration einen der Grenzwerte, wird ein Alarm ausgelöst
und das Alarmsymbol (Glocke) erscheint in der Statusleiste im
"Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst PM. (= Alarm > Konz.Alarm > Momentane Feinstaub-Konz.)

INSTANT	PM CONC:	
ACTUAL	0.0	
>MIN	-10.0	
MAX	10000	
RANGE	AVG DIAGS ALARM	

Min. und max. Grenzwerte für momentane Feinstaub-Konzentration

Im "Minimum Instant PM Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die momentane Feinstaub-Konzentration geändert werden. Die Funktion für den "Maximum instant PM concentration" Screen ist identisch.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst PM > Min or Max.

(= Alarm > Konz.Alarm > Momentane Feinstaub-Konz. > Min. oder Max.)

INSTANT SHA	RP CONC:
SET MIN:	-10 ?
(♦♦ MO ♦♦ CHANGE	VE CURSOR VALUE ← SAVE '
RANGE AVG	DIAGS ALARM

Momentane SHARP-
KonzentrationIm "Instant SHARP" Screen wird die aktuelle, momentane
SHARP-Konzentration angezeigt und die min. bzw. max.
Grenzwerte für den Alarm können eingestellt werden. Zulässige
Grenzwerte liegen zwischen -10 und 10000 μg/m³ bzw. -.01 und
10 mg/m³. Überschreitet bzw. unterschreitet die momentane
SHARP-Konzentration einen der Grenzwerte, wird ein Alarm
ausgelöst und das Alarmsymbol (Glocke) erscheint in der
Statusleiste im "Run"-Screen und im Hauptmenü.

- Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst SHARP.
 - (= Alarm > Konz.Alarm > Momentane SHARP-Konz.)

INSTANT	SHARP CONC:	
ACTUAL	0.0	
>MIN	-10.0	
MAX	10000	
RANGE A	AVG DIAGS ALARM	

Min and Max Instant SHARP Concentration Limits

Im "Minimum Instant SHARP Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die momentane SHARP-Konzentration geändert werden. Die Funktion für den "Maximum instant SHARP concentration" Screen ist identisch.

 Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst SHARP > Min or Max.
 (= Alarm > Konz.Alarm > Momentane SHARP-Konz. > Min.

INSTANT SHA ACT MIN: SET MIN:	RP CONC: 0.0 -10 ?
♦ ♦ MO\	/E CURSOR
≜↓ CHANGE	VALUE
RANGE AVG	DIAGS ALARM

oder Max.)

Momentane Nephelometer-Konzentration

Im "Instant Nephelometer" Screen wird die aktuelle, momentane Nephelometer-Konzentration angezeigt und die min. bzw. max. Grenzwerte für den Alarm können eingestellt werden. Zulässige Grenzwerte liegen zwischen -10 und 10000 μ g/m³ bzw. -.01 und 10 mg/m³. Überschreitet bzw. unterschreitet die momentane Nephelometer-Konzentration einen der Grenzwerte, wird ein Alarm ausgelöst und das Alarmsymbol (Glocke) erscheint in der Statusleiste im "Run"-Screen und im Hauptmenü.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst Neph.

(= Alarm > Konz.Alarm > Momentane Neph.-Konz.).

INSTANT NI ACTUAL >MIN MAX	EPH CONC: 0.0 -10.0 10000	
RANGE AV	/G DIAGS ALARM	

Min. und max. Grenzwerte für momentane Nephelometer-Konzentration

Im "Minimum Instant Nephelometer Concentration alarm limit" Screen kann der min. Alarmgrenzwert für die momentane Nephelometer-Konzentration geändert werden. Die Funktion für den "Maximum instant Nephelometer concentration" Screen ist identisch.

• Wählen Sie im Hauptmenü: Alarms > Conc Alarms > Inst Neph > Min or Max.

(= Alarm > Konz.Alarm > Momentane Neph.-Konz. > Min. oder Max.).

INSTANT NEPH CONC: ACT MIN: 0.0 SET MIN: -10?	
←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SA	VE '
RANGE AVG DIAGS ALARI	N

Service Menü Das Service-Menü erscheint nur, wenn sich das Gerät im Service-Modus befindet. Ist der Service-Modus aktiv, erscheint das Servicesymbol (Schraubenschlüssel) rechts in der Statuszeile. Um das Gerät in den Service-Modus zu schalten,

• Wählen Sie im Hauptmenü: Instrument Controls > Service Mode.

(= Gerätesteuerung > Service-Modus).

Der Service-Modus enthält erweiterte Diagnosefunktionen. Während sich das Gerät im Service-Modus befindet, sollten keine wichtigen, relevanten Daten gesammelt werden.

• Wählen Sie im Hauptmenü: Service.

SERVICE: >RH/TEMP CALIBRATION PRES/VACUUM CALIBRATION FLOW CALIBRATION MASS CALIBRATION DETECTOR CALIBRATION

RANGE AVG DIAGS ALARM

NEPH CALIBRATION ANALOG OUT CALIBRATION ANALOG INPUT CALIBRATION DISPLAY PIXEL TEST RESTORE USER DEFAULTS RESTORE FACTORY DEFAULTS

Rel. Luftfeuchte / Temperatur kalibrieren

Im Untermenü "RH/Temperature Calibration" kann der Bediener die Kalibrierung der Sensoren für Temperatur und rel. Luftfeuchte anzeigen und einstellen. Dieses Untermenü ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellungsarbeiten sollten nur von einem Servicetechniker für dieses Gerät durchgeführt werden.

• Wählen Sie im Hauptmenü: Service > RH/Temp Calibration. (= Service > Rel. Luftfeuchte/Temp. kalibrieren).

RH/TEMP CALIBRATION:	
>AMBIENT TEMP 4.2 °C	
FLOW TEMP 0.8 °C	
AMBIENT RH 0.0 %	
RANGE AVG DIAGS ALARM	

UmgebungstemperaturIm "Ambient Temperature" Screen kann der Bediener die
Umgebungstemperatur anzeigen und kalibrieren. Stellen Sie den
Null-Offset ein, bis die Umgebungstemperatur mit dem
rückverfolgbaren Referenzstandard übereinstimmt.

 Wählen Sie im Hauptmenü: Service > RH/Temp Calibration > Ambient Temp. (= Service > Rel. Luftfeuchte/Temp. Kalibrieren > Umgebungstemp.)

Durchflusstemperatur

Im "Flow Temperature" Screen kann der Bediener die Durchflusstemperatur anzeigen und kalibrieren. Vergewissern Sie sich, dass die Geräteabdeckung entfernt wurde und sich das Gerät an die Raumtemperatur anpassen konnte.

• Wählen Sie im Hauptmenü: Service > RH/Temp Calibration > Flow Temp.

(= Service > Rel. Luftfeuchte/Temp. Kalibrieren > Durchflusstemp.)

```
CALIBRATE FLOW TEMP:
TEMPERATURE: 28.0 °C
OFFSET: 0.8 °C
↓↓ INC/DEC
↓ SAVE VALUE
RANGE AVG DIAGS ALARM
```

Relative Luftfeuchte
UmgebungsluftIm "Ambient Relative Humidity" Screen kann der Bediener die
relative Luftfeuchte anzeigen und kalibrieren. Stellen Sie den
Null-Offset ein, bis die relative Luftfeuchte mit dem
rückverfolgbaren Referenzstandard übereinstimmt.

• Wählen Sie im Hauptmenü: Service > RH/Temp Calibration > **Ambient RH**.

(= Service > Rel. Luftfeuchte/Temp. Kalibrieren > Rel. Luftfeuchte). RANGE AVG DIAGS ALARM

Druck/Vakuum kalibrieren

Im Untermenü "Pressure/Vacuum Calibration" kann der Bediener die Kalibrierung des Drucksensors und des Vakuumsensors anzeigen und einstellen. Dieses Untermenü ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellungsarbeiten sollten nur von einem Servicetechniker für dieses Gerät durchgeführt werden.

• Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration. (= Service > Druck/Vakuum kalibrieren).

PRES/VACUUM CALIBRATION:	
>BARO PRES	
VAC/FLOW	

RANGE AVG DIAGS ALARM

- Luftdruck kalibrieren Im Untermenü "Barometer Pressure Calibration" können der Luftdruck-Offsetwert und der Mesbereich kalibriert oder die Standard-Werte wiederhergestellt werden.
 - Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Baro Pres. (= Service > Druck/Vakuum kalibrieren > Luftdruck).

BARO PRES CALIBRATION: >OFFSET 0.0 SPAN 1.0000 SET DEFAULTS

RANGE AVG DIAGS ALARM

Luftdruck-Offset
kalibrierenDer "Calibrate Barometer Pressure Offset" Screen ermöglicht es
dem Bediener, den Drucksensor bei Offset-Druck zu kalibrieren.

Hinweis Der Bediener sollte ein unabhängiges Barometer zur Messung des Umgebungsdrucks verwenden und diesen Wert im Bildschirm eingeben, bevor die Kalibrierung durchgeführt wird. •

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Baro Pres Calibration > Offset. (= Service > Druck/Vakuum kalibrieren > Luftdruck kalibrieren > Offset).

CAL BARO PRES OFFSET: PRESSURE: 760 mmHg OFFSET: 747 mmHg?
←→ MOVE CURSOR ▲↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

Luftdruck-
Messbereich
kalibrierenIm "Calibrate Barometer Pressure Span" Screen kann der
Bediener den Messbereichspunkt des Drucksensors ansehen und
einstellen.

Hinweis Der Bediener sollte ein unabhängiges Barometer zur Messung des Umgebungsdrucks verwenden und diesen Wert im Bildschirm eingeben, bevor die Kalibrierung durchgeführt wird. •

• Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Baro Pres Calibration > **Span**.

(= Service > Druck/Vakuum kalibrieren > Luftdruck kalibrieren > Bereich).

CAL BARO PRESSURE SPAN: PRESSURE: 760 mmHg SET TO: 747 mmHg?
←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

Standardmäßige Kalibrierung wiederherstellen Im "Restore Default Calibration" Screen kann der Bediener die Default-Werte wiederherstellen.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Baro Pres Calibration > Set Defaults.
 (= Service > Druck/Vakuum kalibrieren > Luftdruck kalibrieren > Default-Werte einstellen).

RESTORE DEFAULT CAL:

← RESTORE

RESTORE DEFAULT CAL:

← RESTORE ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM RESTORE

RANGE AVG DIAGS ALARM

RANGE AVG DIAGS ALARM

Vakuum/Durchfluss
kalibrierenIm Untermenü "Vacuum/Flow Calibration" kann der Bediener
den Vakuum-/Durchfluss-Offset, den Vakuum-/Durchfluss-
Bereich kalibrieren oder die Default-Werte wiederherstellen.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow.
 (= Service > Druck/Vakuum kalibrieren > Vak / Durchfluss).

VAC PRES CALIBRATION: >VAC/FLOW OFFSET VAC PRES SPAN 1.0000 FLOW PRES SPAN 1.0000 SET DEFAULTS

RANGE AVG DIAGS ALARM

Vakuum-/Durchfluss-Offset kalibrieren

Im Bildschirmfenster "Calibrate Vacuum/Flow Offset" kann der Offset-Wert des Vakuum-/Durchflusssensors kalibriert werden.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Vac/Flow Offset. (= Service > Druck/Vakuum kalibrieren > Vak / Durchfluss > Vakuum-/Durchfluss-Offset).

CAL VACUUM/FLOW OFFSET: VAC OFFSET: 0.0 FLOW OFFSET: 0.0

← TO CALIBRATE ZERO BY CHANGING FILTER

RANGE AVG DIAGS ALARM

Vakuumdruck-Bereich kalibrieren

Im "Calibrate Vacuum Pressure Span" Screen kann der Bediener den Endpunkt der Kalibrierung für den Durchflusssensor anzeigen und einstellen.

Hinweis Der Bediener sollte ein unabhängiges Manometer verwenden, mit dem man ein Vakuum von ca. 100 mmHg messen kann. Messen Sie das Vakuum unter dem Filterband vom negativen ΔP Port auf der Geräterückseite und geben Sie den Wert hier in diesem Bildschirm ein, bevor Sie die Kalibrierung durchführen.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Vac Pres Span.
 (= Service > Druck/Vakuum kalibrieren > Vak / Durchfluss > Vakuumdruck Bereich).

CAL VAC PRESSURE SPAN:
VACUUM: 58.7 mmHg
SET TO: 60.0 mmHg?
←→ MOVE CURSOR
♣♣ CHANGE VALUE
RANGE AVG DIAGS ALARM

Durchflussdruck-Bereich kalibrieren

Im "Flow Pressure Span" Screen hat der Bediener die Möglichkeit, den Endpunkt der Kalibrierung für den Durchflusssensor anzeigen und einstellen.

Hinweis Der Bediener sollte ein unabhängiges Manometer verwenden (30 mmHg ΔP), um den Differenzdruck über der Blende unter Verwendung des positiven und negativen ΔP Ports auf der Geräterückseite zu messen, und den Wert in diesem Fenster eingeben, bevor die Kalibrierung durchgeführt wird.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Flow Pres Span.
 (= Service > Druck/Vakuum kalibrieren > Vak / Durchfluss > Durchflussdruck Bereich).

CAL FLOW PRESSURE SPAN:			
FLOW:	21.0 mmHg		
SET TO:	20.0 mmHg?		
←→ MOVE CURSOR			
♣♣ CHANGE VALUE			
RANGE A	VG DIAGS ALARM		

Standardmäßige Kalibrierung wiederherstellen

Im "Restore Default Calibration" Screen kann der Bediener die Default-Werte wiederherstellen.

Hinweis Bitte achten Sie darauf, dass nach Abschluss der Kalibrierung der Kippschalter wieder geschlossen wird.

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Set Defaults.
 (= Service > Druck/Vakuum kalibrieren > Vak / Durchfluss > Default-Werte wiederherstellen).

RESTORE D	EFAULT CAL:		RESTORE DEFAULT CAL:
← F	RESTORE '		← RESTORE ARE YOU SURE YOU WANT TO? PRESS ➡ TO CONFIRM RESTORE
RANGE AV	G DIAGS ALARM		RANGE AVG DIAGS ALARM
Durchfluss kalibrieren	Im Untermenü "Flow Ca Durchflusskalibrierung a Screen ist nur sichtbar	alib ang	pration" kann der Fließpunkt der gezeigt und eingestellt werden. Dies nn sich das Gerät im Service-Modus

eren Durchflusskalibrierung angezeigt und eingestellt werden. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellungsarbeiten sollten nur von einem Servicetechniker für dieses Gerät durchgeführt werden.

• Wählen Sie im Hauptmenü: Service > Flow Calibration (= *Service > Durchfluss kalibrieren*)

FLOW CALIBRATION:	
>AUTO	
MANUAL	

RANGE AVG DIAGS ALARM

Autom. Kalibrierung	Im "Auto Flow Calibration" Screen kann der Bediener die
des Durchflusses	korrekte Durchflussrate anzeigen und einstellen. Der
	Bereichsendwert wird automatisch errechnet.

• Wählen Sie im Hauptmenü: Service > Flow Calibration > Auto (= *Service > Durchfluss kalibrieren > Auto*).

FLOW AUTO CALIBRATION:FLOW:16.67 LPMSET TO:17.25 LPM?

←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '

RANGE AVG DIAGS ALARM

Manuelle Kalibrierung des Durchflusses Im "Manual Flow Calibration" Screen kann der Bediener den Bereichsfaktor für die Kalibrierung des Durchflusssensors anzeigen und schrittweise einstellen.

• Wählen Sie im Hauptmenü: Service > Flow Calibration > Manual.

(= Service > Durchfluss kalibrieren > Manuell).

FLOW MANUAL CALIBRATION:			
FLOW:	16.67		
SPAN:	0.750 ?		
★↓ INC/DEC			
← SAVE VALUE			
RANGE A	VG DIAGS ALARM		

Masse kalibrieren Im Untermenü "Mass Calibration" hat der Bediener die Möglichkeit, den Massenkalibrierpunkt anzuzeigen und einzustellen. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellungsarbeiten sollten nur von einem Servicetechniker für dieses Gerät durchgeführt werden.

• Wählen Sie im Hauptmenü: Service > Mass Calibration (= *Service > Massenkalibrierung*).

MASS CALIBRATION: >THERMAL COEFFICIENT
VACUUM COEFFICIENT
BARO COEFFICIENT
MASS COEFFICIENT
ALPHA EFF COEFFICIENT
RANGE AVG DIAGS ALARM

Thermischer Im "Thermal Mass Coefficient" Screen kann der Bediener den Massenkoeffizient thermischen Koeffizienten anzeigen und mit Hilfe des manuellen Kalibriermodus einstellen (werksseitig eingestellt.) Wählen Sie im Hauptmenü: Service > Mass Calibration > • Thermal Coefficient (= Service > Massenkalibrierung > thermischer Koeffizient). THERMAL MASS COEFFICIENT: CURRENTLY: 0.000000 SET TO: 0023.000? ← → MOVE CURSOR ♣ CHANGE VALUE ← SAVE ' RANGE AVG DIAGS ALARM Vakuum-Im "Vacuum Mass Coefficient" Screen kann der Bediener den Massenkoeffizient Vakuum-Koeffizienten anzeigen und mit Hilfe des manuellen Kalibriermodus einstellen (werksseitig eingestellt.)

• Wählen Sie im Hauptmenü: Service > Mass Calibration > Vacuum Coefficient

(= Service > Massenkalibrierung > Vakuum-Koeffizient).

VACUUM MASS COEFFICIENT: CURRENTLY: 0.000000 SET TO: 0002.000? ←→ MOVE CURSOR ←◆ CHANGE VALUE ← SAVE '

RANGE AVG DIAGS ALARM

Barometer-	Im "Barometer Mass Coefficient" Screen kann der Bediener den
Massenkoeffizient	Barometer-Koeffizienten anzeigen und mit Hilfe des manuellen Kalibriermodus einstellen (werksseitig eingestellt)
	 Wählen Sie im Hauptmenü: Service > Mass Calibration > Baro

Coefficient (= Service > Massenkalibrierung > Barometer-Koeffizient).

	BARO. MASS COEFFICIENT: CURRENTLY: 0.000000 SET TO: 0.000540? ←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE ' RANGE AVG DIAGS ALARM
Massenkoeffizient	 Im Untermenü "Mass Coefficient" hat der Bediener die Möglichkeit, den Massenkoeffizienten anzuzeigen und diesen mit Hilfe des manuellen oder autom. Modus einzustellen (werksseitig eingestellt). Wählen Sie im Hauptmenü: Service > Mass Calibration > Mass Coefficient (= Service > Massenkalibrierung > Massenkoeffizient).
	MASS COEFFICIENT: >AUTO MANUAL RANGE AVG DIAGS ALARM

Autom.Im "Auto Mass Coefficient Screen" kann der Bediener eineMassenkoeffizientMassenkalibrierung mittels Folie(n) durchführen.

Hinweis Nach Drücken der \checkmark Taste führen Sie eine Reihe von Bildschirmanzeigen durch den Kalibriervorgang. Weitere Details finden Sie auch unter "Autom. Massenkoeffizient" auf Seite 4-11.

 Wählen Sie im Hauptmenü: Service > Mass Calibration > Mass > Auto (= Service > Massenkalibrierung > Auto).

MASS COEF: 7000.0 FOIL VALUE: 1442 μg	
← TO SAVE FOIL VALUE AND OPEN BENCH	
RANGE AVG DIAGS ALARM	

Manueller Massenkoeffizient Über den "Manual Mass Coefficient" Screen kann der Bediener den Massenkoeffizient einstellen, der bei der Beta-Abschwächung verwendet wird.

- Wählen Sie im Hauptmenü: Service > Mass Calibration > Mass > Manual
 - (= Service > Massenkalibrierung > Masse > Manuell).

MASS COEFFICIENT: CURRENTLY: 7000 SET TO: 6992?
←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
RANGE AVG DIAGS ALARM

Alpha-Effizienzkoeffizient

ha- Im "Alpha Efficiency Coefficient" Screen kann der Bediener denwert der Alpha-Effizienz anzeigen und einstellen.

Hinweis Dieser Wert wurde werksseitig eingestellt und sollte nicht verändert werden.

 Wählen Sie im Hauptmenü: Service > Mass Calibration > Alpha Eff Coefficient (= Service > Massenkalibrierung > Alpha-EffKoeff.)

ALPHA EFFIC CURRENTLY	EIENCY COEF: . 0.120000 0.12000	
SET TO: 0.12000 ?		
←→ MOVE CURSOR		

RANGE AVG DIAGS ALARM

Detektor kalibrieren im Untermenü "Detector Calibration" kann die Kalibrierung des Detektors angezeigt und eingestellt werden. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Handbuch.

> **Hinweis** Diese Einstellung sollte nur von einem Servicetechniker in festgelegten Intervallen, jedoch mindestens einmal jährlich oder nach dem Tauschen des Detektors vorgenommen werden.

• Wählen Sie im Hauptmenü: Service > Detector Calibration (= Service > Detektor kalibrieren).

DETECTOR CALIBRATION: >AUTO MANUAL
RANGE AVG DIAGS ALARM

Autom. Kalibrierung des Detektors

Im "Auto Detector Calibration" Screen kann der Bediener eine
Routine zur Optimierung des Detektors durchführen und so ein optimales Plateau für die Detektorleistung schaffen. Diese
Routine dauert ca. 30 Minuten. Im Verlauf der Routine wird eine Hochspannung und Schwellwerte für Alpha- und Beta-Referenzzählimpulse eingestellt.

• Wählen Sie im Hauptmenü: Service > Detector Calibration > Auto

(= Service > Detektor kalibrieren > Auto)

DETECTOR AUTO CAL: HIGH VOLT: 1500 V BETA CNT : 14649 1/sec
PRESS 🗲 TO START AUTO CAL
RANGE AVG DIAGS ALARM

Manuelle Kalibrierung des Detektors Das Untermenü "Mass Coefficient" ermöglicht es dem Bediener, eine Massenkalibrierung mittels Folien(n) durchzuführen, wobei ein Null- und ein Bereichsfoliensatz zum Einsatz kommt.

• Wählen Sie im Hauptmenü: Service > Detector Calibration > Manual

(= Service > Detektor kalibrieren > Manuell)

•

DETECTOR MANUAL CAL: >BETA/REF/ALPHA COUNTS HIGH VOLTAGE BETA REF THRESHOLD ALPHA THRESHOLD

RANGE AVG DIAGS ALARM

Beta/Ref/Alpha Im " Zählimpulse Alph

Im "Beta/Ref/Alpha Counts" Screen werden dem Bediener die Alpha- und Beta-Zählimpulse in Echtzeit angezeigt.

- Wählen Sie im Hauptmenü: Service > Detector Calibration > Manual > Beta/Ref/Alpha Counts (= Service > Detektor kalibrieren > Manuell > Beta/Ref/Alpha Zählimpulse).
- •

COUNTS: alpha 0 1/sec beta 10212 1/sec beta corr 10145 1/sec beta ref 5200 1/sec RANGE AVG DIAGS ALARM

Hochspannung Der "High Voltage" Screen gibt dem Bediener die Möglichkeit, den Hochspannungswert anzuzeigen und diesen einzustellen.

 Wählen Sie im Hauptmenü: Service > Detector Calibration > Manual > High Voltage (= Service > Detektor kalibrieren > Manuell > Hochspannung). HIGH VOLTAGE: CURRENTLY: 1500 V SET TO: 1501 V? ↓↓ INC/DEC ↓ SAVE VALUE RANGE AVG DIAGS ALARM

Beta Ref Schwellwert

Im "Beta Ref Threshold" Screen wird die Betriebsspannung des Detektors angezeigt und der Bediener kann diese manuell einstellen.

 Wählen Sie im Hauptmenü: Service > Detector Calibration > Manual > Beta Ref Threshold (= Service > Detektor kalibrieren > Manuell > Beta Ref. Schwellwert).

REF BETA THRESHOLD: CURRENTLY: 500 SET TO: 501 ?	
▲ INC/DEC← SAVE VALUE	
RANGE AVG DIAGS ALARM	

Alpha Schwellwert Im "Alpha Threshold" Screen wird der Alpha-Schwellwert angezeigt und der Bediener kann diesen Wert manuell einstellen.

 Wählen Sie im Hauptmenü: Service > Detector Calibration > Manual > Alpha Threshold (= Service > Detektor kalibrieren > Manuell > Alpha-Schwellwert).

ALPHA THRESHOLD: CURRENTLY: 1500 SET TO: 1501 ?
★ INC/DEC
← SAVE VALUE
RANGE AVG DIAGS ALARM

Nephelometer kalibrieren

Im Untermenü "Nephelometer Calibration" kann die Kalibrierung des Nephelometers angezeigt und eingestellt werden. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Handbuch.

Hinweis Diese Einstellung(en) sollte nur von einem Servicetechniker vorgenommen werden. •

• Wählen Sie im Hauptmenü: Service > Nephelometer Calibration (= Service > Nephelometer kalibrieren).

NEPHELOMETER CALIBRATION: >NEPH RH 4.0 % NEPH TEMP 2.6 °C NEPH SRC LEVEL 35 %
RANGE AVG DIAGS ALARM

Nephelometer - Rel.
LuftfeuchteIm "Nephelometer RH" Screen hat der Bediener die Möglichkeit,
die rel. Luftfeuchte des Nephelometers anzuschauen und diese zu
kalibrieren.

• Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph RH

(= Service > Nephelometer kalibrieren > rel. Luftfeuchte Neph)

CALIBRATE N	IEPH RH:
NEPH RH:	50.0 %
OFFSET:	3.5 %
●● INC ◆ SAVI	/DEC E VAL'UE
RANGE AVG	DIAGS ALARM

Nephelometer-
TemperaturIm "Nephelometer Temperature" Screen wird die Nephelometer-
Temperatur angezeigt und der Bediener kann hier auch den
Temperatursensor des Nephelometers kalibrieren.

 Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph Temp
 Comvise > Neph clometer helibrioren > Neph Temp)

(= Service > Nephelometer kalibrieren > Neph Temp).

Nephelometer Quellenpegel

Im "Nephelometer Source Level" Screen kann der Bediener denQuellenpegel ansehen und diesen kalibrieren.

• Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph Src Level

(= Service > Nephelometer kalibrieren > Neph Src Level).

SOURCE LEVEL SET: IRED: 70 mA SRC LEVEL: 32 % INC/DEC SAVE VALUE RANGE AVG DIAGS ALARM

Analogausgänge kalibrieren

Das "Analog Output Calibration"-Menü ermöglicht die Kalibrierung der 6 Spannungs- und der 6 Stromkanäle. Die Stromkanäle werden nur angezeigt, wenn die I/O-Erweiterungskarte installiert ist. Dieses Menü wird nur angezeigt, wenn sich das Gerät im Service-Modus befindet. Weitere Informationen über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellung sollte nur von einem Kundendiensttechniker vorgenommen werden. •

• Wählen Sie im Hauptmenü: Service > Analog Out Calibration (= *Service* > *Analogausgänge kalibrieren*).

ANALOG OUTPUT CAL: >VOLTAGE CHANNEL 1 VOLTAGE CHANNEL 2 VOLTAGE CHANNEL 3 VOLTAGE CHANNEL 4 VOLTAGE CHANNEL 5 RANGE AVG DIAGS ALARM

ANALOG OUTPUT CAL: >CALIBRATE ZERO CALIBRATE FULL SCALE

RANGE AVG DIAGS ALARM

Null-Kalibrierung Analogausgang

Über den "Analog Output Calibrate Zero"-Bildschirm kann der Benutzer den Null-Zustand des gewählten Analogausgangs kalibrieren. Der Anwender muss hierfür einen Spannungsmesser an den Ausgang legen und den Ausgang so justieren, dass auf dem Spannungsmesser 0,0 V für einen Spannungskanal oder 0 bzw. 4 mA für einen Stromkanal angezeigt werden (je nach gewähltem Messbereich). Vgl. Zeile "set output to:" auf der Anzeige.

 Wählen Sie im Hauptmenü: Service > Analog Out Cal > select Channel > Calibrate Zero (= Service > Analogausgänge kalibrieren > Kanal auswählen > Nullkalibrierung).

ANALOG OUTPUT CAL: ZERO CONNECT METER TO OUTPUT! SELECTED OUTPUT: V1 SET TO: 100 ← SAVE VALUE ★↓ INC/DEC SET OUTPUT TO: 0.0 V

RANGE AVG DIAGS ALARM

Skalenendwert-Kalibrierung Analogausgang

Über den "Analog Output Calibrate Full-Scale"-Bildschirm kann der Benutzer den Skalenendwert-Zustand des gewählten Analogausgangs kalibrieren. Der Anwender muss hierfür einen Spannungsmesser an den Ausgang legen und den Ausgang so justieren, dass auf dem Spannungsmesser der gleiche Wert wie in Zeile "set output to" angezeigt wird, je nach gewähltem Ausgangskanal entweder in V oder in mA.

 Wählen Sie im Hauptmenü: Service > Analog Out Cal > select Channel > Calibrate Full Scale (= Service > Analogausgänge kalibrieren > Kanal auswählen > Skalenendwert kalibrieren).

Analogeingänge kalibrieren

Das "Analog Input Calibration"-Menü dient dazu, für die 8 analogen Eingangskanäle Null- und Skalenendwert zu kalibrieren. Das "Analog Input Calibration"-Menü wird nur angezeigt, wenn die I/O-Erweiterungskarte installiert ist und wenn sich das Gerät im Service-Modus befindet. Weitere Informationen über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Kapitel.

Hinweis Diese Einstellung sollte nur von einem Kundendiensttechniker vorgenommen werden. •

• Wählen Sie im Hauptmenü: Service > Analog Input Calibration (= Service > Analogeingänge kalibrieren).

ANALOG INPUT CAL:
>INPUT CHANNEL 1
INPUT CHANNEL 2
INPUT CHANNEL 3
INPUT CHANNEL 4
INPUT CHANNEL 5 🛛 🖶
RANGE AVG DIAGS ALARM

Null-Kalibrierung Analogeingang

Skalenendwert-Kalibrierung Analogeingang Im "Analog Input Calibrate Full-Scale" Screen kann der Bediener den Skalenendwert des ausgewählten Analogeingangs kalibrieren.

Wählen Sie im Hauptmenü: Service > Analog Input Cal > select Channel > Calibrate Full Scale.
 (= Service > Analogeingänge kalibrieren > Kanal auswählen > Skalenendwert kalibrieren). (Schließen Sie an den analogen Eingangskanal eine Spannungsquelle von 10 V an.)

ANALOG INPUT CAL: SPAN
PROVIDE VOLTAGE TO INPUT!
SELECTED INPUT: INPUT 1
CURRENTLY: 9.84 V
SET TO: 10.0 <mark>0</mark> V
← CALIBRATE TO VALUE
RANGE AVG DIAGS ALARM

Display Pixel Test Der "Display Pixel Test"-Bildschirm dient dazu, die LCD-Anzeige zu testen, indem man zwischen "alle Pixel ein" und "alle Pixel aus" hin- und herschaltet, um sicherzustellen, dass eine einwandfrei Funktion gewährleistet ist. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Handbuch.

• Wählen Sie im Hauptmenü: Service > Display Pixel Test.

Standardwerte wiederherstellen

Der "Restore User Defaults"-Bildschirm dient dazu, die vom Benutzer eingestellte Kalibrierung und Konfigurationswerte auf Werkseinstellungen zurückzusetzen. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Handbuch.

• Wählen Sie im Hauptmenü: Service > Restore User Defaults (= Service > Standardwerte wiederherstellen).

RESTORE USER DEFAULTS:

← RESTORE

RESTORE USER DEFAULTS:

← RESTORE ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM RESTORE

RANGE AVG DIAGS ALARM

RANGE AVG DIAGS ALARM

Werksseitige Standardwerte wiederherstellen

Der "Restore Factory Defaults"-Bildschirm dient dazu, die vom Benutzer eingestellte Kalibrierung und Konfigurationswerte auf Werkseinstellungen zurückzusetzen. Dieser Screen ist nur sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Infos über den Service-Modus finden Sie im Kapitel "Service Modus" weiter vorne in diesem Handbuch.

• Wählen Sie im Hauptmenü: Service > Restore User Defaults (= Service > Standardwerte wiederherstellen).

RESTORE FACTORY DEFAULTS:	RESTORE FACTORY DEFAULTS:
← RESTORE '	← RESTORE ARE YOU SURE YOU WANT TO? PRESS → TO CONFIRM RESTORE
RANGE AVG DIAGS ALARM	RANGE AVG DIAGS ALARM

Passwort-
MenüIm "Password"-Menü kann der Benutzer einen Passwortschutz
eingeben. Wenn das Gerät "verriegelt" ist, kann über die
Benutzeroberfläche an der Gerätevorderseite keine Einstellung
geändert werden; über die Fernbedienung können Einstellungen
nach wie vor geändert werden. Wenn die Benutzeroberfläche an
der Gerätevorderseite verriegelt ist, kann der Anwender immer
noch im Menü navigieren, sich Daten, Geräteparameter und
Einstellungen anzeigen lassen, aber keine Änderungen
vornehmen. Das Passwortsymbol (Vorhängeschloss) rechts in der
Statuszeile weist darauf hin, dass die Passwortwerriegelung
aktiviert ist. Welche Menüpunkte im Passwortmenü angezeigt
werden, hängt vom Passwortstatus des Gerätes ab

• Wählen Sie im Hauptmenü: Password (= Passwort).

PASSWORD MENU: >SET PASSWORD LOCK INSTRUMENT CHANGE PASSWORD REMOVE PASSWORD UNLOCK INSTRUMENT RANGE AVG DIAGS ALARM

Passwort einrichten

t Über den "Set Password"-Bildschirm kann das Passwort eingerichtet werden, mit dem die Benutzeroberfläche entriegelt werden kann; dieser Bildschirm wird angezeigt, wenn das Gerät entriegelt ist und noch kein Passwort eingerichtet wurde. • Wählen Sie im Hauptmenü: Password > Set Password (= Passwort > Passwort einrichten).

Gerät sperren Der "Lock Instrument"-Bildschirm dient dazu, die Benutzeroberfläche der Gerätevorderseite zu verriegeln, damit an der Gerätevorderseite keine Änderungen vorgenommen werden können. Der "Lock Instrument"-Bildschirm wird angezeigt, wenn sich das Gerät im entriegelten Zustand befindet und ein Passwort eingerichtet ist.

• Wählen Sie im Hauptmenü: Password > Lock Instrument (= *Passwort* > *Gerät sperren*).

LOCK FRONT PANEL: PRESSING ENTER WILL PREVENT USER FROM CHANGING CONFIG FROM FRONT PANEL COCK AND RETURN TO RUN

RANGE AVG DIAGS ALARM

Verriegeln/entriegeln und lokaler-/Fernbetrieb Wenn das Gerät an der Gerätevorderseite über die Menübefehle "Password > Lock Instrument" verriegelt wurde, wird angezeigt, dass sich das Gerät im Modus "Fernbetrieb" befindet. In diesem Modus ist die Gerätevorderseite verriegelt ("locked"): es können Daten und Einstellungen angezeigt, aber nicht über die Benutzeroberfläche der Gerätevorderseite verändert werden; gleichzeitig sind die Fernbedienungsbefehle "Set" (Einstellungen) aktiviert.

Wenn die Tastatur an der Gerätevorderseite über die Menübefehle "Password > Unlock Instrument" entriegelt wurde, zeigt das Gerät an, dass es sich im Modus "Nahbetrieb" (local mode) befindet; die Benutzeroberfläche der Gerätevorderseite ist entriegelt und Änderungen an den Einstellungen können an der Gerätevorderseite vorgenommen werden.

Zu den Befehlen "mode" (Modus), "allow mode" (Modus zulassen), "power up mode" (Start-Modus) finden Sie unter "C-Link Protokollbefehle" ausführlichere Informationen.

Passwort ändern Über den "Change Password"-Bildschirm kann das Passwort, mit dem die Gerätevorderseite entriegelt wird, geändert werden. Der Bildschirm zum Ändern des Passwortes wird angezeigt, wenn das Gerät entriegelt ist.

• Wählen Sie im Hauptmenü: Password > Change Password (= *Passwort > Passwort ändern*).

Passwortschutz entfernen

Der "Remove Password"-Bildschirm dient dazu, das aktuelle Passwort zu löschen und den Passwortschutz aufzuheben. Der "Remove Password"-Bildschirm wird angezeigt, wenn das Gerät im entriegelten Zustand ist, und ein Passwort eingerichtet ist.

• Wählen Sie im Hauptmenü: Password > Remove Password (= Passwort > Passwort entfernen).

REMOVE PASSWORD:
PRESSING ENTER WILL
REMOVE CURRENT PASSWORD
AND DISABLE LOCKING
REMOVE PASSWORD
RANGE AVG DIAGS ALARM

Gerät entriegeln

Über den "Unlock Instrument"-Bildschirm wird das Passwort zur Entriegelung der Gerätevorderseite eingegeben. Der Bildschirm zum Entriegeln des Gerätes wird angezeigt, wenn das Gerät verriegelt ist.

• Wählen Sie im Hauptmenü: Password > Unlock Instrument (= *Passwort* > *Gerät entriegeln*).

Chapter 4 Kalibrierung

Das Messgerät Modell 5030*i* ist ein Messgerät zur exakten Messung der Massenkonzentrationswerte für Feinstaub der Kategorie PM_{10} , $PM_{2.5}$ und $PM_{1.0}$. Jedoch hängt – wie bei allen anderen elektronischen Geräten – auch hier die Genauigkeit der Messung von einer korrekten Kalibrierung ab.

Allgemein gesagt, ist die Kalibrierung ein Vorgang, der das Verhältnis zwischen Sensorausgangssignalen und den Parametern herstellt, die der Bediener messen möchte. Das Messgerät vom Typ 5030*i* ist mit Sensoren zur Messung von Temperatur, Feuchte, Druck und Strahlung ausgestattet. Dieses Kapitel beschreibt die Vorgehensweise zur Durchführung der Kalibrierung der verschiedenen Sensoren. Das Kapitel ist eine Art Fortführung der im Kapitel "Installation" beschriebenen Abnahme und liefert weitere Erläuterungen zu den im Kapitel "Betrieb" beschriebenen Menüfunktionen.

Häufigkeit der Kalibrierung

Jedes Gerät wird bereits im Werk kalibriert und auf Genauigkeit getestet. Die Massenkalibrierung wird mit einem Satz, NISTrückverfolgbarer Kalibrierfolien durchgeführt. Der Strahlendetektor ist auf zertifizierte Prüfquellen für Beta- und Alpha-Emissionen kalibriert/geeicht. Die Kalibrierung der Sensoren für Temperatur, rel. Luftfeuchte, Druck und Durchflussrate sind alle auf NIST-rückverfolgbare Standards kalibriert.

Es wird empfohlen, das Gerät einmal jährlich zu kalibrieren und in regelmäßigen Abständen Qualitätskontrollen im Rahmen des vom Bediener/Betreiber festgelegten Qualitätssicherungsprojekts durchzuführen. So sind beispielsweise bei einigen Behörden zur Überwachung der Luftgüte Überprüfungen des Volumenstroms im 14-tägigen Abstand und vierteljährliche Audits für Durchfluss und Masse durchaus üblich. Das Handbuch *Quality Assurance Handbook for Air Pollution Measurement Systems*, herausgegeben von der U.S. EPA, Research Triangle Park, NC, 27711, enthält weiterführende Richtlinien zur Qualitätssicherung.

Benötigte Ausrüstung

Zur Durchführung der jährlichen Massenkalibrierung sind optional Massentransferstandards von Thermo Fisher Scientific erhältlich. Es ist jedoch noch spezielles, zusätzliches Zubehör notwendig, um das Messgerät Modell 5030*i* bzgl. Temperatur, relativer Luftfeuchte, Luftdruck und Volumenstrom zu kalibrieren. Hierzu sollten die nachfolgend aufgelisteten Komponenten verwendet werden:

- Ein Thermistor oder ein Thermoelement-Thermometer, das in der Lage ist, Umgebungstemperaturen im Bereich von–20 bis 50 °C zu messen (mit einer Ablesegenauigkeit von 0,1 °C). Dieses Thermometer sollte mit einer Genauigkeit von ±0,5 °C auf ein NIST-rückverfolgbares Präzisionsthermometer referenziert sein. Es können mehrere Thermometer verwendet werden, um den Temperaturbereich abzudecken, solange jedes Thermometer den vorgenannten Kriterien bzgl. Präzision und Ablesegenauigkeit entspricht.
- Ein Barometer, mit dem der Luftdruck über einen Bereich von 600 bis 800 mmHg (80 bis 106 kPa) gemessen werden kann (mit einer Ablesegenauigkeit von 1 mmHg). Dieses Barometer sollte mindestens einmal jährlich auf ein NISTrückverfolgbares Barometer mit bekannter Genauigkeit kalibriert werden (zulässige Toleranzspanne ±5 mmHg).
- Durchfluss-Transferstandard (FTS = flow rate transfer standard), mit dem die Volumenstrommessung mit einer Genauigkeit von ±2 % kalibriert oder überprüft werden kann. Bei diesem Durchfluss-Transferstandard muss es sich um ein separates, eigenständiges Gerät handeln. Es muss selbst zertifiziert sein und auf einen NIST-konformen Primärstandard für Volumen oder Durchflussrate rückverfolgbar sein. Trockenkolbenmessgeräte und Blasen-Durchflussmesser sollten nur unter kontrollierten Laborbedingungen eingesetzt werden. Umgebungsmessungen im Freiland sollten ein NIST-konformes Niederdruckabfallblenden- / Venturi-Durchflussmessgerät verwenden (z.B. BGI Delta-Cal) oder ein Streamline Pro[™] Modell SX Kit (2-25 L/Min).
- Ein Messgerät, mit dem man die relative Luftfeuchte im Bereich von 35-75% messen kann und dass über eine Ablesegenauigkeit von 0,5% und einer Genauigkeit von 2% rel. Luftfeuchte verfügt.

Vergewissern Sie sich vor der Kalibrierung, dass das Messgerät Modell 5030*i* ordnungsgemäß funktioniert. Das interne

Vorkalibrierung

Diagnosetool des Modell 5030*i* sorgt dafür, dass dies schnell und einfach vonstatten geht. Schalten Sie das Gerät ein und warten Sie ca. 1 Std., bis sich das Gerät stabilisiert hat, bevor Sie es kalibrieren. Falls Sie ein Gerät dieses Typs zum ersten Mal bekommen, dann lesen Sie bitte auch die Beschreibung zur Abnahmeprüfung im Kapitel "Installation". Falls der eingebaute Sensor zur Messung der Durchflusstemperatur kalibriert werden muss, so muss die dynamische Heizung ausgeschaltet und die Geräteabdeckung entfernt werden, und das Gerät sollte vor der Kalibrierung mindestens eine Stunde lang Proben aus der Raumluft entnehmen.

Kalibriervorgang

Die nachfolgend beschriebene Reihenfolge wird zur Kalibrierung bevorzugt, weil sie eine optimale Leistung des 5030*i* gewährleistet und auf langjähriger Erfahrung im Umgang und bei der Entwicklung von Staubmess- u. Überwachungsgeräten basiert. Die Untermenüs ermöglichen dem Bediener, die Werte anzuzeigen und das Gerät zu kalibrieren. Alle Untermenüs sind nur dann in der Bildschirmanzeige sichtbar, wenn sich das Gerät im Service-Modus befindet. Weitere Informationen zum Service-Modus finden Sie im Abschnitt "Service Modus" des Kapitels 3.

Rel. Luftfeuchte / Temperatur kalibrieren

Auf alle nachfolgend in diesem Kapitel dargestellten Screens/Anzeigen wurde bereits im vorherigen Kapitel verwiesen.

UmgebungstemperaturMessen Sie mit Hilfe eines NIST-konformen, neben der
Sensorbaugruppe rel. Luftfeuchte / Temperatur angebrachten
Thermometers, drei Werte und vergleichen Sie die vom 5030i
gemessenen Werte mit den Referenzwerten des Thermometers.
Ermitteln Sie den Durchschnittswert der beiden Messwertsätze
und berechnen Sie die mittlere Differenz zwischen den beiden
Ablesewerten und notieren Sie dies als Offset. Dieser Offset
(NULL) sollte nun im nachfolgenden Screen eingegeben werden:

CALIBRATE AMBIENT TEMP: TEMPERATURE: 29.9 °C ZERO: 4.2 °C
 ♣ INC/DEC ♠ SAVE VALUE
RANGE AVG DIAGS ALARM

Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Sollte sich herausstellen, dass sich der Temperaturwert in die falsche Richtung bewegt hat, dann ändern Sie bitte das Vorzeichen des Offset-Werts.

Rel. Luftfeuchte Messen Sie mit Hilfe eines NIST-konformen, neben der Sensorbaugruppe rel. Luftfeuchte / Temperatur angebrachten Hygrometers, drei individuelle Werte und vergleichen Sie die vom 5030*i* gemessenen Werte mit den Referenzwerten des Hygrometers. Ermitteln Sie den Durchschnittswert der beiden Messwertsätze und berechnen Sie die mittlere Differenz zwischen den beiden Ablesewerten und notieren Sie dies als Offset. Dieser Offset (NULL) sollte nun im nachfolgenden Screen eingegeben werden. Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Sollte sich herausstellen, dass sich der Wert der rel. Luftfeuchte in die falsche Richtung bewegt hat, dann ändern Sie bitte das Vorzeichen des Offset-Werts.

Durchflusstemperatur Unter der Voraussetzung, dass die Geräteabdeckung entfernt, die Heizung ausgeschaltet und aus dem Gerät herausgenommen wurde und das Messgerät über den Zeitraum von 1 Std. die Raumtemperatur gemessen hat, kann nun die Kalibrierung durchgeführt werden.

> Messen Sie mit Hilfe eines NIST-konformen Thermometers, das neben dem kleinen Einlass des Probenahmerohrs oben auf dem Gerät angebracht wurde, drei Werte und vergleichen Sie die vom 5030*i* gemessenen Werte mit den Referenzwerten des Thermometers. Ermitteln Sie den Durchschnittswert der beiden Messwertsätze und berechnen Sie die mittlere Differenz zwischen den beiden Ablesewerten und notieren Sie dies als Offset. Dieser Offset (NULL) sollte nun im nachfolgenden Screen eingegeben werden.

CALIBRATE FLOW TEMP: TEMPERATURE: 28.0 °C ZERO: 0.8 °C
▲ INC/DEC◆ SAVE VALUE
RANGE AVG DIAGS ALARM

Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Sollte sich herausstellen, dass sich der Temperaturwert in die falsche Richtung bewegt hat, dann ändern Sie bitte das Vorzeichen des Offset-Werts.

Druck / Vakuum kalibrieren	Das Messgerät verfügt über drei Drucksensoren, die kalibriert werden können. Der erste Sensor, der kalibriert werden muss, ist der Sensor zur Messung des Luftdrucks. Der Vakuumsensor und die Durchflussdrucksensoren werden automatisch bei jedem Filterwechsel wieder genullt.
Luftdruck kalibrieren	Messen Sie mit Hilfe eines NIST-konformen Barometers den Luftdruck in der Einheit Millimeter-Quecksilbersäule (mmHg) (ggf. Umrechnung). Verwenden sie die Messbereichsfunktion (SPAN) aus dem Untermenü "Kalibrierung des Luftdrucks".
	BARO PRES CALIBRATION: >SPAN 1.0000 SET DEFAULTS
	RANGE AVG DIAGS ALARM
	CAL BARO PRESSURE SPAN: PRESSURE: 760 mmHg SET TO: 747 mmHg?
	←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
	RANGE AVG DIAGS ALARM
	Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Bei Bedarf wiederholen bis auf 2mmHg.
Vakuum / Durchfluss auf null kalibrieren	Im "Calibrate Vacuum/Flow Zero" Screen kann der Vakuum-/ Durchfluss-Sensor auf den Wert Null kalibriert werden. Diese

Im "Calibrate Vacuum/Flow Zero" Screen kann der Vakuum-/
 Durchfluss-Sensor auf den Wert Null kalibriert werden. Diese Kalibrierung wird automatisch bei jedem Filterbandwechsel durchgeführt. Falls dies jedoch außerhalb dieses Zykluses aus irgendeinem Grund erforderlich sein sollte, dann fahren sie bitte mit der nachfolgenden Bildschirmanzeige fort, um einen Filterbandwechsel mit Nullung durchzuführen.

CAL VACUUM/FLOW ZERO: VAC ZERO: 0.0 FLOW ZERO: 0.0 • TO CALIBRATE ZERO BY CHANGING FILTER

RANGE AVG DIAGS ALARM

Vakuumdruck-Messbereich kalibrieren

Im "Calibrate Vacuum Pressure Span" Screen kann der Bediener den Skalenendwert für die Vakuumsensorkalibrierung anzeigen und einstellen.

Um den Vakuumsensor zu kalibrieren, nullen Sie bitte ein digitales Manometer (Druckmessgerät), das in der Lage ist bis 100 mmHg zu messen, und bringen Sie es am + Δ PA Port auf der Geräterückseite an. Drücken Sie dann den Kippschalter rechts nach innen (siehe Abb. 4–1). Der Ablesewert des Manometers kann jetzt zur Kalibrierung des Vakuumsensors verwendet werden.

Abb. 4–1. Differenzdruck und Vakuumkalibrierports

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Vac Pres Span.
 (= Service > Druck/Vakuum kalibrieren > Vak/Durchfluss > Vak Druck Bereich)

	CAL VAC PRESSURE SPAN: VACUUM: 58.7 mmHg SET TO: 60.0 mmHg?
	 ←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
	RANGE AVG DIAGS ALARM
Durchflussdruck- Messbereich kalibrieren	Im "Flow Pressure Span" Screen kann der Bediener den Skalenendwert für die Kalibrierung des Durchflusssensors anzeigen und einstellen.
	Um den Skalenendwert des Durchflussdrucksensors zu kalibrieren, muss das Messgerät aktiv Luft durch das Filterband saugen/ziehen. Verbinden Sie – unter Zuhilfenahme eines Manometers – die entsprechenden +/- Ports Ihres NIST- konformen Manometers mit den entsprechenden +/- Ports auf der Geräterückseite. (Bitte vor dem Anschluss des digitalen Manometers diesen unbedingt nullen!). Öffnen Sie die Ports, indem Sie den Kippschalter nach innen drücken. Berechnen Sie einen gemittelten Ablesewert vom Referenzmanometer in der Einheit mmHg. Geben Sie diesen Messbereichswert in den nachfolgenden Bildschirm ein:
	 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Vac/Flow > Flow Pres Span. (= Service > Druck/Vakuum kalibrieren > Vak/Durchfluss > Durchflussdruck Bereich).
	CAL FLOW PRESSURE SPAN: FLOW: 21.0 mmHg SET TO: 20.0 mmHg?
	←→ MOVE CURSOR ↑↓ CHANGE VALUE ← SAVE '
	RANGE AVG DIAGS ALARM

Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Bei Bedarf wiederholen bis auf 2mmHg genau.

Durchfluss kalibrieren

Das bevorzugte Verfahren zu Kalibrierung der Durchflussrate ist die automatische Durchflusskalibrierung.

Autom. Durchflusskalibrierung Bringen Sie nach vollständigem Abschluss der Installation (montiertes Heizungsrohr, Probenahmerohre und Einlässe) einen NIST-konformen Volumenstrommesser oben auf dem Gerät an. Warten Sie ca. 1 Minute, bis sich der Durchfluss stabilisiert hat. Ist der Wert stabil, messen Sie bitte mit dem Referenzgerät drei individuelle Werte und bilden Sie den Mittelwert. Dieser Mittelwert sollte dann im nachfolgenden Screen eingegeben werden.

FLOW AUT	O CALIBRATION:
FLOW:	16.67 LPM
SET TO:	17.2 <mark>5</mark> LPM?
←→ N	10VE CURSOR
♣ € CHANC	GE VALUE 🗲 SAVE '
RANGE A	VG DIAGS ALARM

Stellen Sie sicher, dass die Eingabe gespeichert wurde und vergleichen Sie nochmals die Werte. Bei Bedarf wiederholen, bis eine Genauigkeit von +/- 2 % erreicht ist.

Führen Sie eine "Dichtigkeitsprüfung" durch (siehe Seite 5-7), um sicherzustellen, dass keine Leckagen vorhanden sind.

Masse kalibrierenDas Messgerät Modell 5030i SHARP wurde bereits werksseitig
kalibriert. Hierzu wurden eine Reihe von Null- und
Messbereichsfolien verwendet. Die Massentransferstandard-
Foliensätze sind bei Thermo Fisher Scientific erhältlich und
sollten als Teil eines Qualitätssicherungsprogram zur
Qualitätsprüfung der Massenmessungen verwendet werden. Diese
Kalibriermethode mittels Folien kann für Qualitätsprüfungen,
Audits und für die Kalibrierung eingesetzt werden.

Das Untermenü "Mass Calibration" (= Massenkalibrierung) wird zur Anzeige und Einstellung des Massenkalibrierpunkts verwendet. Der dazugehörige Screen erscheint nur dann im Display, wenn sich das Gerät im Service-Modus befindet. Weitere Informationen zum Service-Modus finden Sie im Abschnitt "Service Modus" des Kapitels 3. **Hinweis** Diese Einstellung sollte nur von einem Servicetechniker vorgenommen werden.

• Wählen Sie im Hauptmenü: Service > Mass Calibration>Mass Coefficient.

(= Service > Masse kalibrieren > Massenkoeffizient).

MASS CALIBRATION: THERMAL COEFFICIENT VACUUM COEFFICIENT BARO COEFFICIENT >MASS COEFFICIENT ALPHA EFF COEFFICIENT RANGE AVG DIAGS ALARM

Es wird empfohlen, beim Modell 5030*i* Beta-Monitor den Massenkoeffizient jährlich zu kalibrieren.

- Die Foliensätze müssen in einem sauberen Behälter aufbewahrt werden. Das Fenster der Folie bitte nicht mit den Fingern berühren.
- Die Folien dürfen nicht abgewischt werden, da es sonst zu einem Verlust oder einer Zunahme der Masse kommen kann und dadurch die Massenkalibrierung beeinflusst wird.
- Falls erforderlich, können die Foliensätze zum Zweck der Neukalibrierung an Thermo Fisher Scientific zurückgeschickt werden.
- Für regelmäßig, in periodischen Abständen durchgeführte Qualitätsprüfungen, Audits und Kalibrierungen werden separate Foliensätze empfohlen.
- Hält der Bediener es für möglich, dass die Fenster der Folie(n) beschädigt, verkratzt oder verunreinigt sind, dann sind diese Foliensätze zwecks Neukalibrierung an Thermo Fisher Scientific zurückzuschicken.

Die Null-Folie hat ungefähr die gleiche Masse wie ein sauberer Filterfleck und die Messbereichs-Folie repräsentiert eine kalibrierte Massenzunahme auf der Null-Folie. Aus diesem Grund werden die Folien als Foliensatz geliefert und dürfen nicht mit anderen Sätzen vertauscht werden, da dies zu einer Beeinträchtigung der Massenkalibrierung führen könnte.

Da die Methode der Beta-Abschwächung zur Massenzunahme
linear ist, ist es nicht erforderlich, das Modell 5030 <i>i</i> im genauen
Bereich der Beta-Abschwächung pro Filterpunkt zu kalibrieren.
Es ist aber wichtig, die entsprechende Beta-Impuls-Reduzierung
bei einer Zunahme der kalibrierten Masse abzugleichen.

Hinweis Um eine möglichst präzise Massenkalibrierung zu erreichen, sollte die Durchflusstemperatur so stabil wie möglich sein und deshalb sollte das Heizsystem ausgeschaltet sein und das Gerät sollte genügend Zeit haben, sich auf die Temperatur der Umgebungsluft oder die Temperatur im Messcontainer einzupegeln. Befindet sich das Messgerät Modell 5030*i* Beta in einem Messcontainer, dann ist die beste und stabilste Tageszeit, um eine Massenkalibrierung durchzuführen, entweder früh morgens oder spät nachmittags.

MassenkoeffizientDie bevorzugte Methode zur Kalibrierung des
Massenkoeffizienten ist der automatische Kalibriermodus.

 Wählen Sie im Hauptmenü: Service > Mass Calibration > Mass Coefficient.
 (= Service > Masse kalibrieren > Massenkoeffizient).

MASS COEFFICIENT: >AUTO MANUAL	
RANGE AVG DIAGS A	LARM

Autom. Massenkoeffizient	Im "Auto Mass Coefficient" Screen kann der Bediener eine Massenkalibrierung des Messkopfes vornehmen. Der Bediener wird schrittweise durch den Kalibriervorgang geführt.
	Um eine Massenkalibrierung durchzuführen, bitte wie folgt vorgehen:
	 Wählen Sie im Hauptmenü: Service > Mass Calibration > Mass > Auto. (= Service > Masse kalibrieren > Auto).

MASS COEF:	7000.0
FOIL VALUE:	132 <mark>8</mark> μg
← TO SAVE FO	DIL VALUE
AND OPEN BE	NCH
RANGE AVG D	DIAGS ALARM

MASS COEF:	7000.0
FOIL VALUE:	132 <mark>8</mark> µg
REMOVE TAP	E, INSERT FOIL
HOLDER, ← T(O'CLOSE BENCH
RANGE AVG	DIAGS ALARM

4. Führen Sie die Null-/Messbereichsfolie so ein, dass die Seite mit dem Aufkleber nach oben zeigt und drücken Sie die
Taste, um mit der Folienkalibrierung fortzufahren oder drücken Sie auf
, um die Folie anzuhalten.

MASS COEF: 7000.0 FOIL VALUE: 1328 μg	MASS COEF: 7000.0 FOIL VALUE: 1328 µg Beta Avg 12016 1/sec
INSERT NULL FOIL ← TO START ZERO CAL	PLEASE WAIT 265 sec
RANGE AVG DIAGS ALARM	RANGE AVG DIAGS ALARM

Die automatische Nullung der Masse beginnt und dauert ca. 270 Sekunden. Nach Abschluss bleibt die BetaAbschwächungsmesskammer geschlossen und ein Mittelwert für die Beta-Impulsrate wird angezeigt.

MASS COEF: 7000.0 FOIL VALUE: 132 <mark>3</mark> μg Beta Avg 12022 1/sec
REMOVE NULL FOIL ← TƠ CONTINUE
RANGE AVG DIAGS ALARM

5. Entfernen Sie die Nullfolie und legen Sie nun die Messbereichsfolie ein(z.B. 1328 ug) und drücken Sie auf die
Taste, um die Messbereichskalibrierung zu starten, oder die
Taste, um den Prozess anzuhalten.

MASS COEF: 7000.0 FOIL VALUE: 1328 μg Beta Avg 12022 1/sec INSERT SPAN FOIL ← TO START MASS CAL

RANGE AVG DIAGS ALARM

MASS COEF: 7000.0 FOIL VALUE: 132<mark>3</mark> μg Beta Avg 9884 1/sec

PLEASE WAIT 245 sec

RANGE AVG DIAGS ALARM

Es läuft nun die Kalibrierung der Messbereichsfolie und nach weiteren 270 Sekunden ist auch dieser Vorgang abgeschlossen. Es wird nun ein neuer Massenkoeffizient angezeigt und die prozentuale Abweichung zwischen der letzten Folienkalibrierung und der aktuellen Kalibrierung wird angezeigt. Diese prozentuale Abweichung kann direkt zur Auditierung des Massenkoeffizienten verwendet werden , da eine prozentuale Abweichung bei einem Massenkoeffizient der gesamten prozentualen Massenabweichung entspricht.

MASS COEF: 6878.7
FOIL VALUE: 132 <mark>8</mark> μg
Beta Avg 9911 1/SEC
difference -1.7 %
REMOVE SPAN FOIL
← TO CONTINUE
RANGE AVG DIAGS ALARM
Beta Avg 9911 1/SEC difference -1.7 % REMOVE SPAN FOIL ← TO CONTINUE RANGE AVG DIAGS ALARM

6. Nach der Messbereichskalibrierung, wird der Bediener über den Screen aufgefordert, die
Taste zu drücken, um die neue Kalibrierung zu übernehmen. Um den Wert des alten Massenkoeffizienten zu behalten, drücken Sie bitte die
Taste. Entfernen Sie die Messbereichsfolie und drücken Sie
Die Messkammer wird geöffnet. Entfernen Sie den Filterhalter, tauschen Sie das Filterband und drücken Sie
, um zu bestätigen, dass die Kalibrierroutine beendet ist.

MASS COEF: 6878.7 FOIL VALUE: 132[®] µg Beta Avg 9911 1/sec difference -1.7 % REMOVE HQLDE, INSERT TAPE, ← TO CLOSE BENCH RANGE AVG DIAGS ALARM

MASS COEF: 6878.7 FOIL VALUE: 1328 µg Beta Avg 9911 1/sec difference -1.7 % ← TO ACCEPT NEW VALUES ← TO DECLINE

RANGE AVG DIAGS ALARM

Detektor kalibrieren Im Untermenü "Detector Calibration" kann der Bediener die Detektorkalibrierung anzeigen und diesbezüglich Einstellungen vornehmen. Der dazugehörige Screen erscheint nur, wenn sich das Gerät im Service-Modus befindet. Weitere Infos hierzu finden Sie im Abschnitt "Service Modus".

Hinweis Diese Einstellungen sollten nur von einem Servicetechniker vorgenommen werden.

• Wählen Sie im Hauptmenü: Service > Detector Calibration. (= Service > Detektor kalibrieren). DETECTOR CALIBRATION: >AUTO MANUAL

RANGE AVG DIAGS ALARM

Autom. Detektorkalibrierung

Im "Auto Detector Calibration" Screen hat der Bediener die Möglichkeit, die Leistung des Detektors zu optimieren. Dies sollte mindestens einmal jährlich erfolgen und bis zu einmal im Quartal.

• Wählen Sie im Hauptmenü: Service > Detector Calibration > Auto

(= Service > Detektor kalibrieren > Auto).

DETECTOR AUTO CAL: HIGH VOLT: 1500 V BETA CNT: 14649 1/sec PRESS TO START AUTO CAL RANGE AVG DIAGS ALARM

Die Kalibrierung dauert ca. 30 Minuten. Danach wird der Hochspannung, dem Beta-Referenz-Schwellwert und dem Alpha-Schwellwert ein neuer Wert zugewiesen.

Nephelometer
kalibrierenIm Untermenü "Nephelometer Calibration" kann der Bediener die
Informationen bzgl. der Kalibrierung des Nephelometers anzeigen
und diesbezüglich Einstellungen vornehmen. Der dazugehörige
Screen erscheint nur, wenn sich das Gerät im Service-Modus
befindet. Weitere Infos hierzu finden Sie im Abschnitt "Service
Modus".

Hinweis Diese Einstellungen sollten nur von einem Servicetechniker vorgenommen werden.•

• Wählen Sie im Hauptmenü: Service > Nephelometer Calibration. (= Service > Nephelometer kalibrieren).

	NEPHELOMETER CALIBRATION: >NEPH RH 0.0 % NEPH TEMP 0.0 °C NEPH SRC LEVEL 0 %
	RANGE AVG DIAGS ALARM
Rel. Luftfeuchte des Nephelometers	Im "Nephelometer RH" Screen kann der Bediener den Wert der rel. Luftfeuchte des Nephelometers anzeigen und den Sensor für die rel. Luftfeuchte kalibrieren.
	Hinweis Für die Kalibrierung der rel. Luftfeuchte des Nephelometers muss die Heizung ausgeschaltet sein.
	 Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph RH (= Service > Neph kalibrieren > Rel. Feuchte Neph.)
	CALIBRATE NEPH RH: NEPH RH: 0.0 % OFFSET: 0.0 %
	★ INC/DEC ★ SAVE VALUE
	RANGE AVG DIAGS ALARM
Nonholomotor	Im Nonholomaton Tomponature" Corean kann dar Dadianar die

Nephelometer-
TemperaturIm "Nephelometer Temperature" Screen kann der Bediener die
Nephelometer-Temperatur anzeigen und den Nephelometer
Temperatursensor kalibrieren.

Hinweis Für die Kalibrierung der Nephelometer-Temperatur muss die Heizung ausgeschaltet sein.•

 Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph Temp (= Service > Neph kalibrieren > Neph Temp.)

CALIBRATE NEPH TEMP: NEPH TEMP: 0.0 °C OFFSET: 0.0 °C
 ♣ INC/DEC ♠ SAVE VALUE
RANGE AVG DIAGS ALARM

Nephelometer Quellenpegel Im "Nephelometer Source Level" Screen kann der Bediener den Quellenpegel anzeigen und kalibrieren. Der Wert sollte zwischen 60-70 mA liegen. Liegt der Wert außerhalb dieses Bereichs, dann bitte den Quellenpegel (%) einstellen, bis bei IRED 65 mA angezeigt werden.

Wählen Sie im Hauptmenü: Service > Neph Calibration > Neph Src Level
 (= Service > Neph kalibrieren > Nph Src Level).

SOURCE LEVEL SET: IRED: 65 mA SRC LEVEL: 32 % INC/DEC SAVE VALUE RANGE AVG DIAGS ALARM

Chapter 5 Präventive Wartung

In diesem Kapitel werden die periodischen Wartungsarbeiten beschrieben, die durchgeführt werden sollten, um einen reibungslosen Betrieb zu gewährleisten. Aufgrund der beträchtlichen Unterschiede im Hinblick auf Einsatzbereich und Umgebungsbedingungen sollte eine engmaschige Überprüfung der Komponenten erfolgen, bis ein entsprechender Wartungsplan erstellt wurde.

In diesem Kapitel finden Sie folgende Informationen bzgl. präventiver Wartung:

- "Sicherheitsmaßnahmen" auf Seite 5-1
- "Ersatzteile" auf Seite 5-2
- "Gehäuseaußenseite reinigen" auf Seite 5-2
- "Einlässe reinigen" auf Seite 5-2
- "Lüfterfilter prüfen und reinigen" auf Seite 5-6
- "Pumpe erneuern" auf Seite 5-7
- "Dichtigkeitsprüfung" auf Seite 5-7
- "Filterband tauschen" auf Seite 5-8
- "Nocke schmieren" auf Seite 5-9
- "Externer Pumpenabgasfilter" auf Seite 5-10
- "SHARP Optik-Baugruppe reinigen" auf Seite 5-12

Sicherheits maßnahmen

Lesen Sie bitte die Sicherheitsmaßnamen vor der Durchführung eines in diesem Kapitel beschriebenen Verfahrens.

ACHTUNG Wird das Gerät in einer Art und Weise betrieben, die nicht vom Hersteller spezifiziert wurde, dann können Sicherheit und Schutzeinrichtungen des Gerätes beeinträchtigt werden.•

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service". •

Ersatzteile

Im Kapitel "Service" finden Sie eine Ersatzteilliste und wie die entsprechenden Teile zu tauschen sind.

ACHTUNG Wird das Gerät in einer Art und Weise betrieben, die nicht vom Hersteller spezifiziert wurde, dann können Sicherheit und Schutzeinrichtungen des Gerätes beeinträchtigt werden.•

Gehäuseaußenseite reinigen

Zum Reinigen der äußeren Gehäuseoberfläche verwenden Sie bitte ein feuchtes Tuch. Vermeiden Sie jegliche Beschädigung der auf dem Gehäuse außen aufgebrachten Etiketten und Aufkleber.

Schäden am Gerät Niemals Lösungsmittel oder andere Reinigungsmittel zum Reinigen der Außenseite des Gehäuses verwenden. •

Einlässe reinigen

Die Einlass-Baugruppen können einen TSP Einlass, einen U.S. EPA kompatiblen PM_{10} Einlass oder einen digitalen PM_{10} oder $PM_{2.5}$ Einlass beinhalten. Der Zeitplan für die Reinigung und die routinemäßige Wartung der Baugruppenkomponenten sollte gemäß einem Qualitätssicherungsplan erfolgen.

In der Regel wird empfohlen, die Einlass-Baugruppen vierteljährlich zu reinigen. Verwenden Sie hierzu eine milde Seifenlösung, spülen Sie die Einlässe sorgfältig und trocknen Sie diese mit einem fusselfreien Tuch. Sollte bei Impaktierungsflächen eine Schmierung erforderlich sein, dann bitte das Schmiermittel auftragen, bevor Sie das Gerät wieder zusammenbauen. Des Weiteren sollten die Dichtungsringe allgemein überprüft und – falls erforderlich – getauscht werden.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein

ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service".

U.S. EPA PM₁₀ Einlass

Der Wassersammelbehälter am PM₁₀ Einlass sollte mindestens alle 5 Tage der Probenahme überprüft werden (Abb. 5–1). Schütten Sie das gesammelte Wasser aus, reinigen Sie den Behälter innen, prüfen Sie die Dichtungen und setzen Sie den Sammelbehälter wieder in den entsprechenden Halter ein.

Abb. 5–1. U.S. EPA PM₁₀ Einlass

Der Probenahme-Einlass sollte einmal monatlich zerlegt und gereinigt werden. Markieren Sie einzelne Punkte und Komponenten mit einem Stift, um so das Wiederzusammenführen der einzelnen Komponenten zu erleichtern.

Zerlegen Sie den Einlass gemäß Abb. 5–1. Falls sich Schrauben festgefressen haben sollten, bitte Kriechöl oder ein handelsübliches Schmiermittel auftragen, damit die Schrauben leichter entfernt werden können. Reinigen Sie alle Innenflächen und das Insektenschutzgitter mit Allzweckreiniger oder Druckluft. Achten Sie dabei besonders auf kleine Öffnungen und Spalte. Wattestäbchen und/oder eine kleine Bürste können hierzu hilfreich sein. Trocknen Sie alle Komponenten sorgfältig.

Auch die Dichtungsringe (O-Ringe) sollten monatlich auf Verformungen, Risse, durchgescheuerte Stellen oder andere Probleme hin überprüft und gegebenenfalls getauscht werden. Vor dem Zusammenbau bitte die Dichtungsringe leicht schmieren.

Bauen Sie die Einheit entsprechend der vorher angebrachten Referenzmarkierungen wieder zusammen. Achten Sie dabei auf den sauberen, ordnungsgemäßen Sitz der O-Ringe und darauf, dass alle Schrauben gleichmäßig angezogen wurden.

Europäischer PM₁₀/PM_{2.5} Einlass

Zum Reinigen des europäischen PM_{10} Einlasses (z.B. Leckel) sollte derselbe Wartungsplan angewandt werden, wie beim U.S. EPA Einlass, jeweils im Abstand von ca. 1-2 Monaten. Die Komponenten des Einlasses sollten überprüft und – wenn notwendig – gereinigt werden. Abb. 5–2 unten zeigt ein Bild und eine Konstruktionszeichnung des Einlasses und die entsprechenden Teile.

Abb. 5–2. Europäischer PM₁₀ Einlass

 $\rm PM_{10}$ Partikelgrößen selektierender Einlass (1 m³/h) für Modell 5030i Beta:

- Identische Konstruktion wie EN-Referenzeinlass, jedoch mit einem Durchsatz von 1 m $^3/h$
- Mit speziellem Oberflächenschutz durch eine Aluminium EMATEL Oberfläche

- Mit speziellem Wasserabscheider und leicht zu tauschender Impaktor-Prallplatte
- Standard-Rohranschluss D = 16 mm zum Anschluss eines permanenten Messgeräts
- Einfache Konvertierung in $PM_{2.5}$ mit Hilfe der $PM_{2.5}$ Düsenplatte (8 Düsen)
- Einfache Konvertierung in PM₁ mit Hilfe der PM₁ Düsenplatte (8 Düsen)

Zyklon warten Wird zur Probenahme von Feinstaub mit Partikelgröße PM2.5 ein Sharp-Cut Zyklon (SCC) oder ein sehr genauer Zyklon des Typs BGI verwendet (Abb. 5–3), dann sollte alle 2-3 Wochen einmal der Staubauffangbehälter aufgeschraubt, geleert und mit einem faserfreien Tuch gesäubert werden. Vierteljährlich sollte die komplette SCC-Baugruppe überprüft und gereinigt werden sowie die O-Ringe auf Verformung, Risse, Durchscheuern oder andere Probleme hin untersucht werden. O-Dichtungsringe falls notwendig tauschen.

Abb. 5–3. PM_{2.5} Sharp-Cut Zyklon

Heizung und Probenahmerohr

Das Probenahmerohr, das zwischen Einlass und Modell 5030*i* (Beta-Modul) angebracht ist, sollte mindestens einmal jährlich entfernt und getauscht werden (in stärker verschmutzten, belasteten Umgebungen häufiger). Mit Hilfe einer Flaschenbürste können Ablagerungen im Probenahmerohr gut entfernt werden. Gleiches gilt auch für das Heizrohr.

Wetterfeste Ausrüstung

Im Kapitel "Installation" finden Sie detaillierte Informationen zum Aufbau. Nach Installation wird empfohlen, das Gerät an allen, der Witterung ausgesetzten Schnittstellen auf Wetterfestigkeit hin zu prüfen. Stellen Sie sicher, dass durch den Dachflansch und die Silikondichtmasse keine Niederschläge in den Messcontainer gelangen. Sie vermeiden hierdurch, dass es zu möglichen Schäden an den Elektronikkomponenten kommt.

Lüfterfilter prüfen und reinigen

Um den Lüfterfilter zu überprüfen und zu reinigen, gehen Sie bitte wie folgt vor (Abb. 5–4).

- 1. Entfernen Sie das Lüfterschutzgitter vom Lüfter und nehmen Sie den Filter heraus.
- 2. Spülen Sie den Filter mit warmem Wasser und lassen Sie ihn trocknen (ein Spülen mit sauberem, ölfreien Wasser erleichtert das Trocknen) oder blasen Sie den Filter mit Druckluft aus.
- 3. Setzen Sie den Filter und das Lüfterschutzgitter wieder ein.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service".

Abb. 5-4. Lüfter prüfen und reinigen

Pumpe erneuern

Erneuern Sie die Probenahmepumpe alle 12- 18 Monate oder wie erforderlich, abhängig von der Umgebung, in der die Pumpe zum Einsatz kommt. Der Pumpen-Reparatursatz enthält genaue Anweisungen zum Erneuern der Pumpe. Eine Liste der Ersatzteile finden Sie im Kapitel "Service". Führen Sie dann eine "Dichtigkeitsprüfung" – wie nachfolgend beschrieben – durch.

Dichtigkeitsprüfung Für die Dichtigkeitsprüfung wird ein Volumenstrom-Messgerät und ein kundenspezifischer Adapter verwendet. Um zu überprüfen, dass keine Leckagen vorliegen, bitte wie folgt vorgehen.

- 1. Stecken Sie ein Referenzgerät zur Volumenstrommessung (z.B. BGI Delta Cal) auf den Einlassadapter und kalibrieren Sie das Messgerät Modell 5030*i* SHARP so, dass das Referenzmessgerät und der 5030*i* SHARP Monitor identische Durchflussraten anzeigen.
- 2. Installieren Sie dann den kundenspez. Dichtigkeitstestadapter auf dem Einlassadapter und stecken Sie dann das Referenzmessgerät auf den Dichtigkeitstestadapter.
- 3. Notieren Sie den vom Referenzmessgerät angezeigten Volumenstrom und den augenblicklichen Durchfluss. Beträgt

der Unterschied zwischen beiden Werten weniger als 0.42 l/Minute (\pm 2.5%), dann war die Dichtigkeitsprüfung erfolgreich.

Filterband tauschen

Reißt das Filterband oder geht es zu Ende, dann bitte das Filterband wie nachfolgend beschrieben tauschen.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service".

- 1. Linke Seitenwand entfernen.
- 3. Lösen Sie die beiden Muttern der Filterbandspule. Entfernen Sie das verbrauchte Filterband und die leere Spule von den Spindeln.
- 4. Setzen Sie auf der linken Spindel ein neues Filterband ein und ziehen Sie die Mutter wieder fest.
- 5. Setzen Sie nun rechts eine neue, leere Aufnahmespule ein.
- 6. Verlegen Sie das Filterband wie in Abb. 5–5 dargestellt.
- 7. Befestigen Sie das Bandende auf der leeren Spule auf der rechten Spindel.
- 8. Drehen Sie die leere Spule 2 volle Umdrehungen.

- Wählen Sie dann im Hauptmenü: Alarms > Instrument Alarms (= Alarm > Gerätealarm), um zu überprüfen, dass kein Alarm bzgl. des Filterbandes vorliegt.
- 11. Setzen Sie die linke Seitenwand/-abdeckung wieder ein.

Abb. 5–5. Filterband tauschen

NockeDie Nocke bitte wie folgt schmieren:SchmierenBenötigte(s) Ausrüstung /Material:
Dow Corning Molykote G-N

Externer Pumpenabgas filter

1. Tragen Sie die Metall-Montagepaste rings um die Nocke herum auf.

Es wird empfohlen, den externen Pumpenabgasfilter alle sechs (6) Monate zu tauschen. Entfernen Sie einmal im Jahr die obere Platte der Optik und saugen Sie die optische Kammer wie nachfolgend beschrieben aus oder schicken Sie diese zur Wartung und erneuten Kalibrierung ins Werk zurück.

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service".

- Schalten Sie die Heizung AUS. Wählen Sie im Hauptmenü: Instrument Controls > Set Heater > Control. (= Gerätesteuerung > Heizung einstellen > Steuerung). Drücken Sie die Tasten → so lange, bis AUS angezeigt wird und betätigen Sie anschließend die ← Taste.
- 2. Entfernen Sie den Anschluss für rel. Luftfeuchte / Temperatur.
- 3. Entfernen Sie von der SHARP MIB Karte J1 die fünf (5) Innensechskantschrauben von der oberen Endkappe und heben Sie diese ab.
- 4. Entfernen Sie die Dichtungsmanschette (Hinweis: kann unten an der oberen Endplatte feststecken).
- 5. Saugen Sie die optische Kammer vorsichtig aus.
- 6. Abschließend wieder in umgekehrter Reihenfolge zusammenbauen. Dabei die Dichtungsmanschette wieder sorgfältig einsetzen.

Abb. 5-6. Externen Pumpenabgasfilter tauschen
SHARP Optik-Baugruppe reinigen

Nachfolgend finden Sie eine Beschreibung der Vorgehensweise zur Überprüfung und Reinigung der SHARP Optik-Baugruppe. Die SHARP Optik-Baugruppe sollte einmal jährlich entfernt und gereinigt werden.

Benötigte Ausrüstung:

Kreuzschlitz-Schraubendreher

Verstellbarer Schraubenschlüssel (Engländer)

Innensechskantschlüssel (Inbus)

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. Weitere Informationen über notwendige Sicherheitsvorkehrungen finden Sie im Kapitel "Service".

- Schalten Sie das Gerät AUS, ziehen Sie das Stromversorgungskabel ab und nehmen Sie die SHARP Optik-Baugruppe heraus. Siehe hierzu auch den Abschnitt "SHARP Optik-Baugruppe entfernen" auf Seite 7-13.
- 2. Entfernen Sie die beiden Kreuzschlitzschrauben und anschließend die Abdeckung der SHARP Optik-Baugruppe. Siehe auch Beschreibung unter "SHARP Optik-Abdeckung entfernen" auf Seite 7-50.
- 3. Ziehen Sie den rel. Luftfeuchte/ Temperatur-Stecker von der SHARP Interface-Karte ab.
- 4. Entfernen Sie die acht Sechskantschrauben von der oberen Endplatte.
- 5. Entfernen Sie dann behutsam die Endplatte und die Dichtungsmanschette.

- 6. Saugen Sie die optische Kammer vorsichtig aus und achten Sie dabei darauf, die Komponenten innen in der optischen Kammer nicht zu beschädigen.
- 7. Abschließend wieder zusammenbauen. Die Dichtungsmanschette dabei besonders vorsichtig wieder ausrichten, damit Luftundichtigkeiten vermieden werden.

Chapter 6 Störungssuche und Störungsbeseitigung

Dieses Messgerät wurde so konzipiert und entwickelt, dass ein Höchstmaß an Zuverlässigkeit gewährleistet ist. Sollten Probleme oder Störungen auftreten, dann sollen Ihnen die hier in diesem Kapitel beschriebenen Richtlinien zur Störungssuche und beseitigung, die Schaltpläne der Platinen, Beschreibungen bzgl. der Pinbelegung und die Prüfanweisungen als Hilfestellung dienen, um das Problem abzugrenzen und zu identifizieren.

Im Falle von Problemen kann ebenfalls die Serviceabteilung der Firma Thermo Fisher Scientific konsultiert werden. Lesen Sie hierzu den Abschnitt "Service Standorte" auf Seite 6-29. Bei schriftlichen oder telefonischen Rückfragen bitten wir Sie, die Seriennummer und die Programmnummer / Versionsnummer des Gerätes bereit zu halten.

In diesem Kapitel finden Sie folgende Informationen zum Thema Störungssuche und -behebung sowie zum technischen Support:

- "Vorbeugende Sicherheitsmaßnahmen" auf Seite 6-1
- "Leitfäden zur Störungsbehebung" auf Seite 6-2
- "Schaltpläne auf Platinenebene" auf Seite 6-11
- "Beschreibung Pinbelegung" auf Seite 6-13
- "Service Standorte" auf Seite 6-29

Vorbeugende Sicherheitsmaßnahmen

Vor Durchführung einer hier in diesem Kapitel beschriebenen Maßnahmen lesen Sie bitte die vorbeugenden Sicherheitsmaßnahmen im Vorwort und im Kapitel "Service" dieser Bedienungsanleitung.

Leitfäden zur Störungsbehebung

Die Leitfäden und Anweisungen zur Störungsbehebung in diesem Kapitel dienen dazu, Probleme mit dem Messgerät zu lokalisieren, abzugrenzen und diese zu beseitigen.

Tabelle 6–1 liefert allgemeine Informationen zur Störungsbehebung sowie Tests bzw. Prüfungen, die Sie bei einer Störung bzw. einem Problem durchführen sollten.

In Tabelle 6–2 finden Sie eine Liste aller Alarmmeldungen, die im Display erscheinen können. Im Anzeigefenster finden Sie auch Empfehlungen, wie die Alarmbedingung beseitigt werden können.

Störung	Mögliche Ursache	Maßnahme(n)
Kein Strom	Hauptsicherungen durchgebrannt oder fehlen	Spannungswerte der Stromversorgung prüfen.
	Digitale Elektronik defekt	Alle Platinen und Steckverbinder auf korrekten Sitz prüfen. Ggf. zum Lokalisieren des Fehlers Karten gegen Ersatzplatinen tauschen.
Kein automatischer Filterwechsel	Muttern der Spule nicht fest	Muttern festziehen.
	Filterband zu Ende	Neues Filterband einlegen.
	Filter nicht richtig festgeklebt oder abgerissen	Filterband an der Aufnahmespule festkleben und einmal komplett herumwickeln.
	Filterbandtransportmotor defekt	Motor tauschen.
	Optischer Bandzähler defekt	Optischen Sensor für den Filterbandtransport tauschen.
Drucksensorplatine hält Kalibrierung nicht	Ventile geschlossen	∆P Ventile auf Geräterückseite überprüfen, ob geschlossen.
	Lose Leitungen	Alle Leitungsverbindungen prüfen.
	Druckplatine defekt	Druckplatine tauschen.
Stark schwankende Konzentration	Störung des Aufzeichnungsgeräts	Aufzeichnungsgerät und/oder Anschlussdrähte tauschen oder reparieren.
	Sich ändernde Probenahme- Konzentration	Modell 5030 <i>i</i> auf einem Nullfilter laufen lassen – falls ruhig, keine Störung.
	Fremdmaterial in optischer Kammer	Optische Kammer reinigen.

Tabelle 6-1. Störungsbehebung – Allg. Leitfaden

Störung	Mögliche Ursache	Maßnahme(n)	
	Digitale Elektronik defekt.	Platine durch Ersatzplatine ersetzen.	
Gerät kalibriert nicht richtig	Leckage	Leck finden und beseitigen.	
	Temperatur- oder Drucksensoren außerhalb Kalibrierung	Druck- oder Temperatursensoren erneut kalibrieren.	
	Digital Elektronik defekt	Jede einzelne Platine nacheinander gegen Ersatzplatine tauschen, um die defekte Platine zu lokalisieren	
	Durchfluss	Überprüfen Sie, ob sich die ∆P Ventile auf der Geräterückseite in der Position "geschlossen" befinden. Erneut kalibrieren.	
Display aus	Falsche Kontrasteinstellung	Kontrast einstellen.	
	LCD Kabel lose	Verbindung und Kabel auf Beschädigung prüfen.	
_	LCD defekt	Display ersetzen.	
Das Ändern von Parametern ist nicht möglich	Tastatur nicht aktiv	Tastatur über Menü aktivieren.	
Kein Massenwert	AD-Konverter defekt	Hauptplatine tauschen.	
	Netz unterbrochen	Prüfen und reparieren.	
	Kein Hochspannungswert	Hochspannung prüfen.	
	Detektor defekt	Detektor tauschen.	
Kein autom. Filterwechsel	Mechanischer Defekt	Filtertransportmotor und Mechanik prüfen. Prüfen, ob Filterband auf Aufnahmespule geklebt und intakt ist.	
	Falls Pumpe nicht läuft	Stromversorung und Kabel der Pumpe prüfen.	
	Wenn der Filterwechsel- Parameter den FC-Wert zum zweiten Mal erreicht, stoppt der Motor	Filterwechselparameter einstellen.	
LCD defekt oder	Falscher Kontrast	Kontrast einstellen.	

Störungssuche und Störungsbeseitigung Leitfäden zur Störungsbehebung

Störung	Mögliche Ursache	Maßnahme(n)	
dunkel			
	LCD defekt.	LCD tauschen.	
	Verbindungskabel von der Hauptplatine defekt	Flachbandkabel des Displays tauschen.	
Störung Luftdurchsatz oder zu schwacher Luftdurchsatz	Luftdurchsatzparameter falsch	Luftdurchsatzparameter prüfen.	
	Keine Verbindung mit Stecker (25) "Pumpe"	Stecker einstecken (Eingang Pumpensteuerung).	
	Pumpe arbeitet nicht sauber	Pumpe innen reinigen oder tauschen	
	Hoher Verschmutzungsgrad oder Blockade beim Luftdurchtritt	Luftdurchtritt reinigen.	
	Überprüfen, ob ∆P Kalibrierventile in Position "geschlossen"	Ventile schließen.	
Neph Karte - Störung	Externes Kabel nicht angeschlossen	Kabelverbindung prüfen.	
	Internes Kabel nicht angeschlossen	Kabelverbindung prüfen.	
Niedriger Quellenstrom	Abgezogenes Quell/Ref Kabel	Kabelverbindung prüfen.	
Keine SHARP Konzentration	Nicht verbundenes Scat Det- Kabel	Kabelverbindung prüfen.	
Keine Nullluft	Hinteres Magnetventil normalerweise geschlossen	Verbindung Geräterückseite prüfen -Ventil tauschen.	
	Inline Filter oder interner Filter verstopft	Filter tauschen.	
	Pumpe nicht eingesteckt.	Pumpe einstecken.	
	Internes Magnetventil normalerweise geschlossen	Kabelverbindung prüfen - Ventil tauschen.	
	Nulluft in Schottverschraubung prüfen.	Geknickter Schlauch – Schlauch einschieben.	
	Pumpenausgangsverbindung prüfen	Schlauch in Y-Fitting oder Pumpe einsetzen.	
	Internes "T"-Stück prüfen, ob Stecker oder Schlauch nicht	Sperstopfen einsetzen, Rohr anschließen	

Störung	Mögliche Ursache	Maßnahme(n)
	angeschlossen.	
Ref Det Spannung	Niedriger oder hoher Quellenstrom	Quellenstrompegel prüfen., auf 62–67 mA einstellen
		Min. und max. Werte prüfen / LED Strom 65mA
Neph Kal	Falscher Nullpunkt	Erneut nullen.
Neph Temp	Hoch/niedrig	Min. und max. Werte prüfen / erneut kalibrieren.
Neph rel. Feuchte	Niedrig/hoch	Min. und max. Werte prüfen / erneut kalibrieren.
LED-Strom	Hoch/niedrig	Min. und max. Werte prüfen / 65mA ± 5mA

Alarmmeldung	Mögliche Ursache(n)	Maßnahme(n)
Gerätealarm – Filterbandzähler	Lose Spulenmutter	Spulenmuttern festziehen.
	Kaputtes Band	Filterband ersetzen.
	Loses Photo- Interrupt-Kabel	Verbindungen überprüfen.
Gerätealarm – Filterbandwechsel	Lose Spulenmutter	Spulenmuttern festziehen.
	Kaputtes Band	Filterband ersetzen.
	Mutter des Bandmotors dreht sich	Verbindung zur Mess- Interface-Karte überprüfen. Bandmotor tauschen.
Gerätealarm – Messkammer	Nocken funktioniert nicht.	Verbindung zur Mess- Interface-Karte überprüfen. Motor tauschen.
	Motor dreht sich, Nocke nicht	Stellschrauben auf Nockenkupplung prüfen.
Gerätealarm – Motherboard Status	Interne Kabel nicht richtig angeschlossen.	Prüfen, dass alle internen Kabel richtig angeschlossen sind. Netzspannung wieder einschalten. Falls weiterhin Alarm, Karte tauschen.
Gerätealarm – Interface Status	Platine defekt	Karte tauschen
Gerätealarm – I/O Exp Status		
Detektoralarm – Alpha	Detektor	Detektor erneut kalibrieren.
	Einstellungen	Prüfen, ob Alarmeinstellungen zwischen 0 (min.) und 100 (max.) liegen.
Detektoralarm – Beta	Abgezogenes Kabel	Kabelverbindungen prüfen.
	Defekter Detektor	Detektor tauschen – Beta- Zählrate tendiert gegen Null.
	Einstellungen	Prüfen, ob Alarmeinstellungen zwischen 5000 (min.) und 20000 (max.) liegen
Nephelometer-Alarm-	Abgezogenes	Prüfen, ob Kabelbaum an

Tabelle 6-2. Störungsbehebung - Alarmmeldungen

Alarmmeldung	Mögliche Ursache(n)	Maßnahme(n)
Platinenstatus	Kabel	Grundplatte angeschlossen ist.
		ACHTUNG Falls abgezogen, Stromversorgung zur Basis vor dem Wiederanschließen ausschalten.
Nephelometer Alarm – Neph Probenahme	Falscher Nullpunkt	Erneut nullen.
	Einstellungen	Einstellungen überprüfen
Nephelometer Alarm – Neph Kal	Falscher Nullpunkt	Erneut nullen.
	Kein Durchfluss	Werte überprüfen.
Nephelometer Alarm – Neph Temp	Abgezogenes Kabel	Kabelverbindungen überprüfen.
Nephelometer Alarm – Neph RH	Kalibrierfehler	Erneut kalibrieren
	Defekter Sensor	Platine/Karte tauschen.
Nephelometer Alarm – LED Strom	Stromeinstellungen zu niedrig	LED Strom auf 65 m einstellen
	Abgezogenes Kabel von Grundplatte	Kabelverbindung überprüfen.
	Abgezogenes Kabel von SHARP Optik-Karte	Kabelverbindung überprüfen.
Nephelometer Alarm – Ref Det Volt	Stromeinstellungen zu niedrig	LED Strom auf 65 mA einstellen.
	Abgezogenes Kabel von Grundplatte	Kabelverbindung überprüfen.
	Abgezogenes Kabel von SHARP Optik-Karte	Kabelverbindung überprüfen.
Rel. Feuchte/Temperatur- Alarm – rel. Feuchte Umgebungslulft	Abgezogenes Kabel (extern) auf Geräterückseite	Kabelverbindung überprüfen.
	Abgezogenes Kabel (intern)	Kabelverbindung überprüfen.
Rel. Feuchte/Temperatur-	Heizung abgeschaltet	Kabelverbindung überprüfen.

Alarmmeldung	Mögliche Ursache(n)	Maßnahme(n)
Alarm – rel. Feuchte Probenahme		
Rel. Feuchte/Temperatur- Alarm – Umgebungstemp.	Abgezogenes Kabel (extern) auf Geräterückseite	Kabelverbindung überprüfen.
	Abgezogenes Kabel (intern)	Kabelverbindung überprüfen.
Rel. Feuchte/Temperatur- Alarm – Durchflusstemp.	Abgezogenes Kabel	Verbindung zu Mess- Interface-Karte prüfen.
	Sensor defekt	Sensor tauschen.
Rel. Feuchte/Temperatur- Alarm – Platinentemp.	Abgezogenes Kabel	Verbindung zu Mess- Interface-Karte prüfen.
	Sensor defekt	Sensor tauschen
Druck/Vakuum Alarm – Barometerdruck	Abgezogenes Kabel	Kabelverbindungen prüfen. Platine tauschen.
Druck/Vakuum Alarm – Vakuum	Unterbrochene Leitung	Leitungsverbindungen prüfen.
	Abgezogenes Kabel	Kabelverbindung überprüfen.
	Sensor defekt	Druckplatine tauschen.
Druck/Vakuum Alarm – Durchfluss	Unterbrochene Leitung	Leitungsverbindungen prüfen.
	Abgezogenes Kabel	Kabelverbindung überprüfen.
	Sensor defekt	Druckplatine tauschen.
	∆P Ventil offen	Prüfen, ob Ventil in Position "geschlossen".
Durchfluss-Alarm– Durchfluss	Niedriger Durchfluss	Prüfen, ob Pumpe angeschlossen.
		Prüfen, ob beide ΔP Ventile in Position "geschlossen".
	Kein Durchfluss	Verrohrung des Proportional- ventils prüfen.
		Verbindung zu Mess- Interface-Karte prüfen.
Konz Alarm –	Konzentration	Heizung und Beta-Zählrate

Alarmmeldung	Mögliche Ursache(n)	Maßnahme(n)
Feinstaub	negativ	prüfen.
	Einstellungen Konz. Alarm	Einstellungen für Konz.Alarm prüfen.
Konz Alarm – Mittel SHARP	Konzentration negativ	Erneut nullen.
	Einstellungen Konz. Alarm	Einstellungen für Konz.Alarm prüfen.

Schaltpläne auf Platinenebene

Abb. 6–1 and Abb. 6–2 zeigen die Schaltpläne auf Karten- bzw. Platinenebene für die gesamte Elektronik und das Messsystem. Diese Abbildungen können zusammen mit den Beschreibungen der Pinbelegung der Stecker/Buchsen zur Störungsbehebung von Fehlern auf Platinenebene eingesetzt werden. Die Beschreibungen der Pinbelegung finden Sie in Tabelle 6–3 bis Tabelle 6–7.

Abb. 6–1. Schaltplan auf Platinenebene - gesamte Elektronik

Abb. 6-2. Schaltplan auf Platinenebene - Messsystem

Abb. 6-3. Schaltplan auf Platinenebene - SHARP

Beschreibung Pinbelegung

Die Beschreibungen der Pinbelegung in Tabelle 6–3 bis Tabelle 6–7 können zusammen mit den Schaltplänen auf Karten- bzw. Platinenebene dazu verwendet werden, Störung auf Platinenebene zu beheben.

"Motherboard – Pinbelegung Steck" auf Seite 6-13

"Mess-Interface-Karte – Pinbelegung Stecker" auf Seite 6-18

"Frontplatten-Karte – Pinbelegung Stecker" auf Seite 6-23

"I/O Erweiterungskarte (optional) – Pinbelegung Stecker" auf Seite 6-25

"Digital-Ausgangskarte – Pinbelegung Stecker" auf Seite 6-27

"SHARP Mess-Interface-Karte – Pinbelegung Stecker" auf Seite 6-28

Tabelle 6-3. Motherboard – Pinbelegung Steckverbindung

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
INTF DATA	J1	1	Masse
		2	+RS485 zu Interface-Karte
		3	-RS485 zu Interface-Karte
10-BASE-T	J2	1	Ethernet Ausgang (+)
		2	Ethernet Ausgang (-)
		3	Ethernet Eingang (+)

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		4	frei
		5	frei
		6	Ethernet Eingang (-)
		7	frei
		8	frei
EXPANSION BD	J3	1	+5V
		2	+24V
		3	+24V
		4	Masse
		5	Masse
		6	Masse
		7	+RS485 zu Erweiterungskarte
		8	-RS485 zu Erweiterungskarte
INTERFACE 24V	J4	1	+24V
		2	Masse
I/O	J5	1	Stromausfall-Relais (Ruhekontakt)
		2	Digitale Masse
		3	TTL Eingang 1
		4	TTL Eingang 2
		5	Digitale Masse
		6	TTL Eingang 5
		7	TTL Eingang 7
		8	TTL Eingang 8
		9	TTL Eingang 10
		10	Masse
		11	TTL Eingang 13
		12	TTL Eingang 15
		13	Digitale Masse
		14	Analog Spannung 1
		15	Analog Spannung 3
		16	Analog Masse
		17	Analog Spannung 5

Störungssuche und Störungsbeseitigung Schaltpläne auf Platinenebene

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		18	Analog Masse
		19	Analog Masse
		20	Stromausfall-Relais COM
		21	Stromausfall-Relais (Arbeitskontakt)
		22	Digitale Masse
		23	TTL Eingang 3
		24	TTL Eingang 4
		25	TTL Eingang 6
		26	Digitale Masse
		27	TTL Eingang 9
		28	TTL Eingang 11
		29	TTL Eingang 12
		30	TTL Eingang 14
		31	TTL Eingang 16
		32	Digitale Masse
		33	Analog Spannung 2
		34	Analog Spannung 4
		35	Analog Spannung
		36	Analog Spannung 6
		37	Analog Masse
VOLTAGE TEST	J6	1	+5V
		2	+3.3V
			+15V
			-15V
SER EN	J7	1	Serieller Freigabe-Jumper
		2	+3.3V
24V IN	J10	1	+24V
		2	Masse
RESET PROC	J12	1	Reset-Proc
		2	Masse
DIGITAL I/O	J14	1	+5V
		2	+24V

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		3	+24V
		4	Masse
		5	Masse
		6	Masse
		7	SPI Reset
		8	SPI Eingang
		9	SPI Ausgang
		10	SPI Karte auswählen
		11	SPI Uhr
EXT. RS485	J15	1	-RS485 zu Geräterückseite
		2	-RS485 zu Geräterückseite
		3	+5V
		4	+5V
		5	+5V
		6	Masse
		7	Masse
		8	Masse
		9	Frei
		10	Frei
		11	+24
		12	+24
		13	+24
		14	+24
		15	+24
24 MONITOR	J17	1	24V Stromversorg. Monitor
		2	Masse
FRONT PANEL BD	J18	1	Masse
		2	Masse
		3	LCLK – LCD Signal
		4	Masse
		5	Masse
		6	LLP – LCD Signal
		7	LFLM – LCD Signal

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		8	LD4 – LCD Signal
		9	LD0 – LCD Signal
		10	LD5 – LCD Signal
		11	LD1 – LCD Signal
		12	LD6 – LCD Signal
		13	LD2 – LCD Signal
		14	LD7 – LCD Signal
		15	LD3 – LCD Signal
		16	LCD Vorspannung!
		17	+5V
		18	Masse
		19	Masse
		20	LCD_ONOFF – LCD Signal
		21	Tastenfeld Reihe 2 Eingang
		22	Tastenfeld Reihe 1 Eingang
		23	Tastenfeld Reihe 4 Eingang
		24	Tastenfeld Reihe 3 Eingang
		25	Tastenfeld Spalte 2 Auswahl
		26	Tastenfeld Spalte 1 Auswahl
		27	Tastenfeld Spalte 4 Auswahl
		28	Tastenfeld Spalte 3 Auswahl
		29	Masse
		30	Masse
		31	Masse
		32	Masse
		33	+24V
		34	+24V
RS232/RS485:A	P1:A	1	frei
		2	Serieller Port 1 RX (-RS485 IN)
		3	Serieller Port 1 TX (-RS485 OUT)
		4	frei
		5	Masse

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		6	frei
		7	Serieller Port 1 RTS (+RS485 OUT)
		8	Serieller Port 1 CTS (+RS485 IN)
		9	Frei
RS232/RS485:B	P1:B	1	Frei
		2	Serieller Port 2 RX (-RS485 IN)
		3	Serieller Port 2 TX (-RS485 OUT)
		4	Frei
		5	Masse
		6	Frei
		7	Serieller Port 2 RTS (+RS485 OUT)
		8	Serieller Port 2 CTS (+RS485 IN)
		9	Frei
AC IN	PJ1	1	AC-HEISS
		2	AC-NEUT
		3	AC-Masse
AC 24VPWR	PJ2	1	AC-HEISS
		2	AC-NEUT
		3	AC-Masse
AC INTF BD	PJ3	1	AC-HEISS
		2	AC-NEUT
		3	AC-Masse

Tabelle 6–4. Mess-Interface-Karte – Pinbelegung Stecker

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
PUMP	J1	1	AC+
		2	Pumpe_AC-
		3	AC-Masse

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		4	Frei
HEATER 2	J2	1	AC+
		2	Heizung2_AC-
		3	AC-Masse
HEATER 1	J3	1	AC+
		2	Heizung1_AC-
_		3	AC-Masse
WDT DISABLE	J4	1	Eingang
		2	Masse
AUX PWR 120V	J5	1	AC+
		2	AC-
PURGE 2	J6	1	AC+
		2	Spülen2_AC-
PURGE 1	J7	1	AC+
		2	Spülen1_AC-
PUMP 1	J8	1	+24V
		2	Pumpe1_Ein/Aus
JTAG INTF	J9	1	TD0
		2	Frei
		3	TD1
		4	Frei
		5	TMS
		6	Frei
		7	ТСК
		8	Frei
		9	Masse
		10	Frei
		11	Frei
		12	Frei
		13	Frei
		14	Frei
FLOW TEMP 2	J10	1	Durchfluss2A_RTD
		2	Durchfluss2B_RTD
		3	Masse

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
AUX HT 1	J11	1	AC+
		2	AuxHT_1_AC-
AUX HT 2	J12	1	AC+
		2	AuxHT_2_AC-
TT MOTOR	J13	1	AC+
		2	TT Motor_AC-
PUMP 2	J14	1	+24V
		2	Pumpe2_Ein/Aus
FLOW TEMP 1	J15	1	Durchfluss1A_RTD
		2	Durchfluss1B_RTD
		3	Masse
SHARP 1	J17	1	+24V
		2	+RS485
		3	-RS485
		4	Masse
PURGE 2 DC	J18	1	+24V
		2	Spülen2_DC
PUMP FLOW 1	J19	1	+24V
		2	Aout_Pumpe1_Durchfluss
		3	Masse
SHARP 2	J20	1	+24V
		2	+RS485
		3	-RS485
		4	Masse
FAN	J21	1	+24V
		2	Lüfter_Stromversorgung
PURGE 1 DC	J22	1	+24V
		2	Spülen1_DC
PUMP FLOW 2	J23	1	+24V
		2	Aout_Pumpe2_Durchfluss
		3	Masse
PURGE 3 DC	J25	1	+24V
		2	Ersatz1_Sol

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
VD1	J26	1	AIN_VD-1
		2	Masse
VD2	J27	1	AIN_VD-2
		2	Masse
BOARD TEMP	J28	1	Platinen_Therm
_		2	Masse
SPARE FLOW	J29	1	+24V
		2	Aout_Ersatz_Durchfluss
		3	Masse
PURGE 4 DC	J30	1	+24V
		2	Ersatz2_Sol
PRESS BD	J31	1	-15V
		2	AIN_30PSIA
		3	AIN_FLOW_1
		4	AIN_VAC_2
		5	AIN_FLOW_2
		6	AIN_VAC_1
		7	+5V
		8	+15V
		9	Masse
PRESS TEMP	J32	1	Druck_RTD
		2	Druck_RTD
		3	Masse
CNTR WHEEL	J33	1	+5V
		2	Masse
		3	Masse
		4	Masse
		5	VOA3
		6	+5V
		7	Frei
		8	Frei
BETA 1	J34	1	Masse
		2	+RS485
		3	-RS485

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		4	Masse
		5	+5V
		6	Masse
BETA 2	J35	1	Masse
		2	+RS485
		3	-RS485
		4	Masse
		5	+5V
		6	Masse
LOAD MOTOR	J36	1	+24V
		2	Last_Motor_On
SP PHOTO	J37	1	+5V
		2	Masse
		3	Masse
		4	+5V
		5	VO_SP
CAM WHEEL	J38	1	+5V
		2	Masse
		3	Masse
		4	Frei
		5	Dig_Slit
		6	+5V
		7	Frei
HWELL 1	J39	1	AIN_RTDP
		2	+5V
		3	AIN_RHP_Hum
		4	Masse
SAMPLE 2 TEMP	J40	1	Probenahme2A_RTD
		2	Probenahme2B_RTD
		3	Masse
SAMPLE 1 TEMP	J41	1	Probenahme1A_RTD
		2	Probenahme1B_RTD

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		3	Masse
TEST RTD	J42	1	ErsatzA_RTD
		2	ErsatzB_RTD
		3	Masse
AC IN	J43	1	AC+
		2	AC-
		3	AC-Masse
24V IN	J44	1	+24V
		2	Masse
DATA	J45	1	Masse
		2	+RS485
		3	-RS485

Tabelle 6–5. Frontplatten-Karte – Pinbelegung Stecker

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
MOTHERBOARD	J1	1	Masse
		2	Masse
		3	LCLK – LCD Signal
		4	Masse
		5	Masse
		6	LLP – LCD Signal
		7	LFLM – LCD Signal
		8	LD4 – LCD Signal
		9	LD0 – LCD Signal
		10	LD5 – LCD Signal
		11	LD1 – LCD Signal
		12	LD6 – LCD Signal
		13	LD2 – LCD Signal
		14	LD7 – LCD Signal
		15	LD3 – LCD Signal
		16	LCD Vorspannung!
		17	+5V

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		18	Masse
		19	Masse
		20	LCD_ONOFF – LCD Signal
		21	Tastenfeld Reihe 2 Eingang
		22	Tastenfeld Reihe 1 Eingang
		23	Tastenfeld Reihe 4 Eingang
		24	Tastenfeld Reihe 3 Eingang
		25	Tastenfeld Spalte 2 Auswahl
		26	Tastenfeld Spalte 1 Auswahl
		27	Tastenfeld Spalte 4 Auswahl
		28	Tastenfeld Spalte 3 Auswahl
		29	Masse
		30	Masse
		31	Masse
		32	Masse
		33	+24V
		34	+24V
LCD DATA	J2	1	LD0_5V – LCD Signal
		2	LD1_5V – LCD Signal
		3	LD2_5V – LCD Signal
		4	LD3_5V – LCD Signal
		5	LCD_ONOFF_5V – LCD Signal
		6	LFLM_5V – LCD Signal
		7	Frei
		8	LLP_5V – LCD Signal
		9	LCLK_5V – LCD Signal
		10	+5V
		11	Masse
		12	-25V
		13	LCD Vorspannung
		14	Masse
KEYBOARD	J3	1	Tastenfeld Reihe 1 Eingang
		2	Tastenfeld Reihe 2 Eingang

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		3	Tastenfeld Reihe 3 Eingang
		4	Tastenfeld Reihe 4 Eingang
		5	Tastenfeld Spalte 1 Select
		6	Tastenfeld Spalte 2 Select
		7	Tastenfeld Spalte 3 Select
		8	Tastenfeld Spalte 4 Select
LCD BACKLIGHT	J4	1	+5V Versorgung
		2	Frei
		3	Masse

Tabelle 6–6. I/O Erweiterungskarte (optional) – Pinbelegung Stecker

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
EXPANSION I/O	J1	1	Analog. Spannungseingang 1
		2	Analog. Spannungseingang 2
		3	Analog. Spannungseingang 3
		4	Masse
		5	Analog. Spannungseingang 4
		6	Analog. Spannungseingang 5
		7	Analog. Spannungseingang 6
		8	Masse
		9	Analog. Spannungseingang 7
		10	Analog. Spannungseingang 8
		11	Masse
		12	Frei
		13	Stromausgang Return
		14	Masse
		15	Stromausgang 1
		16	Stromausgang Return
		17	Stromausgang 2
		18	Stromausgang Return

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
		19	Stromausgang 3
		20	Stromausgang Return
		21	Stromausgang 4
		22	Stromausgang Return
		23	Stromausgang 5
		24	Stromausgang Return
		25	Stromausgang 6
MOTHER BD	J2	1	+5V
		2	+24V
		3	+24V
		4	Masse
		5	Masse
		6	Masse
		7	+RS485 zu Motherboard
		8	-RS485 zu Motherboard

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
MOTHER BD	J1	1	+5V
		2	+24V
		3	+24V
		4	Masse
		5	Masse
		6	Masse
		7	SPI Reset
		8	SPI Eingang
		9	SPI Ausgang
		10	SPI Karte Auswahl
		11	SPI Uhr
DIGITAL OUTPUTS	J2	1	Relais 1 Kontakt a
		2	Relais 2 Kontakt a
		3	Relais 3 Kontakt a
		4	Relais 4 Kontakt a
		5	Relais 5 Kontakt a
		6	Relais 6 Kontakt a
		7	Relais 7 Kontakt a
		8	Relais 8 Kontakt a
		9	Relais 9 Kontakt a
		10	Relais 10 Kontakt a
		11	Frei
		12	Magnet-Ansteuerung Ausgang 1
		13	Magnet-Ansteuerung Ausgang 2
		14	Magnet-Ansteuerung Ausgang 3
		15	Magnet-Ansteuerung Ausgang 4
		16	Magnet-Ansteuerung Ausgang 5
		17	Magnet-Ansteuerung

Tabelle 6–7. Digital-Ausgangskarte – Pinbelegung Stecker

Kennzeichnung Stecker	Referenz- Bezeichnung	Pin	Beschreibung Signal
			Ausgang 6
		18	Magnet-Ansteuerung Ausgang 7
		19	Magnet-Ansteuerung Ausgang 8
		20	Relais 1 Kontakt b
		21	Relais 2 Kontakt b
		22	Relais 3 Kontakt b
		23	Relais 4 Kontakt b
		24	Relais 5 Kontakt b
		25	Relais 6 Kontakt b
		26	Relais 7 Kontakt b
		27	Relais 8 Kontakt b
		28	Relais 9 Kontakt b
		29	Relais 10 Kontakt b
		30	+24V
		31	+24V
		32	+24V
		33	+24V
		34	+24V
		35	+24V
		36	+24V
		37	+24V

Tabelle 6–8. 🕄	SHARP	Mess-Inte	erface-Kar	te – Pinb	belegung
Stecker					

Kennzeichnung Stecker	Referenz- Beschreibung	Pin	Beschreibung Signal
TEMP/RH	J1	1	GNDA
		2	+5V
		3	Temp
		4	Rel. Feuchte
DET SRC	J2	1	ADC1
		2	IRED
		3	PHD-A

Kennzeichnung Stecker	Referenz- Beschreibung	Pin	Beschreibung Signal
		4	PHD-K
		5	Frei
DETECTOR	J3	1	GNDA
		2	Det-Aus
		3	-5V
		4	+5V
DATA RS485	J4	1	Masse
		2	+RS485
		3	-RS485
VALVE DRIVE 1	J7	1	+24V DC
		2	Antrieb 1
VALVE DRIVE 2	J8	1	+24V DC
		2	Antrieb 2
24V IN	J 9	1	+24V DC
		2	Masse

Service Standorte

Falls Sie technische Fragen haben oder Unterstützung benötigen, so steht Ihnen hierfür ein weltweites Netz von Vertriebshändlern zur Verfügung. Informationen zu einem Vertriebshändler in Ihrer Nähe erhalten Sie von unserer Niederlassung Europa (in den Niederlanden) unter der Rufnummer:

+31 765795641.

Chapter 7 Service und Wartung

In diesem Kapitel wird erklärt, wie einzelne Unterbaugruppen des Messgerätes vom Typ Modell 5030*i* getauscht bzw. ersetzt werden können. Es wird dabei davon ausgegangen, dass eine Unterbaugruppe bereits als defekt identifiziert wurde und deshalb getauscht werden muss (oder es sich dabei um "Verbrauchsmaterial" handelt, das nicht unter die Garantie bzw. Gewährleistung fällt. Diese Teile sind in der Tabelle "Modell 5030i - Ersatzteile" mit einem Sternchen (*) gekennzeichnet).

Die Fehlerlokalisierung wurde bereits in den vorherigen Kapiteln "Präventive Wartung" und "Störungsbehebung" beschrieben.

Im Abschnitt "Service-Modus" des Kapitels "Betrieb" finden Sie ebenfalls Parameter und Funktionen, die bei der Vornahme von Einstellungen oder beim Diagnostizieren von Problemen von Nutzen sein können.

Weitere Informationen und technische Unterstützung sowie die Adressen von Anlaufstellen zum Thema Service finden Sie unter "Service Standorte" am Ende dieses Kapitels.

Dieses Kapitel beinhaltet die nachfolgenden Informationen über Teile des Gerätes und über Verfahrensweisen zum Tauschen von einzelnen Komponenten:

- "Vorbeugende Sicherheitsmaßnahmen" auf Seite 7-4
- "Firmware Updates" auf Seite 7-6
- "Aufrufen des Service-Modus" auf Seite 7-6
- "Ersatzteilliste" auf Seite 7-6
- "Kabelliste" auf Seite 7-8
- "Komponenten zum Anschluss externer Geräte" auf Seite 7-10
- "Messgehäuse-Baugruppe entfernen und Trennwand absenken" auf Seite 7-14
- "Sicherung tauschen" auf Seite 7-16
- "Lüfter / Filter tauschen" auf Seite 7-16

- "Detektor-Verstärker-Baugruppe tauschen" auf Seite 7-18
- "Detektor-Verstärker-Platine kalibrieren" auf Seite 7-19
- "Externe Pumpe tauschen" auf Seite 7-20
- "Druck-Platine tauschen" auf Seite 7-21
- "Druck-Platine kalibrieren" auf Seite 7-23
- "Analogausgänge testen"auf Seite 7-25
- "Analogausgänge kalibrieren" auf Seite 7-27
- "Analogeingänge kalibrieren" auf Seite 7-29
- "Thermistor tauschen" auf Seite 7-31
- "I/O Erweiterungskarte tauschen (optional) " auf Seite 7-32
- "Digital-Ausgangskarte tauschen" auf Seite 7-34
- "Motherboard tauschen" auf Seite 7-35
- "Mess-Interface-Karte tauschen" auf Seite 7-36
- "Photo-Interrupt-Karte tauschen" auf Seite 7-37
- "Proportionalventil tauschen" auf Seite 7-38
- "Detektor-Baugruppe tauschen" auf Seite 7-40
- "Durchfluss- RTD-Element tauschen" auf Seite 7-42
- "Transformator tauschen" auf Seite 7-43
- "Radiusrohr tauschen" auf Seite 7-44
- "Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)" tauschen" auf Seite 7-45
- "Frontplatten-Karte tauschen" auf Seite 7-47
- "LCD Modul tauschen" auf Seite 7-48
- "SHARP Optik-Abdeckung entfernen" auf Seite 7-50
- "Externes Magnetventil tauschen" auf Seite 7-51
- "SHARP Sensor f
 ür rel. Feuchte/Temp. tauschen" auf Seite 7-52
- "SHARP Interfacekarte tauschen" auf Seite 7-53
- "Delrin Mutter tauschen" auf Seite 7-56
- "Interne SHARP Kabelbaugruppe tauschen" auf Seite 7-59
- "Gehäusekabel tauschen" auf Seite 7-60

- "Externer Nullpunkt-Rückstellungs-Filter" auf Seite 7-61
- "Service Standorte" auf Seite 7-62
Vorbeugende Sicherheitsmaß nahmen

Lesen Sie bitten diesen Abschnitt über vorbeugende Sicherheitsmaßnahmen sorgfältig durch, bevor Sie eine in diesem Kapitel beschriebene Aktion/Maßnahme durchführen.

ACHTUNG Die in diesem Kapitel beschriebenen Servicearbeiten sollten nur von qualifiziertem Servicepersonal durchgeführt werden.

Wird das Gerät in einer Art & Weise betrieben, die vom Hersteller so nicht spezifiziert wurde, dann kann es zu einer Beeinträchtigung von Sicherheit und Schutz des Gerätes kommen. •

Die Detektor-Baugruppe sollte von einem qualifizierten Servicetechniker getauscht werden, der im Umgang mit Strahlenschutzvorkehrungen über fundiertes Fachwissen verfügt. Entfernt man die Detektor-Baugruppe, dann liegt der radioaktive C-14 Strahler teilweise frei. Daher muss während dieses Vorgangs eine Schutzbrille getragen werden. Die Menge C-14 entspricht den U.S. NRC Bestimmungen als Freigrenze für radioaktive Strahler <100 μ Ci. •

Die Vorverstärker-Baugruppe des Detektors verfügt über eine eingebaute Notstromversorgung. "BITTE NICHT ÖFFNEN" – Vorsicht bei der Handhabung. Der Reservestrom ist nach 8 Stunden verbraucht. •

VORSICHT Das Detektorfenster ist sehr zerbrechlich. Es ist daher äußerste Vorsicht geboten. Wischen Sie das Fenster nicht ab und berühren Sie es nicht. Die Lötverbindung (Elektrode) **ebenfalls nicht** mit bloßen Händen berühren. Das Fett der Finger/Haut kann den Detektor beschädigen.

Zum Tauschen der Detektor-Baugruppe muss eine Schutzbrille getragen werden. •

Geht der LCD-Bildschirm kaputt, achten Sie darauf, dass die Flüssigkristalle nicht mit Ihrer Haut oder Kleidungsstücken in Berührung kommen. Falls doch, bitte sofort mit Seife und Wasser abwaschen. •

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden (Abb. 7–1). Ist ein Antistatik-Armband nicht verfügbar, dann berühren Sie vor dem Anfassen jeglicher interner Komponente des Gerätes unbedingt das Gehäuse des Messgeräts. Ist das Gerät von der Stromversorgung getrennt, dann ist das Gehäuse nicht geerdet. •

Den LCD-Bildschirm oder Rahmen bitte nicht aus dem LCD-Modul entfernen. ${\boldsymbol{\cdot}}$

Die Polarisationsplatte des LCD-Moduls ist sehr zerbrechlich, deshalb vorsichtig damit umgehen.

Die Polarisierungsplatte des LCD-Moduls nicht mit einem trockenen Tuch reinigen, da dadurch die Oberfläche zerkratzt werden könnte. •

Zum Reinhigen des Moduls keinen Alkohol, Azeton, MEK oder auf Keton-basierende oder aromatische Lösungsmittel verwenden. Stattdessen die Reinigung mit einem weichen Lappen, der mit einem benzinhaltigen Reinigungsmittel befeuchtet ist, durchführen. •

Das LCD-Modul nicht in der Nähe organischer Lösungsmittel oder korrosiver Gase aufstellen. •

LCD-Modul nicht schütteln oder Erschütterungen aussetzen. •

Abb. 7–1. Korrekt geerdetes Antistatik-Armband

Firmware Updates

Aufrufen des Service-Modus

Die Firmware kann vom Bediener vor Ort über den seriellen Port oder via Ethernet aktualisiert werden. Dies beinhaltet sowohl die Firmware des Hauptprozessors als auch die Firmware aller untergeordneten Prozessoren. Lesen Sie zum Thema Firmware Updates auch das *i-Port* Handbuch.

Wird das Service-Menü nicht im Hauptmenü angezeigt, dann bitte folgende Schritte ausführen:

1. Wählen Sie im Hauptmenü : Instrument Controls > Service Mode (= *Gerätesteuerung > Service-Modus*)

Der Bildschirm "Service-Modus" erscheint.

- 2. Schalten Sie den Service-Modus ein, indem Sie die Taste 🛩 betätigen.
- 3. Durch Drücken der Tasten •>• gelangen Sie wieder ins Hauptmenü.
- 4. Fahren Sie fort wie geplant.

Ersatzteilliste

Tabelle 7-1 zeigt eine Liste aller Ersatzteile für die wichtigsten Unterbaugruppen des Geräts Modell 5030*i*. Um die Position der aufgelisteten Teile besser zuordnen zu können, werfen Sie bitte einen Blick auf Abb. 7-2.

Tabelle 7–1. Modell 5030i - Ersatzteile

Teile-Nr.	Beschreibung
100480-00	Karte für die Bedienelemente auf der Geräte-Vorderseite
101491-33	Prozessorkarte
100533-00	Motherboard
100539-00	Digitale Ausgangskarte
100542-00	I/O Erweiterungskarte (optional)
102340-00	Karte für Anschlüsse auf der Gerätevorderseite
102496-00	LCD-Display auf der Gerätevorderseite
106926-00	Abwärtstransformator, 220-240 VAC (optional)
104290-00	Mess-Interface-Karte

Teile-Nr.	Beschreibung
105869-00	Detektor-Baugruppe (LND4335)
105938-00	Photo-Interrupt-Karte
106611-00	Durchfluss-RTD-Element
106536-00	Rel. Luftfeuchte / Temperatur-Baugruppe
106535-00	Heizrohr-Baugruppe
106037-00	Lastmotor-Baugruppe
106032-00	Bandmotor-Baugruppe
106470-00	Proportionalventil-Baugruppe
106946-00	Druckplatine-Baugruppe (mit/konfektionierten Schläuchen)
425454008	Detektor-Verstärker-Baugruppe
106923-00	Druckventile
106540-00	Verlängerungsrohre mit Fitting
101055-00	AC-Steckdosen-Baugruppe
101681-00	Stromversorgungs-Baugruppe, 24 VDC (mit Grundplatte und Schrauben)
101688-00	Thermistor Umgebungstemperatur (mit Stecker)
100907-00	Lüfter, 24 VDC
8630	Lüfterschutzgitter (mit Schaum)*
109612-00	Sicherung, 250 VAC, 10,0 A, träge (für 110 VAC und 115 VAC Modelle)*
109613-00	Sicherung, 250 VAC, 5,0 A, träge (für 220-240 VAC Modelle)*
10-001403	Externe Pumpen-Baugruppe
59-008630	Pumpenreperatursatz
24-000483	Pumpenrohr, extern, 3/8"
106994-00	Rohr, intern 3/8" *
104401-00	Bandführungen
106443-00	Filterband
108183-00	Band Hardware-Kit
108179-00	Austausch-Set O-Ringe *
106531-00	Abdeckungs-Baugruppe
106988-00	Griffe (vorne, Abdeckung)
FH125C14	Kalibrier-Set (Kalibrierfolien)
10-000447	Modifizierter Fuß für Stativ
106445-00	Metall-Montagepaste

Teile-Nr.	Beschreibung
107000-00	Fitting, 5/8"-Verbindung mit Nylon Klemmringen
107001-00	Rohr, 5/8", Edelstahl
109583-00	Dachflansch-Baugruppe
57-002758	Große Bypass-Filter-Baugruppe*
110504-00	SHARP Radiusrohr-Adapter (finale Baugruppe)
108154-00	SHARP Anschlusskonsolen-Baugruppe
109408-00	Rohr, Null-In 3/8-inch*
108151-00	SHARP Baugruppe
110489-00	Finale SHARP Abdeckungsbaugruppe mit Isolierung
109489-00	Staubabdeckung für Einlass
110084-00	Delrin-Mutter
104961-00	Dichtung für Extrusionskammer
104955-00	Dichtung für "Rel. Feuchte / Temperatur"-Platine
110481-00	SHARP 3-Wege ext. Magnetventil – finale Baugruppe
110086-00	Heizungsadapter-CE-Set
110082-00	Kundenspez. Dichtung für Einlass

*Verbrauchs- /Verschleißmaterial, von Garantie ausgenommen

Kabelliste Tabelle 7–2 beschreibt die Kabel für das Modell 5030*i*. Die dazugehörigen Schaltpläne und Beschreibungen der einzelnen Pinbelegungen finden Sie im Kapitel "Störungsbehebung".

Teile-Nr.	Beschreibung
101349-00	Netzkabel (115 VAC, US)
8926	Netzkabel (220 VAC, EU)
101036-00	Gleichstromversorgung, 24 V Ausgang
101037-00	115 VAC Versorgung zur Mess-Interface-Karte
101048-00	RS-485/Daten
101038-00	Netzschalter zu Motherboard
101364-00	Gleichstromversorgung Status Monitor
101054-00	Motherboard zu Karte f. Bedienelemente auf der Gerätevorderseite
101035-00	Gleichstromversorgung AC Eingang
101055-00	Wechselstrom von Steckdosen-Baugruppe
101377-00	Wechselstrom zu Netzschalter
101267-00	Stromversorgungs-Baugruppe für Lüfter
106028-00	Steckerbaugruppe "Rel. Feuchte /Temperatur"
106030-00	Heizungskabel zu Heizungs-Baugruppe
106029-00	Pumpenkabel zu Pumpenstecker-Baugruppe
106844-00	Magnetventilkabel (hinten)
106027-00	Konfektioniertes Kabel "Druck- zu Interrup-Platine"
105952-00	Konfektioniertes Kabel "Nocke zu Photo-Interrupt"
106189-00	Konfektioniertes Kabel "Zählrad-Photo-Interrupt"
106400-00	Konfektioniertes Kabel "Externe rel. Feuchte/Temperatur"
108156-00	Konfektioniertes Kabel "SHARP zu Mess-Interface-Karte"
108170-00	Konfektioniertes SHARP Gehäusekabel

Komponenten zum Anschluss externer Geräte

.

Tabelle 7–3 liefert eine Liste aller standardmäßig verfügbaren und optionalen Kabel und Komponenten, die zum Anschluss externer Geräte wie z.B. eines PC und eines Datenaufzeichnungsgerätes an ein *i*Series Gerät benötigt werden.

 Tabelle 7–3.
 Komponenten zum Anschluss externer Geräte

Teile-Nr.	Beschreibung
102562-00	Klemmleiste und Kabelsatz (DB25) (optional)
102556-00	Klemmleiste und Kabelsatz (DB37) (optional)
102645-00	Kabel, DB37M zu Open End, 1,8m (optional)
102646-00	Kabel, DB37F zu Open End, 1,8m (optional)
102659-00	Kabel, DB25M zu Open End, 1,8m (optional)
6279	Kabel, RS-232, 1,8m (optional)
102888-00	Klemmleistenplatine-Baugruppe, DB37F (Standard)
102891-00	Klemmleistenplatine-Baugruppe, DB37M (Standard)
103084-00	Klemmleistenplatine-Baugruppe, DB25M (inkl. bei optionaler I/O Erweiterungskarte)
105968-00	SHARP Platinen-Baugruppe
104100-00	Rel. Feuchte/Temperatur Platinen-Baugruppe

Abb. 7–2. Modell 5030*i* – Anordnung der Komponenten

Abb. 7–3. SHARP – Anordnung der Optik-Komponenten

SHARP Optik-Baugruppe entfernen

Die SHARP Optik-Baugruppe kann aus dem Messgehäuse entfernt werden. Sollte für die Durchführung einer Aktion das Absenken der Trennwand erforderlich sein, dann bitte die folgenden Arbeitsschritte befolgen (Abb. 7–4).

Abb. 7-4. SHARP Optik-Baugruppe entfernen

Benötigte(s) Ausrüstung / Material:

Kreuzschlitzschraubendreher

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Ist das Messgerät in ein Gestell als Einschub eingebaut, bitte aus dem Rack herausnehmen.
- 3. Ziehen Sie den elektrischen Stecker ab.

- 4. Lösen Sie die beiden unverlierbaren Schrauben.
- 5. Ziehen Sie die Abdeckung nach oben.
- 6. Um die SHARP Optik-Baugruppe wieder einzubauen, die zuvor beschriebenen Arbeitsschritte in umgekehrter Reihenfolge ausführen.

Messgehäuse-Baugruppe entfernen und Trennwand absenken

Das Messgehäuse kann entfernt und die Trennwand kann heruntergeklappt werden, um den Zugang zu Steckern und Komponenten zu erleichtern. Sollte für die Durchführung einer Aktion das Absenken der Trennwand erforderlich sein, dann bitte die folgenden Arbeitsschritte befolgen (Abb. 7–5).

Abb. 7–5. Messgehäuse entfernen und Trennwand absenken

Benötigte(s) Ausrüstung / Material: Kreuzschlitzschraubendreher

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Ist das Messgerät in ein Gestell als Einschub eingebaut, bitte aus dem Rack herausnehmen.
- 3. Entfernen Sie zunächst die Abdeckung der SHARP Optik-Baugruppe und fahren Sie dann mit dem nächsten, nachfolgend beschriebenen Schritt fort. Lesen Sie in diesem Zusammenhang auch den auf den vorherigen Seiten beschriebenen Abschnitt "SHARP Optik-Baugruppe entfernen".
- 4. Klemmen Sie die Leitungsanschlüsse auf der Rückseite der Messgehäuse-Baugruppe ab.
- 5. Ziehen Sie die Stecker ab, die durch die Mitte der Trennwand gehen.
- 6. Entfernen Sie zwei Schrauben hinten links am Gehäuse (von vorne gesehen).
- 7. Entfernen Sie die eine Schraube hinten unten am Gehäuse.
- 8. Entfernen Sie die Schraube oben vorne an der Trennwand.
- 9. Lösen Sie die unverlierbare Schraube auf der Rückseite des Messgehäuses und halten Sie dabei das Gehäuse fest; ziehen Sie die Messgehäuse-Baugruppe hinten aus dem Gehäuse heraus.
- 10. Schraube oben hinten an der Trennwand lösen/entfernen, mit der die Trennwand oben an der Messgehäuse-Baugruppe befestigt ist. Anschließend Trennwand herunterklappen bzw.

	absenken. Achten Sie hierbei darauf, dass die Kabel nicht zu sehr oder übermäßig gespannt sind.
	11. Um die Messgehause-Baugruppe wieder einzubauen, führen Sie bitte die zuvor beschriebenen Arbeitsschritte in genau umgekehrter Reihenfolge aus.
Sicherung	Um die Sicherung zu tauschen, bitte wie folgt vorgehen:
tauschen	Benötigte(s) Ausrüstung / Material:
	Ersatzsicherung (siehe "Ersatzteilliste").
	1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
	2. Entfernen Sie den Sicherungshaltereinschub auf dem Netzstecker.
	3. Ist eine Sicherung durchgebrannt, bitte beide Sicherungen tauschen.
	4. Abschließend den Sicherungshaltereinschub wieder einsetzen und Stromkabel wieder anschließen.
Lüfter / Filter tauschen	Um den Lüfter und den Lüfterfilter zu tauschen, bitte wie nachfolgend beschrieben vorgehen. (Siehe auch Abb. 7–6).
	Benötigte(s) Ausrüstung / Material:
	Lüfter
	Lüfterfilter
	Kreuzschlitzschraubendreher
	Kabelschneider (zum Entfernen der Kabelbinder)
\triangle	Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden.

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Entfernen Sie das Lüfterschutzgitter und den Filter vom Lüfter, indem Sie beide Teile mit etwas Druck aus der Halterung lösen.
- 3. Wenn der Lüfter nicht getauscht wird, neuen Filter einsetzen und wieder einsetzen; weitere Arbeitsschritte weglassen.
- 4. Stromkabel des Lüfters vom Lüfter abziehen. Die vier Muttern nicht lösen.
- 5. Die vier Befestigungsschrauben des Lüfters entfernen und Lüfter herausnehmen.
- 6. Neuen Lüfter einbauen. Dabei in genau umgekehrter Reihenfolge vorgehen.

Abb. 7–6. Lüfter tauschen

Detektor-Verstärker-Baugruppe tauschen

Um die Detektor-/Vorverstärker-Baugruppe zu tauschen, bitte wie nachfolgend beschrieben vorgehen. (siehe auch Abb. 7–7).

Benötigte(s) Ausrüstung / Material:

Detektor-Verstärker-Baugruppe

Kreuzschlitzschraubendreher

Verstellbarer Schraubenschlüssel (Engländer)

ACHTUNG Die Vorverstärker-Baugruppe des Detektors verfügt über eine eingebaute Notstromversorgung. "BITTE NICHT ÖFFNEN" – Vorsicht bei der Handhabung. Der Reservestrom ist nach 8 Stunden verbraucht.. •

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Entfernen Sie die Abdeckung der SHARP Optik-Baugruppe und die Messgehäuse-Baugruppe wie auf den vorherigen Seiten beschrieben.
- 3. Ziehen Sie das Kabel von der Detektor-Verstärker-Baugruppe auf der Mess-Interface-Karte ab und ziehen Sie dann den SHV-Stecker vom Detektorverstärker ab.
- 4. Entfernen Sie die Schraube, mit der die Halterung des Detektorverstärkers befestigt ist und schieben Sie die Baugruppe heraus.

Abb. 7–7. Detektor-Verstärker-Baugruppe tauschen

- 5. Neue Baugruppe einsetzen. Dabei genau in umgekehrter Reihenfolge vorgehen.
- 6. Detektor-Verstärker-Platine kalibrieren. Lesen Sie hierzu die nachfolgende Beschreibung "Detektor-Verstärker-Platine kalibrieren".

Hinweis Wird der Service-Modus nicht angezeigt, dann den Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 lesen und wieder zum Anfang des Arbeitsschritts zurückgehen.

7. Gerät kalibrieren. Lesen Sie hierzu das Kapitel "Kalibrierung" dieser Bedienungsanleitung.

Detektor-Verstärker-Platine kalibrieren

Nach dem Tausch der Detektor-Verstärker-Platine bitte den Detektorverstärker kalibrieren.

Hinweis Diese Einstellungsarbeiten sollten nur von einem Servicetechniker vorgenommen werden. •

- 1. Lassen Sie für ca. 90 Minuten das Messgerät Proben aus der Nullluft nehmen.
- 2. Wählen Sie dann im Hauptmenü: Service > Detector Calibration > Auto (= Service > Detektor kalibrieren > Auto).

Es erscheint die Bildschirmanzeige "Auto Detector Calibration" (= autom. Kalibrierung Detektor).

Hinweis Wird der Service-Modus nicht angezeigt, dann den Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 lesen und wieder zum Anfang des Arbeitsschritts zurückgehen.•

3. Um die automatische Kalibrierung des Detektors zu starten, drücken Sie bitte in dieser Anzeige die 🗲 Taste.

Externe Pumpe tauschen

Um die Pumpe zu tauschen, bitte wie nachfolgend beschrieben vorgehen. (siehe auch Abb. 7–8).

Benötigte(s) Ausrüstung / Material:

Pumpe

Verstellbarer Schraubenschlüssel (Engländer)

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Ziehen Sie das Stromversorgungskabel der Pumpe von der Geräterückseite ab.
- 3. Beide Leitungen von der Pumpe abziehen.
- 4. Neue Pumpe einsetzen und führen Sie dann die vorgenannten Arbeitsschritte in umgekehrter Reihenfolge aus.

5. Führen Sie eine Dichtigkeitsprüfung – wie im Kapitel "Präventive Wartung" beschrieben – durch.

Abb. 7–8. Pumpe tauschen

Druck-Platine tauschen

Um diese Platine zu tauschen, bitte wie nachfolgend beschrieben vorgehen (Abb. 7–9).

Benötigte(s) Ausrüstung / Material:

Druck-Platine

Kreuzschlitzschraubendreher, #2

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Leitungen von der Druck- Platine (Abb. 7–10) abziehen. Die Anschlüsse entsprechend markieren. Dies erleichtert das Wiederverbinden.

- 3. Druck-Platine von der Bodenplatte auf der Mess-Interface-Karte abnehmen.
- 4. Entfernen Sie die vier Befestigungsschrauben der Druck-Platine und nehmen Sie dann letztere heraus (Abb. 7–9).

Abb. 7–9. Druck-Platinen-Baugruppe tauschen

5. Um die Platinen-Baugruppe wieder einzusetzen, genau in umgekehrter Reihenfolge vorgehen.

Abb. 7–10. Leitungsanschlüsse der Druck-Platinen-Baugruppe tauschen

- 6. Dann den Drucksensor kalibrieren. Lesen Sie hierzu den nachfolgend beschriebenen Abschnitt "Druck-Platine kalibrieren".
- 7. Nach der Kalibrierung eine Dichtigkeitsprüfung durchführen. Siehe hierzu auch Kapitel "Präventive Wartung".

Druck-Platine kalibrieren

Um die Druck-Platinen-Baugruppe zu kalibrieren, bitte wie nachfolgend beschrieben vorgehen.

Benötigte(s) Ausrüstung / Material:

Manometer

 Wählen Sie im Hauptmenü: Service > Pres/Vacuum Calibration > Baro Pres. (= Service > Druck/Vakuum kalibrieren > Luftdruck). Stellen sie den Druckmessbereich des Barometers ein, indem Sie den aktuellen Luftdruckwert eingeben.

Hinweis Wird der Service-Modus nicht angezeigt, dann den Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 lesen und wieder zum Anfang des Arbeitsschritts zurückgehen.•

- Gehen Sie zum Menüpunkt "Pres/Vacuum Calibration" (= Druck/Vakuum kalibrieren zurück) und wählen Sie dann "Vac/Flow > Flow Pres Span" (= Vakuum/Durchfluss > Durchflussdruck Messbereich). Führen Sie dann wie folgt die Kalibrierung durch:
 - a. Stellen Sie das digitale Manometer auf die Messkammer.
 - b. Schalten Sie das Manometer, so dass es zunächst sich selbst kalibrieren kann. Während der Kalibrierung das Manometer bitte nicht bewegen.
 - c. Nach dem Nullen des digitalen Manometers schließen Sie die "+" Seite des Manometers an den Delta-P Δ + Port auf der Geräterückseite an.
 - d. Schließen Sie dann die "–" Seite des Manometers and den Delta-P Δ Port auf der Geräterückseite an.
 - e. Öffnen Sie beide Delta-P Δ + und Δ Kipphebelventile, um den Durchfluss durch das Manometer freizugeben.
 - f. Kalibrieren Sie den Durchflussdruck für den Messbereich, indem Sie den aktuell vom Manometer angezeigten Wert eingeben.
 - g. Drücken Sie dann zum Speichern des Wertes auf die 🗲 Taste.
 - h. Schalten Sie das Manometer aus, da es über keine automatische Abschaltung verfügt.
- 3. Gehen Sie zum Menüpunkt "Pres/Vacuum Calibration" (= Druck/Vakuum kalibrieren zurück) und wählen Sie dann "Vac/Flow > Vac Pres Span" (= Vakuum/Durchfluss > Vakuumdruck-Messbereich). Führen Sie dann wie folgt die Kalibrierung durch:
 - a. Verwenden Sie ein zulässiges Vakuum-Manometer. Wird ein blaues Manometer (Hersteller Fa. Druck) verwendet, dann bitte dieses Manometer auf die Messkammer stellen.
 - b. Schalten Sie das Manometer, so dass es zunächst sich selbst kalibrieren kann. Während der Kalibrierung das Manometer bitte nicht bewegen.
 - c. Schließen Sie die "+" Seite des Manometers an den Delta-P Δ + Port auf der Geräterückseite an.

- d. Öffnen Sie die Delta-P Δ + Kipphebelventile, um den Durchfluss durch das Manometer freizugeben.
- e. Kalibrieren Sie den Durchflussdruck für den Messbereich, indem Sie den aktuell vom Manometer angezeigten Wert eingeben.
- f. Drücken Sie dann zum Speichern des Wertes auf die 🗲 Taste.

Die Analogausgänge sollten getestet werden, wenn der im Display angezeigte Konzentrationswert nicht mit dem Wert an den Analogausgängen übereinstimmt. Zum Testen der Analogausgänge, bitte ein Messgerät an einen analogen Ausgangskanal anschließen (Spannung oder Strom) und den Anzeigewert des Messgerätes mit dem Wert vergleichen, der im Fenster "Analogausgänge testen" eingestellt wurde.

Benötigte(s) Ausrüstung / Material:

Multimeter

Zum Testen wie folgt vorgehen.

- Messgerät an den zu testenden Kanal anschließen. Abb. 7–11 zeigt die Belegung des Analogausgangs und aus Tabelle 7–4 können Sie die Zuordnung der zugehörigen Kanäle entnehmen.
- 2. Wählen Sie im Hauptmenü: Diagnostics > Test Analog Outputs (= Diagnose > Analogausgänge testen).

Es erscheint das entsprechende Anzeigefenster.

Das Fenster "Set Analog Outputs" (= Analogausgänge setzen) erscheint im Display.

4. Drücken Sie die Taste 🕨, um den Ausgang auf null zu setzen.

Die Zeile "Output Set To" zeigt Null an.

Analogausgänge testen

- 5. Überprüfen Sie, ob das Messgerät auch Null als Wert anzeigt. Weicht die Anzeige auf dem Messgerät um mehr als 1% vom Skalenendwert ab, dann müssen die Analogausgänge eingestellt werden. Hierzu bitte der nachfolgenden Beschreibung "Analogausgänge kalibrieren" folgen.
- 6. Durch Drücken der Taste 🔹 setzen Sie den Ausgang auf den Skalenendwert.

In der Zeile "Output Set To" erscheint der Skalenendwert.

- Überprüfen Sie, ob das Messgerät auch den Skalenendwert anzeigt. Weicht die Anzeige auf dem Messgerät um mehr als 1% ab, dann müssen die Analogausgänge eingestellt werden. Hierzu bitte der gemäß der nachfolgenden Beschreibung "Analogausgänge kalibrieren" vorgehen.
- 8. Drücken Sie die Taste ← , um die Analogausgänge wieder in Normalzustand zu versetzen.

Abb. 7–11. Analoge Eingangs- und Ausgangspins auf der Geräterückseite

Tabelle 7–4. Analogausgangskanäle	und Pinbelegung auf der
Geräterückseite	

Spannungs- kanal	Pin	Stromkanal	Pin
1	14	1	15
2	33	2	17
3	15	3	19
4	34	4	21
5	17	5	23
6	36	6	25
Masse	16, 18, 19, 35, 37	Stromausgang Return	13, 16, 18, 20, 22, 24

Tabelle 7–5. Analogeingangskanäle und Pinbelegung auf der Geräterückseite

Eingangskanal	Pin
1	1
2	2
3	3
4	5
5	6
6	7
7	9
8	10
Masse	4, 8, 11, 14

Analogausgänge kalibrieren

Zeigt beim Testen der Analogausgänge ein Spannungsmesser eine Abweichung von mehr als 1% an oder wurde die optionale I/O-Erweiterungskarte getauscht, dann befolgen Sie die im Abschnitt "Analogausgänge testen" beschriebenen Arbeitsschritte, um die Analogausgänge einzustellen/zu kalibrieren.

Benötigte(s) Ausrüstung / Material:

Multimeter

- Schließen Sie an den Kanal, der eingestellt werden muss, ein Messgerät an und stellen Sie es auf Spannung oder Strom. In Abb. 7–11 sehen Sie eine Abbildung der Pins der Analogausgänge. Die zugehörigen Kanäle finden Sie in Tabelle 7–4.
- 2. Wählen Sie im Hauptmenü den Menüpunkt Service > Analog Out Cal (= Service > Analogausgänge kalibrieren).

Es erscheint das Fenster "Analog Output Cal" (= Analogausgänge kalibrieren).

Hinweis Wird im Hauptmenü der Service-Modus nicht angezeigt, dann gehen Sie vor wie im Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 dargestellt, anschließend erneut mit dem Arbeitsschritt von vorn beginnen. •

- Drücken Sie Menü "Analog Output Cal" (= Analogausgänge kalibrieren) die Taste um zu dem Spannungs- oder Stromkanal zu blättern, der dem Pin auf der Geräterückseite entspricht, an dem wiederum das Spannungs-Messgerät angeschlossen ist. Drücken Sie dann die Taste .
- 4. Gehen Sie mit dem Cursor auf "Calibrate Zero" und drücken Sie die Taste ←.

In der Zeile mit der Bezeichnung "Analog Output Cal:" wird Null angezeigt.

Hinweis Bei der Kalibrierung der Analogausgänge immer erst die Null-Kalibrierung und dann die Skalenendwert-Kalibrierung durchführen. •

- 5. Drücken Sie die Tasten → , bis das Messgerät den Wert anzeigt, der in der Zeile "Set Output To" angegeben ist (0,0 V oder 0,0 oder 4,0 mA). Speichern Sie diesen Wert dann durch Drücken der → Taste.
- 6. Mit Hilfe der Taste 🕒 gelangen Sie wieder ins vorherige Fenster.

- 7. Drücken Sie nacheinander die Tasten (→) (↔), um die Option "Calibrate Full-Scale" (= Kalibrierung Skalenendwert) zu wählen.
- 8. Drücken Sie anschließend so lange die Tasten → , bis das Messgerät den Wert anzeigt der in der Zeile "Set Output To" angezeigt ist. Mit Hilfe der Taste ← können Sie den Wert dann speichern.

Nach Tausch der I/O-Erweiterungskarte bitte wie folgt vorgehen, um die Analogeingänge zu kalibrieren. Die nachfolgend genannten Arbeitsschritte umfassen die Auswahl der Analogeingangskanäle, deren Nullkalibrierung und Kalibrierung auf den Skalenendwert unter Verwendung einer bekannten Spannungsquelle.

Hierzu bitte wie folgt vorgehen:

 Wählen Sie im Hauptmenü: Service > Analog Input Cal (= Service > Analogeingänge kalibrieren).

Es erscheint die Bildschirmanzeige "Analog Input Cal".

Hinweis Wird der Service-Modus nicht angezeigt, bitte Abschnitt "Aufrufen des Service-Modus" auf Seite 7-6 befolgen, anschließend mit dieser Arbeitsfolge erneut beginnen. •

- Drücken Sie im Anzeigefenster "Analog Input Cal" (= Analogeingänge kalibrieren) die Taste →, um zu einem Kanal zu blättern und drücken Sie die Taste →.
- 3. Gehen Sie mit dem Cursor zur Option "Calibrate Zero" und drücken Sie die Taste ↔.

Im Screen wird die Eingangsspannung für den ausgewählten Kanal angezeigt.

4. Vergewissern Sie sich, dass an die Klemmen des Eingangskanals nichts angeschlossen ist und drücken Sie
, um die Eingangsspannung des ausgewählten Kanals auf oV zu kalibrieren.

Analogeingän ge kalibrieren

Eingangskanäle auf 0 V kalibrieren

In der Anzeige erscheint 0,00 V als Spannungseinstellung.

- Drücken Sie nacheinander > ●, um zur Anzeige "Analog Input Cal" zurückzukehren und wiederholen Sie die Schritte 2 bis 4, um andere Kanäle – falls erforderlich – auf null zu kalibrieren.
- 6. Fahren sie dann mit der folgenden Option "Eingangskanäle auf Skalenendwert kalibrieren" fort.

Eingangskanäle auf Skalenendwert kalibrieren

Um die Eingangskanäle auf Skalenendwert zu kalibrieren, bitte nachfolgende Arbeitsschritte beachten. Bekannte Spannung an die Kanäle anlegen.

Benötigte(s) Ausrüstung / Material:

Gleichspannungsquelle (größer als 0 V und weniger als 10 V)

- 1. Bekannte Gleichspannungsquelle an den zu kalibrierenden Eingangskanal anschließen (1-8). Abb. 7–11 zeigt die Pins des Analogeingangs und in Tabelle 7–5 finden Sie zugehörigen Kanäle.
- Wählen Sie im Hauptmenü Service > Analog Input Cal (= Service > Analogeingänge kalibrieren).

Das "Analog Input Cal" Display zeigt die Eingangskanäle 1-8 an.

- 3. Drücken Sie in der Anzeige "Analog Input Cal" die Taste um zum in Schritt 1 ausgewählten Kanal zu blättern und drücken Sie dann die Taste ← .
- 4. Drücken Sie dann die Taste um zur Option "Calibrate Full Scale" (= Kalibrierung auf Skalenendwert) zu blättern und drücken Sie die Taste .

In der Anzeige erscheint die aktuelle Eingangsspannung für den ausgewählten Kanal.

5. Geben Sie mit Hilfe der Tasten → und ↓ die Quellspannung ein und betätigen Sie dann die Taste ↓

um die Eingangsspannung für den ausgewählten Kanal auf den Wert der Spannungsquelle zu kalibrieren..

6. Drücken Sie die Tasten ● > ● um in die Anzeige "Eingangskanäle" zurückzukehren und wiederholen Sie die Schritte 3-5, um andere Eingangskanäle - falls notwendig - auf den Wert der Spannungsquelle zu kalibrieren.

Thermistor tauschen

Zum Tauschen des Umgebungstemperatur-Thermistors gehen Sie bitte folgendermaßen vor (siehe auch Abb. 7–12).

Benötigte(s) Ausrüstung / Material:

Thermistor-Baugruppe

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Drücken Sie auf die Thermistor-Verriegelung und ziehen Sie den Thermistor vom Stecker mit der Bezeichnung AMB TEMP auf der Mess-Interface-Karte ab.
- 3. Stecken Sie die neue Thermistor-Baugruppe in den Stecker mit der Bezeichnung AMB TEMP ein.

I/O Erweiterungskarte tauschen (optional)

Um die I/O-Erweiterungskarte zu tauschen, bitte folgendermaßen vorgehen (Abb. 7–13).

Benötigte(s) Ausrüstung / Material:

I/O Erweiterungskarte

Steckschlüssel, 3/16"

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Dann das Kabel der I/O-Erweiterungskarte vom Stecker mit der Bezeichnung EXPANSION BD auf dem Motherboard abziehen..

- 3. Anschließend die beiden Halterungen, mit denen der Stecker der I/O-Erweiterungskarte auf der Geräterückseite befestigt ist, entfernen (Abb. 7–14).
- 4. Die Karte dann von den Befestigungsbolzen drücken und die Karte abnehmen.
- 5. Um die I/O-Erweiterungskarte zu installieren, bitte vorgenannte Arbeitsschritte in umgekehrter Reihenfolge durchführen.
- 6. Analoge Stromausgänge und analoge Spannungseingänge kalibrieren, wie weiter oben in diesem Kapitel beschrieben.

Abb. 7–13. I/O Erweiterungskarte tauschen (optional)

Abb. 7–14. Anschlüsse auf der Geräterückseite

Digital-Ausgangskarte tauschen

Um die Digital-Ausgangskarte zu tauschen, bitte wie folgt vorgehen (Abb. 7–13).

Benötigte(s) Ausrüstung / Material:

Digital-Ausgangs-Karte

Steckschlüssel, 3/16"

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. I/O-Erweiterungskarte (optional), falls verwendet, entfernen. Lesen Sie hierzu den Abschnitt "I/O Erweiterungskarte tauschen (optional) " in diesem Kapitel.
- 3. Anschließend das Flachkabel der Digital-Ausgangs-Karte vom Motherboard abziehen.

- Mit Hilfe des Steckschlüssels die beiden Halterungen, mit denen die Karte auf der Rückseite befestigt ist, entfernen (Abb. 7–14).
- 5. Dann die Digital-Ausgangs-Karte von den Befestigungsbolzen drücken und Karte entfernen.
- 6. Zum Installieren der Karte die vorgenannten Schritte in umgekehrter Reihenfolge ausführen.

Motherboard tauschen

Um das Motherboard zu tauschen, bitte wie nachfolgend beschrieben vorgehen (Abb. 7–13). Benötigte(s) Ausrüstung / Material: Motherboard Kreuzschlitzschraubendreher Steckschlüssel, 3/16"

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. I/O-Erweiterungskarte (optional), falls verwendet, entfernen. Lesen Sie hierzu den Abschnitt "I/O Erweiterungskarte tauschen (optional) " in diesem Kapitel.
- 3. Dann die Digital-Ausgangs-Karte entfernen wie im Abschnitt "Digital-Ausgangskarte tauschen" dieses Kapitels beschrieben.
- 4. Alle Stecker vom Motherboard abziehen. Die Position der einzelnen Stecker festhalten bzw. sich merken, damit beim Wiederanschließen eine einfache Zuordnung möglich ist.

- Mit Hilfe des Steckschlüssels die 6 Halterungen, mit denen die Karte auf der Rückseite befestigt ist, entfernen (siehe Abb. 7– 14).
- 6. Motherboard vom Träger wegdrücken und Motherboard entfernen.
- 7. Zum Einbau des Motherboards vorgenannte Arbeitsschritte in umgekehrter Reihenfolge durchführen.
- 8. Analoge Spannungsausgänge kalibrieren, wie oben definiert (alle Bereiche).

Mess-Interface-Karte tauschen

Um die Mess-Interface-Karte zu tauschen, bitte wie nachfolgend beschrieben vorgehen (Abb. 7–15).

Benötigte(s) Ausrüstung / Material:

Mess-Interface-Karte

Kreuzschlitzschraubendreher

- 1. Trennwand absenken, dann mit dem nachfolgenden Schritt fortfahren. Bitte lesen Sie hierzu auch den Abschnitt "Messgehäuse-Baugruppe entfernen und Trennwand absenken" weiter vorne in diesem Kapitel.
- 2. Alle Stecker abziehen. Deren Position festhalten, um das Wiederanschließen zu erleichtern.
- 3. Lösen Sie die beiden Schrauben oben auf der Mess-Interface-Karte. Die Mess-Interface-Karte von den beiden Befestigungsbolzen drücken und Karte entfernen.
- 4. Zum Einbau der Karte vorgenannte Schritte in umgekehrter Reihenfolge durchführen.

- 5. Die Messgehäuse-Baugruppe wieder einbauen.
- 6. Abschließend das Messgerät kalibrieren. Lesen Sie hierzu auch das Kapitel "Kalibrierung" dieser Gebrauchsanweisung.

Abb. 7–15. Mess-Interface-Karte tauschen

Photo-Interrupt-Karte tauschen

Zum Tauschen der Photo-Interrupt-Karte bitte wie nachfolgend beschrieben vorgehen (Abb. 7–16).

Benötigte(s) Ausrüstung / Material:

Photo-Interrupt-Karte

Sechskant-Schraubendreher, 3/32"

Kreuzschlitzschraubendreher, #1

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Ziehen Sie das Kabel ab.
- 3. Entfernen Sie die Befestigungsschrauben.
- 4. Nehmen Sie die Karte heraus.
- 5. Setzen Sie eine neue Photo-Interrupt-Karte ein. Dabei in genau umgekehrter Reihenfolge vorgehen.

Abb. 7–16. Photo-Interrupt-Karte tauschen

Proportionalventil tauschen

Befolgen Sie die nachfolgend aufgeführten Arbeitsschritte, wenn Sie das Proportionalventil tauschen möchten (Abb. 7-17).

Benötigte(s) Ausrüstung / Material:

Proportionalventil-Baugruppe

Sechskant-Schraubendreher, 3/32"

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- Um die Trennwand umzuklappen bzw. abzusenken, befolgen Sie bitte die im Abschnitt "Messgehäuse-Baugruppe entfernen und Trennwand absenken" beschriebenen Arbeitsschritte. Fahren Sie anschließend mit dem nächsten Schritt fort.
- 3. Ziehen Sie den Stecker von der Mess-Interface-Karte ab.
- 4. Entfernen Sie die Leitungen.
- 5. Lösen Sie die vier Befestigungsschrauben und nehmen Sie dann die Proportionalventil-Baugruppe heraus.
- 6. Setzen Sie die neue Baugruppe ein. Dabei die vorgenannten Schritte in genau umgekehrter Reihenfolge durchführen.
- 7. Führen Sie eine Dichtigkeitsprüfung durch wie im Kapitel "Präventive Wartung" beschrieben.

Abb. 7–17. Proportionalventil tauschen
Detektor-Baugruppe tauschen

Um die Detektor-Baugruppe zu tauschen, bitte wie nachfolgend beschrieben vorgehen (Abb. 7–18).

Benötigte(s) Ausrüstung / Material: Detektor-Baugruppe Sechskant-Schraubendreher, 4 mm Schutzbrille

ACHTUNG Die Detektor-Baugruppe sollte von einem qualifizierten Servicetechniker getauscht werden, der im Umgang mit Strahlenschutzvorkehrungen über fundiertes Fachwissen verfügt. Entfernt man die Detektor-Baugruppe, dann liegt der radioaktive C-14 Strahler teilweise frei. Daher muss während dieses Vorgangs eine Schutzbrille getragen werden. Die Menge C-14 entspricht den U.S. NRC Bestimmungen als Freigrenze für radioaktive Strahler <100 μCi. •

Die in diesem Kapitel beschriebenen Servicearbeiten sollten nur von qualifiziertem Servicepersonal durchgeführt werden.

Wird das Gerät in einer Art & Weise betrieben, die vom Hersteller so nicht spezifiziert wurde, dann kann es zu einer Beeinträchtigung von Sicherheit und Schutz des Gerätes kommen. •

VORSICHT Das Detektorfenster ist sehr zerbrechlich. Es ist daher äußerste Vorsicht gebeten. Wischen Sie das Fenster nicht ab und berühren Sie es nicht. Die Lötverbindung (Elektrode) **ebenfalls nicht** mit bloßen Händen berühren. Das Fett der Finger/Haut kann den Detektor beschädigen.

Zum Tauschen der Detektor-Baugruppe muss eine Schutzbrille getragen werden. •

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Ziehen Sie den SHV-Stecker von der Detektor-Verstärker-Baugruppe ab und schieben Sie diese durch die Abdeckplatte.
- 3. Lösen Sie beide Befestigungsschrauben des Detektors und heben Sie die Detektor-Baugruppe langsam an.
- 4. Setzen Sie die neue Detektor-Baugruppe ein. Dabei die vorgenannten Arbeitsschritte in genau umgekehrter Reihenfolge durchführen und darauf achten, den Polyesterfilm (Mylar) nicht durchzustechen.
- 5. Abschließend den Detektor kalibrieren wie unter "Detektor kalibrieren" auf Seite 4-14 beschrieben.

SHV-Stecker lösen

Abb. 7–18. Detektor-Baugruppe tauschen

Durchfluss-RTD-Element tauschen

Durchfluss- Um das RTD-Element zu tauschen (RTD = resistance temperature detector), bitte wie folgt vorgehen (siehe Abb. 7–19).

Benötigte(s) Ausrüstung / Material:

Probenahmedurchfluss RTD-Element

Verstellbarer Schraubenschlüssel (Engländer)

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden.

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Um die Trennwand umzuklappen bzw. abzusenken, befolgen Sie bitte die im Abschnitt "Messgehäuse-Baugruppe entfernen und Trennwand absenken" beschriebenen Arbeitsschritte. Fahren Sie anschließend mit dem nächsten Schritt fort.
- 3. Lösen Sie die Fittings mit dem Engländer und schieben Sie das Probenahme RTD-Element heraus.
- 4. Ziehen Sie den RTD-Stecker von der Mess-Interface-Karte ab (markiert mit: "flowtemp1".
- 5. Setzen Sie vorsichtig das neue RTD-Element ein. Dabei die Arbeitsschritte in genau umgekehrter Reihenfolge ausführen. Achten Sie darauf, dass die markierte schwarze Linie auf dem RTD-Element genau bündig ist zum Fitting.

Hinweis Die schwarze Linie ist die vorab gemessene Tiefe für das RTD-Element.

6. Kalibrieren Sie abschließend das Gerät. Lesen Sie hierzu das Kapitel "Kalibrierung" dieser Gebrauchsanweisung.

Transformator tauschen

Zum Tauschen des Transformators bitte wie nachfolgend beschrieben vorgehen (Abb. 7–20).

Benötigte(s) Ausrüstung / Material:

Transformator-Baugruppe

Kreuzschlitzschraubendreher, #2

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Ziehen Sie die Kabel von der Mess-Interface-Karte und dem Motherboard ab.
- 3. Drehen Sie die vier Befestigungsschrauben heraus und heben Sie die Transformator-Baugruppe heraus.

4. Setzen Sie den neuen Transformator ein, indem Sie die vorgenannten Schritte in genau umgekehrter Reihenfolge ausführen.

Abb. 7–20. Transformator tauschen

tauschen

Radiusrohr Um das Radiusrohr zu tauschen, bitte die im Folgenden beschriebenen Arbeitsschritte ausführen (Abb. 7–21).

Benötigte(s) Ausrüstung / Material:

Radiusrohr-Baugruppe

Sechskant-Schraubendreher, 9/16"

Sechskant-Schraubendreher, 7/64"

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Lösen Sie die zwei Schrauben des Montageblocks mit Hilfe des 9/16" Sechskant-Schraubendrehers.

- 3. Entfernen Sie den SHARP Adapter.
- 4. Lösen Sie die beiden Befestigungsschrauben auf der Messkopf-Baugruppe. Entfernen Sie das Rohr, indem Sie es während des Herausziehens leicht von einer auf die andere Seite drehen.
- 5. Überprüfen Sie, ob der Dichtungsring in der richtigen Position ist, bevor Sie das neue Rohr in den Messkopf einschieben.
- 6. Neue Rohrbaugruppe installieren, dabei vorgenannte Arbeitsschritte in umgekehrter Reihenfolge durchführen.

Abb. 7-21. Radiusrohr tauschen

Zum Tauschen der Baugruppe bitte wie nachfolgend beschrieben vorgehen (Abb. 7–22).

Benötigte(s) Ausrüstung / Material:

Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)"

Verstellbarer Schlüssel (Engländer)

Zange

Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)" tauschen

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Kabel von der Strahlungsschutz-Baugruppe unten entfernen, in der sich die Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)" befindet.
- 3. Die beiden Befestigungsmuttern des Strahlungsschutzes entfernen und dann die Strahlungsschutz-Baugruppe selbst.
- 4. Drehen Sie die Baugruppe um und entfernen Sie die drei Flügelschrauben.
- 5. Entfernen Sie die drei Beilagsscheiben und die Halterung.
- 6. Schieben Sie nun die Baugruppe "Rel. Feuchte/Temperatur (Umgebungsluft)" heraus.
- 7. Anschließend die neue Baugruppe einschieben und die o.g. Schritte in umgekehrter Reihenfolge ausführen.
- 8. Abschließend das Gerät wie im Kapitel "Kalibrierung" beschrieben kalibrieren.

Abb. 7–22. Baugruppe "Rel. Feuchte / Temperatur" tauschen

Frontplatten-Karte tauschen

Zum Tauschen der Frontplatten-Karte bitte wie nachfolgend beschrieben vorgehen (Abb. 7–23).

Benötigte(s) Ausrüstung / Material:

Frontplatten-Karte

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und nehmen Sie die Abdeckung ab.
- 2. Die drei Flachbandkabel und den zweiadrigen Steckverbinder von der Frontplatten-Karte abziehen.
- 3. Die Karte von den zwei oberen Befestigungsbolzen wegdrücken und Karte entfernen, indem Sie diese einfach anheben und aus dem unteren Schlitz herausnehmen.

4. Die Frontplatten-Karte ersetzen und die vorgenannten Arbeitsschritte in umgekehrter Reihenfolge durchführen.

LCD Modul tauschen

Wenn Sie das LCD-Modul tauschen möchten, bitte folgendermaßen vorgehen (Abb. 7–23).

Benötigte(s) Ausrüstung / Material:

LCD Modul

Kreuzschlitzschraubendreher

VORSICHT Ist das LCD-Display defekt, bitte darauf achten, dass die Flüssigkristalle nicht mit Haut oder Kleidung in Berührung kommen. Sofort mit Seife und Wasser abwaschen. •

Platte oder Rahmen nicht vom Modul entfernen.

Die Polarisationsplatte ist sehr zerbrechlich, bitte deshalb mit äußerster Sorgfalt vorgehen.

Die Polarisationsplatte nicht mit einem trockenen Tuch abwischen, da hierdurch die Oberfläche zerkratzt werden könnte.

Zum Reinigen des Moduls niemals Alkohol, Azeton, MEK oder andere auf Keton basierende oder aromatische Lösungsmittel verwenden. Zum Reinigen ein weiches, mit Benzin-Lösungsmittel befeuchtetes Tuch verwenden. •

Das Modul niemals in der Nähe organischer Lösungsmittel oder korrosiver Gase aufstellen. •

Das LCD-Modul nicht schütteln oder stauchen. •

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung.
- 2. Flachkabel und zweiadrigen Stecker von der Frontplatten-Karte abziehen.
- 3. Die vier Schrauben an den Ecken des LCD-Moduls lösen.
- 4. Das LCD herausschieben, in Richtung Gerätemitte.
- 5. Zum Wiedereinbau des LCD-Moduls vorgenannte Schritte in umgekehrter Reihenfolge ausführen.

Hinweis Der optimale Kontrast kann von LCD-Bildschirm zu LCD-Bildschirm verschieden sein. Nach Tauschen des LCD-Bildschirms kann eine Neueinstellung des Kontrasts erforderlich sein. Wenn der Inhalt auf dem Bildschirm sichtbar ist, wählen Sie Instrument Controls (= Gerätesteuerung) > Screen Contrast und stellen den Kontrast ein. Wenn der Inhalt nicht auf dem Bildschirm sichtbar ist verwenden Sie den "set contrast 10" C-Link-Befehl, um den Bildschirmkontrast auf den mittleren Bereich einzustellen. Siehe auch entsprechenden Anhang "C-Link Protokollbefehle", wo nähere Informationen zu diesem Befehl gegeben werden.

SHARP Optik-
Abdeckung
entfernenDie SHARP Optik-Abdeckung kann von der SHARP-Optik
abgenommen werden. Falls also an der SHARP-Optik-Baugruppe
Arbeiten erforderlich sind, die Abdeckung bitte wie folgt
entfernen (Abb. 7–24).Schraube
entfernen

Schraube entfernen

Abb. 7–24. Abdeckung der SHARP-Optik entfernen

Benötigte(s) Ausrüstung / Material:

Kreuzschlitzschraubendreher

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Ist das Messgerät in einem Rack installiert, das Messgerät herausnehmen.
- 3. Dann die beiden Schrauben lösen.
- 4. Abdeckung nach oben abnehmen.
- 5. Abdeckung wieder aufsetzen, dabei in umgekehrter Reihenfolge vorgehen.

Externes Magnetventil tauschen

Um das externe Magnetventil zu tauschen, bitte nachfolgend beschriebenen Arbeitsschritte ausführen (Abb. 7–**25**).

Benötigte(s) Ausrüstung / Material:

Externes Magnetventil

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Vakuumschläuche vom Magnetventil abziehen.
- 3. Elektr. Schalter vom rückseitigen Steckverbinder abziehen.
- 4. Die beiden unverlierbaren Schrauben von der Geräterückwand entfernen.
- 5. Magnetventil tauschen und dabei in genau umgekehrter Reihenfolge vorgehen.

Abb. 7-25. Externes Magnetventil tauschen

SHARP Sensor für rel. Feuchte/Temp. tauschen

Um den SHARP-Sensor für die rel. Feuchte / Temperatur zu tauschen, bitte nachfolgende Arbeitsschritte ausführen (Abb. 7–26).

- 1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie das Nephelometer von der Grundplatte des Messgeräts.
- 2. Die beiden Schrauben der seitlichen Abdeckung und die Abdeckung entfernen.
- 3. Den Stecker "RH/Temp" von der der Mess-Interface-Karte abziehen (markiert mit "TEMP/RH").

- 4. Die beiden Inbusschrauben von der Platine "Rel. Feuchte / Temperatur" von der oberen Optikkammer-Endplatte entfernen.
- 5. "Rel. Feuchte/Temp" von der alten Platinenbaugruppe entfernen und bei der neuen Platinenbaugruppe wieder einsetzen.
- 6. Die neue Baugruppe einsetzen, dabei vorgenannte Schritte in umgekehrter Reihenfolge ausführen.
- 7. Abschließend den Sensor "Rel. FeuchteTemp" kalibrieren. Siehe hierzu auch die Infos im Kapitel "Kalibrierung".

Abb. 7-26. "Rel. Feuchte/Temp" - Steckverbinder entfernen

SHARP Interfacekarte tauschen

Wenn Sie die SHARP Interfacekarte tauschen möchten, bitte nachfolgend genannten Arbeitsschritte ausführen (siehe Abb. 7– 27 und Abb. 7–28).

Benötigte(s) Ausrüstung / Material:

SHARP Interfacekarte

Kreuzschlitzschraubendreher, #2

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein

ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden. •

- Notieren Sie den Nephelometer-Koeffizienten. Wählen Sie hierzu im Hauptmenü: Calibration Factors > Neph Coef (= Kalibrierfaktoren > Neph Koef). Den Wert des Koeffizienten aufschreiben.
- Dann die Nephelometer-Kalibrierung notieren. W\u00e4hlen Sie hierzu im Hauptmen\u00fc: Service > Neph Calibration (= Service > Neph Kalibrierung). Den Wert der rel. Feuchte des Nephelometers und den Quellenpegel-Wert aufschreiben.
- 3. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie die Abdeckung der SHARP-Optik.
- 4. Alle Steckverbinder von der SHARP Interfacekarte abziehen. Die Position entsprechend notieren, um das Wiederanschließen zu erleichtern.
- 5. Die beiden Schrauben von der Geräterückwand lösen und entfernen.
- 6. Die beiden Schrauben oben auf der SHARP Interfacekarte lösen. Die SHARP Interfacekarate von den beiden unteren Befestigungsbolzen nach oben herausschieben und Karte entfernen.
- 7. Zum Installieren einer neuen SHARP Interfacekarte, die vorher beschriebenen Schritte in umgekehrter Reihenfolge durchführen.
- 8. Den vorher notierten Wert des Nephelometer-Koeffizienten wieder eingeben.
- 9. Die Werte für die rel. Feuchte, Temperatur und Quellenpegel des Nephelometers wiederherstellen.

Abb. 7-27. Anschlüsse SHARP Interfacekarte

Abb. 7–28. SHARP Optik-Karte tauschen

Delrin Mutter tauschen

Zum Tauschen der Delrin-Mutter bitte wie nachfolgend beschrieben vorgehen (siehe Abb. 7-29).

Benötigte(s) Ausrüstung / Material:

Delrin Mutter

Kreuzschlitzschraubendreher

Set standardmäßiger Sechskantschraubendreher

Verstellbarer Schraubenschlüssel (Engländer)

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden.

 Pumpendurchfluss ausschalten. Wählen Sie hierzu im Hauptmenü: Instrument Controls > Set Flow/Pump > Pump (= Gerätesteuerung > Durchfluss/Pumpe einstellen > Pumpe). Mit der ← Taste den Pumpendurchfluss auf AUS stellen.

- 2. Heizung ausschalten. Wählen Sie hierzu im Hauptmenü: Instrument Controls > Set Heater > Control (= Gerätesteuerung > Heizung einstellen > Steuerung). Die
 Tasten so lange betätigen, bis AUS angezeigt wird und mit bestätigen.
- 3. Die beiden Sechskantschrauben von der Manschette der Heizungsadapterabdeckung lösen.
- 4. Dann die unverlierbaren Schrauben lösen und nach oben schieben.
- 5. Lösen Sie die untere 5/8" Überwurfmutter und entfernen Sie den Rohradapter.
- 6. Schieben Sie den Heizungsrohradapter nach unten herunter.
- 7. Schieben Sie dann die Ferritperle nach oben vom Heizungsrohradapter herunter.
- 8. Dann die Delrin-Mutter nach oben vom Heizungsrohradapter herunterschieben.
- 9. Die Delrin-Mutter wieder installieren, dabei in genau umgekehrter Reihenfolge vorgehen.

Abb. 7-29. Delrin-Mutter tauschen

Interne SHARP Kabelbaugruppe tauschen

Um das Gehäusekabel zu tauschen, bitte wie folgt vorgehen (siehe Abb. 7–**30**).

Benötigte(s) Ausrüstung / Material:

Interne SHARP Kabelbaugruppe

Kreuzschlitzschraubendreher

- 1. Schalten Sie das Gerät AUS und ziehen Sie den Netzstecker ab.
- 2. Falls das Messgerät in einem Rack installiert ist, bitte herausnehmen.
- 3. Zum Umklappen der Trennwand bitte den Anweisungen im Abschnitt "Messgehäuse-Baugruppe entfernen und Trennwand absenken" folgen. Dann mit dem nächsten Schritt fortfahren.
- 4. Den mit "SHARP 1" markierten elektr. Stecker abziehen.
- 5. Die vier Schrauben lösen.
- 6. Ziehen Sie den Stecker nach oben heraus und installieren Sie dann den neuen elektrischen Stecker, indem die obigen Schritte in umgekehrter Reihenfolge durchgeführt werden.

Abb. 7-30. Interne SHARP Kabelbaugruppe tauschen

Gehäusekabel tauschen

Um das Gehäusekabel zu tauschen, bitte wie folgt vorgehen (siehe auch Abb. 7–**31**).

Benötigte(s) Ausrüstung / Material:

Gehäusekabel

Kreuzschlitzschraubendreher

Verstellbarer Schlüssel (Engländer)

Schäden am Gerät Einige interne Komponenten können bereits durch geringe statische Aufladung beschädigt werden. Ein ordnungsgemäß geerdetes Antistatik-Armband muss daher vom Benutzer oder Techniker getragen werden, wenn Arbeiten an den internen Komponenten des Gerätes vorgenommen werden.

1. Schalten Sie das Gerät AUS, ziehen Sie den Netzstecker ab und entfernen Sie den elektr. Stecker. Lösen Sie dann die beiden unverlierbaren Schrauben auf der SHARP-Optik-Grundplatte und nehmen Sie die SHARP-Baugruppe von der Grundeinheit herunter.

- 2. Entfernen Sie die beiden Schrauben der SHARP-Abdeckung und dann die Abdeckung.
- 3. Dann die Sechskantmutter von der Kabelklemme entfernen.
- 4. Das Gehäusekabel wieder installieren. Dabei in umgekehrter Reihenfolge vorgehen.

Abb. 7-31. Gehäusekabel tauschen

Externer Nullpunkt-Rückstellungs-Filter

Um den externen Nullpunkt-Rückstellungs-Filter zu tauschen, bitte wie nachfolgend beschrieben vorgehen (Abb. 7–**32**).

Benötigte(s) Ausrüstung / Material:

Verstellbarer Schraubenschlüssel (Engländer)

- 1. Markieren bzw. notieren Sie die Ausrichtung des Pfeils auf der Filterbaugruppe. Siehe hierzu auch Abb. 2–7.
- 2. Drücken Sie die Manschette der Schnellverschlusskupplung zusammen und entfernen Sie das Rohr vom Fitting.

3. Neue Filterbaugruppe installieren. Dabei in umgekehrter Reihenfolge vorgehen.

Abb. 7-32. Ext. Nullpunkt-Rückstellungs-Filter tauschen

Service Standorte Benötigen Sie zusätzliche Unterstützung? Falls Sie technische Fragen haben oder Unterstützung benötigen, so steht Ihnen hierfür ein weltweites Netz von Vertriebshändlern zur Verfügung. Informationen zu einem Vertriebshändler in Ihrer Nähe erhalten Sie von unserer Niederlassung Europa (in den Niederlanden) unter der Rufnummer:

+31 765795641

Chapter 8 Systembeschreibung

In diesem Kapitel werden die Funktionsweise und die Position der einzelnen Systemkomponenten beschrieben. Des Weiteren liefert dieses Kapitel einen Überblick über die Struktur der Firmware und beinhaltet eine Beschreibung der System-Elektronik und der Eingangs-/Ausgangsanschlüsse und deren Funktionen:

- "Hardware" auf Seite 8-1
- "Firmware" auf Seite 8-5
- "Elektronik" auf Seite 8-6
- "I/O Komponenten" auf Seite 8-10

Hardware Die Hardware des Messgerätes Modell 5030*i* umfasst folgende Komponenten (siehe auch Abb. 8-1):

- Nephelometer-Baugruppe
- Haupt-Messkopf
- Detektorverstärker
- Baugruppe "Nocken-Photo-Interrupt-Karte"
- Baugruppe "Zählrrad-Interrupt-Karte"
- Proportionalventil
- Nockenmotor
- Filterbandmotor
- Druckplatine
- Externer Magnet
- T-Stück Pumpenansaugöffnung

Abb. 8–1. Modell 5030*i* Hardware-Komponenten

Nephelometer- Baugruppe	Die Nephelometer-Baugruppe verwendet eine 880 nm einfallende Lichtquelle und einen Hybrid-Silikon-Photodetektor, um die Streulichtintensität in der Gegenwart von Aerosolen zu messen. Die Baugruppe beinhaltet ein Nephelometer, einen Temperatursensor, einen Sensor zur Messung der rel. Luftfeuchte und eine Leiterplatten-Schnittstelle.
Haupt-Messkopf	Der Haupt-Messkopf verwendet einen Beta-Strahler und einen proportionalen Alpha/Beta-Detektor, um die Abschwächung der Beta-Partikel durch gesammelte Aerosole über einem Glasfaserfilter zu messen und diese von natürlich vorkommenden Beta-Interferenzen, verursacht durch Tochternuklide von Alpha- Zerfallsprodukten, zu unterscheiden.
Detektorverstärker	Das zylinderförmige Rohr beinhaltet eine Platine, versorgt den Proportional-Detektor mit Strom und verstärkt die Beta- und Alpha-Zählimpulse, bevor diese an die Mess-Interface-Karte des 5030 <i>i</i> geschickt werden.
Nocken-Photo- Interrupt-Karte	Diese kleine Platine bzw. Leiterplatte beherbergt eine Photo- Unterbrecher (Reflex-/Gabellichtschranke), um die geschlossene Stellung des Messkopfes zu erkennen. Sie ist mit einem Motor verbunden, über den der Messkopf geöffnet und geschlossen wird.
Zählrad-Interrupt- Karte	Diese kleine Platine ist auf einem Chopper-Rad montiert, welches die Länge des Filterbandes während eines Filterbandwechsels misst.
Proportionalventil	Das Proportionalventil ist ein proportionales Magnetventil, das zur Durchflusssteuerung verwendet wird. Als Reaktion auf den über die Ultraschallblende gemessenen Durchfluss, öffnet oder schließt sich das Proportionalventil teilweise, um den Durchfluss in Echtzeit anzupassen.
Nockenmotor	Über diesen Motor wird der Nocken in Rotation versetzt. Durch das Rotieren de Nocke wird der Hebelarm des Messkopfes angehoben oder abgesenkt, um den Messkopf während eines Filterbandwechsels zu öffnen und zu schließen.

Bandmotor	Nach dem Öffnen des Messkopfes wird das Filterband mit Hilfe dieses Motors um eine bestimmte, festgelegte Länge vorwärts transportiert, bevor eine erneute Beta-Abschwächung auf einem festen Probenahmefleck ausgelöst wird.
Druckplatine	Diese Leiterplatten-Baugruppe ist auf der Bodenplatte moniert und an ihr sind drei Drucksensoren angebracht. Die Druckplatine wird zur Messung des Luftdrucks, des Differenzdrucks über der Blende und des Vakuums unter dem Filterband verwendet. Alle mit der Druckplatine verbundenen Leitungen sind nummeriert, falls diese Platine einmal getauscht werden muss.
Externer Magnet	Über den externen Magneten wird gesteuert, ob die Pumpe normal die Luft abgibt oder gefilterte Luft während der Nullung des Nephelometers zum Messgerät führt.
T-Stück Pumpenansaugöffnung	Dieses T-Stück liefert zusätzliche Luft besonders dann, wenn das Nephelometer genullt wird.
Firmware	Die Firmware-Aufgaben gliedern sich in vier Bereiche:
	Steuerung des Geräts
	• Signalüberwachung
	• Messberechnungen
	Kommunikation mit den Ausgängen
Steuerung des Geräts	Untergeordnet eingebundene Prozessoren werden dazu eingesetzt, die zahlreichen Funktionen der Platinen zu steuern wie z.B. analoge und digitale I/Os. Diese Prozessoren werden über ein serielles Interface durch einen einzigen übergeordneten Prozessor gesteuert, der auch für die Bedienerschnittstelle auf der Frontplatte/Vorderseite des Gerätes zuständig ist. Die untergeordneten Prozessoren laufen alle mit einer gemeinsamen Firmware, die mit der übergeordneten Firmware gebündelt wird und beim Einschalten geladen wird, wenn eine unterschiedliche Version entdeckt wird.
	Jede Karte/Platine verfügt über eine spezifische Adresse, die der Firmware dazu dient, herauszufinden, welche Funktionen auf

	dieser Karte unterstützt werden. Diese Adresse wird auch verwendet für die Kommunikation zwischen den untergeordneten und dem übergeordneten Prozessor.
	Jede Zehntelsekunde werden die Frequenzzähler, die analoge I/O-Karte und die digitale I/O-Karte vom untergeordneten Prozessor gelesen und beschrieben. Die Zählimpulse werden über die vergangene Sekunde kumuliert und die Analogeingänge über diese Sekunde gemittelt. Der übergeordnete Prozessor pollt die untergeordneten Prozessoren einmal pro Sekunde an, um die Mess- und Steuerdaten auszutauschen.
Signalüberwachung	Signale werden sekündlich von den untergeordneten Prozessoren gewonnen und anschließend zur Gewinnung der endgültigen Messwerte von den übergeordneten Prozessoren verarbeitet. Die sekündlich kumulierten Werte, die die GKW-Konzentrationen darstellen, werden akkumuliert und zur Ermittlung der anwenderspezifischen Mittelungszeit weitergegeben. Beträgt diese Mittelungszeit mehr als 10 Sekunden, geht der Messwert weiterhin nach jeweils 10 Sekunden ein. Der sekündliche Mittelwert der anderen analogen Eingänge wird direkt weitergeleitet (keine zusätzliche Signalaufbereitung durch den übergeordneten Prozessor).
Kommunikation mit den Ausgängen	Das Display auf der Gerätevorderseite, die seriellen und Ethernet Datenports und die Analogausgänge dienen hauptsächlich dazu, die Ergebnisse der obigen Berechnungen dem Bediener zu kommunizieren. Im Display werden die Konzentrationswerte gleichzeitig angezeigt. Die Anzeige wird alle 1- 10 Sekunden aktualisiert, je nach Mittelungszeit.
	Die Analogausgangsbereiche können vom Bediener über die Firmware eingestellt werden. Die Analogausgänge basieren standardmäßig auf dem Messbereich. Negative Konzentrationen können dargestellt werden, vorausgesetzt sie liegen innerhalb -5% des Skalenendwert-Bereiches. Die Null- und Skalenendwerte können vom Bediener auf jeden gewünschten Wert eingestellt werden.
Elektronik	Alle Elektronikkomponenten werden über ein universelles Schaltnetzteil betrieben, das in der Lage ist, die Eingangsspannung automatisch zu erfassen und über alle spezifizierten Betriebsbereiche zu funktionieren.

Externe Pumpen und Heizungen arbeiten alle mit 110 VAC. Sollen diese mit 210-250 V betrieben werden, wird ein Transformator benötigt.

Ein EIN/AUS-Schalter steuert die Stromversorgung des Gerätes und ist auf der Gerätevorderseite für den Bediener zugänglich.

Motherboard Das Motherboard beinhaltet den Hauptprozessor, Stromversorgungseinheiten, einen Sub-Prozessor und dient als Kommunikationshub für das Messgerät. Das Motherboard empfängt Eingaben, die vom Bediener über die Tasten auf der Bedieneinheit auf der Gerätevorderseite und/oder über die I/O-Verbindungen auf der Geräterückseite erfolgen, und sendet Befehle an die anderen Karten/Platinen, um die Funktionen des Messgerätes zu steuern sowie Mess- und Diagnoseinformationen zu sammeln. Das Motherboard gibt Informationen über den Status des Messgerätes und Messdaten aus. Diese erscheinen dann auf dem Display auf der Gerätevorderseite oder/und werden auf den Eingängen/Ausgängen auf der Geräterückseite ausgegeben. Das Motherboard beinhaltet auch I/O-Schaltkreise und die zugehörigen Steckverbinder, um externe digitale Statusleitungen zu überwachen und analoge Spannungen auszugeben, die den Messdaten entsprechen. Auf dem Motherboard befinden sich folgende Verbinder:

Externe Steckverbindungen:

- Externes Zubehör
- RS-232/485 Kommunikation (zwei Stecker)
- Ethernet-Kommunikation
- I/O Steckverbinder mit Stromausfallrelais, 16 digitalen Eingänge und 6 analogen Spannungsausgängen.

Interne Steckverbindungen:

- Funktionstastenfeld und Display
- Mess-Interface-Karte
- I/O-Erweiterungskarte
- Digital-Ausgangs-Karte
- Wechselspannungsverteiler

Nephelometer Interface-Karte	Die Nephelometer Interface-Karte dient als zentrales Schaltelement für die Nephelometer-Messung, als interne Ventilsteuerung und zur on-Board Verarbeitung der Null- und Partikelkonzentration mittels Photometrie.
Steckverbindungen Nephelometer Interface-Karte	Die sich auf der Nephelometer-Interface-Karte befindlichen Steckverbindungen umfassen:
	• RS485
	24 V Gleichstromversorgung
	LED Quellstrom
	Referenzdetektor
	• Streudetektor
	• T/RH Sensor
Mess-Interface- Karte	Die Mess-Interface-Karte dient als eine zentrale Verbindungsfläche für alle Messelektroniken, die im Gerät eingesetzt werden. Sie beinhaltet Stromversorgungen und Interface-Schaltungen für Sensoren und Steuereinheiten im Messsystem. Sie sendet Statusdaten zum und empfängt Steuersignale vom Motherboard.
Steckverbindungen auf der Mess-	Die sich auf der Mess-Interface-Karte befindlichen Steckverbindungen umfassen:
Interface-Karte	• Datenkommunikation mit Motherboard
	• 24 V und 120 VAC Stromversorgungseingänge
	Ausgänge für Lüfter und Magnetventil
	 120 VAC Ausgänge und Thermistoreingang von der Probenahme-Heizung
	Durchfluss- und Drucksensoreingänge
	Proportionalventilausgang
	Optischer Pickup-Eingang
	• Vorverstärkerplatine
	• Umgebungstemperatur/RTD und rel. Feuchte
	Durchfluss-RTDs

Durchflusssensor- System	Das Durchflusssensor-System besteht aus seiner Ultraschallblende im Hauptmesskopf, Differenzdruck- und Vakuumsensoren und einem RTD-Element für die Durchflusstemperatur. Der vom Durchflusssystem ausgegebene Wert wird durch die Messung der Druckdifferenz über der Präzisionsblende ermittelt. Die Einheit wird zur Messung des Probenahmegasflusses im Messsystem verwendet.
Drucksensor- Baugruppe	Die Drucksensor-Baugruppe besteht aus seiner Platine mit drei Druckmessaufnehmern mit Rohranschlüssen. Der vom Druckmessaufnehmer ausgegebene Wert wird durch Messung der Druckdifferenz zwischen Probenahmegasdruck und dem Druck der Umgebungsluft ermittelt.
Detektorverstärker- Baugruppe	Diese Baugruppe verstärkt das Signal des Proportionaldetektor, welcher die Beta-Partikelemissionen des C-14 Strahlers durch die Probe und das Filterband aufnimmt. Der vom Detektorverstärker ausgegebene Wert gelangt zur Mess-Interface-Karte. Ein Koaxialkabel vom Detektorverstärker versorgt den Detektor mit Strom und dient gleichzeitig als Erdung.
Digitale Ausgangskarte	Die Digitale Ausgangskarte ist mit dem Motherboard verbunden und liefert Ausgänge zur Magnetansteuerung und Relaiskontakt- Ausgänge an einen Steckverbinder auf der Geräterückseite. Zehn voneinander galvanisch getrennte Relaiskontakte (Arbeitskontakte, mit Abschaltmöglichkeit) werden zur Verfügung gestellt. Des Weiteren werden acht Ausgänge zur Magnetansteuerung (Open Collector) zusammen mit dem entsprechenden Pin zur +24V Gleichstromversorgung zur Verfügung gestellt.
I/O Erweiterungs- Karte (Optional)	Die I/O-Erweiterungskarte ist mit dem Motherboard verbunden. Zusätzlich hierzu bietet sie die Möglichkeit der Eingabe externer analoger Spannungseingänge und der Ausgabe analoger Ströme über einen Steckverbinderkontakt auf der Rückseite des Messgerätes. Die Karte beinhaltet lokale Stromversorgungen, eine DC/DC Isolatorversorgung, einen Subprozessor und analoge Schaltkreise. Acht analoge Spannungseingänge stehen zur Verfügung mit einem Eingangsspannungsbereich von oV bis 10VDC. Des Weiteren stehen sechs Stromausgänge mit einem normalen Betriebsbereich von 0 bis 20 mA zur Verfügung.

Frontplatten-Anschluss-Karte

Komponenten

I/O

Diese Karte dient quasi als Schnittstelle zwischen dem Motherboard und den sich auf dem Bedienfeld auf der Gerätevorderseite befindlichen Funktionstasten und dem Display. Auf dieser Karte werden zentral drei Verbinder zu einem einzigen Flachbandkabel zusammengefasst, das zum Motherboard führt. Die drei Verbinder werden benötigt für die Bedieneinheit mit den Funktionstasten, die Steuerleitungen für das Display sowie die Hintergrundbeleuchtung des Displays. Die Platine enthält auch Signalpuffer für die Steuersignale des Graphikdisplays und eine Hochspannungsversorgung für die Hintergrundbeleuchtung des Displays.

Externe I/Os werden von einem generischen Bus gesteuert, der in der Lage ist, die folgenden Einheiten zu steuern:

- Analogausgang (Spannung und Strom)
- Analogeingang (Spannung)
- Digitalausgang (TTL Level)
- Digitaleingang (TTL Level)

Hinweis Zum Gerät gehören Ersatztreiber für Magnetventile und eine I/O Unterstützung für künftige Erweiterungen. •

Analoge Spannungsausgänge

Das Gerät stellt sechs analoge Spannungsausgänge zur Verfügung. Jeder Ausgang kann über die Firmware für einen der nachfolgenden Bereiche konfiguriert werden, wobei eine minimale Auflösung von 12 Bit aufrechterhalten wird:

- 0-100 mV
- 0-1 V
- 0-5 V
- 0-10 V

Der Bediener hat die Möglichkeit, jeden Null- und Messbereichspunkt der Analogausgänge via Firmware zu kalibrieren. Mindestens 5% des Skalenendwertes über und unter dem Bereich werden ebenfalls unterstützt, können jedoch in der Firmware außer Kraft gesetzt werden, falls erforderlich.

Die Analogausgänge können jedem beliebigen Mess- oder Diagnosekanal zugeordnet werden mit einem benutzerdefinierten Bereich in der Einheit des ausgewählten Parameters. Die Spannungsausgänge sind unabhängig von den Stromausgängen

Analog Spannungsausgänge (Optional)	Die optionale I/O-Erweiterungskarte beinhaltet sechs isolierte Stromausgänge. Dieser werden für einen der nachfolgenden Bereiche per Firmware konfiguriert, wobei eine minimale Auflösung von 11 Bit aufrechterhalten wird:
	• 0-20 mA
	• 4-20 mA
	Der Bediener hat die Möglichkeit, jeden Null- und Messbereichspunkt der Analogausgänge via Firmware zu kalibrieren. Mindestens 5% des Skalenendwertes über und unter dem Bereich werden ebenfalls unterstützt, können jedoch in der Firmware außer Kraft gesetzt werden, falls erforderlich.
	Die Analogausgänge können jedem beliebigen Mess- oder Diagnosekanal zugeordnet werden mit einem benutzerdefinierten Bereich in der Einheit des ausgewählten Parameters. Die Stromausgänge sind unabhängig von den Spannungsausgängen. Die Stromeingänge sind von der Stromversorgung und der Masse des Gerätes getrennt, teilen sich aber eine gemeinsame Rückleitung (isolierte Masse).
Analoge Spannungseingänge (Optional)	Die optionale I/O-Erweiterungskarte beherbergt acht analoge Spannungseingänge. Diese Eingänge werden zum Sammeln von Messdaten von Fremdgeräten wie z.B. meteorologischen Geräten verwendet. Der Bediener kann ein Label, eine Einheit und eine Umrechnungstabelle zuordnen (2 bis zu 10 Punkte). Jeder Punkt in der Umrechnungstabelle besteht aus einem analogen Eingangsspannungswert (0-10,5 V) und einem entsprechendem benutzerdefinierten Ablesewert. Nur zwei Punkte sind für lineare Eingänge erforderlich, eine größere Anzahl von Punkten kann jedoch zur Annäherung nicht-linearer Eingänge verwendet werden. Alle Spannungseingänge haben eine Auflösung von 12 Bit über einen Bereich von 0 bis 10 Volt.
Digitale Relais- Ausgänge	Das Gerät beinhaltet ein Stromausfall-Relais auf dem Motherboard sowie zehn digitale Ausgangsrelais auf der Digital- Ausgangs-Karte. Es handelt sich dabei um Reed-Relais, die für min. 500 mA bei 200V Gleichstrom ausgelegt sind.

Das Stromausfall-Relais ist ein Relais vom Typ C (Arbeitskontakte und Ruhekontakte). Alle anderen Relais sind Relais vom Typ A (Arbeitskontakte). Sie dienen dazu, Alarmstatus und Betriebsarten-Infos vom Analysator zu liefern und andere Geräte fernzusteuern wie z.B. das Steuern von Ventilen während der Kalibrierung. Der Bediener kann wählen, welche Information(en) von jedem Relais geschickt werden und ob der aktive Status offen (= Arbeitskontakt) oder geschlossen (= Ruhekontakt) ist. Digitale Eingänge 16 digitale Eingänge stehen zur Verfügung. Diese können für Signalmodi des Geräts und für besondere Bedingungen programmiert werden wie z.B.: Filterbandwechsel Pumpe ausschalten Pumpen einschalten Analogausgänge auf Null Analogausgänge auf Skalenendwert Je nach Konfiguration des Analysators kann die tatsächliche Verwendung dieser Eingänge vom obigen Beispiel abweichen. Die digitalen Eingänge sind TTL-Level kompatibel und werden im Analysator angezogen. Der aktive Zustand kann vom Bediener in der Firmware definiert werden. Serielle Ports Zwei serielle Ports ermöglichen eine Verkettung von mehreren Analysatoren, so dass mehrere Geräte mit nur einem seriellen Port verlinkt werden können. Das standardmäßige bidirektionale, serielle Interface kann entweder für RS-232 oder RS-485 konfiguriert werden. Die serielle Baudrate kann vom Bediener in der Firmware ausgewählt werden. Die Standardwerte liegen im Bereich 1200 bis 115200 Baud. Der Bediener kann auch Datenbits, Parität und Stoppbits setzen. Folgende Protokolle werden unterstützt: C-Link Modbus Slave Geysitech (Bayern-Hessen) Streaming-Daten ESM

Das Streaming-Datenprotokoll überträgt vom Bediener ausgewählte Messdaten über einen seriellen Port in Echtzeit zur Erfassung durch einen seriellen Drucker, Datenaufzeichnungsgerät oder PC.

RS-232 Anschluss Ein gekreuztes Nullmodem-Kabel ist erforderlich, wenn der Analysator an einen IBM-kompatiblen PC angeschlossen werden soll. Wird das Gerät jedoch an andere Geräte über Fernüberwachung/-steuerung angeschlossen, so wird ein gerades 1:1 Kabel benötigt. In der Regel gilt: Ist der Verbinder des Host-Remote-Gerätes eine Buchse, wird ein gerades Kabel benötigt, ist der Verbinder ein Stecker, wird ein Nullmodemkabel benötigt.

Datenformat:

1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200 Bauds

7 oder 8 Datenbits

1 oder 2 Stoppbits

Keine, ungerade oder gerade Parität

Alle Antworten werden mit einer Absatzschaltung abgeschlossen (hex oD)

Die Pinbelegung des DB9-Steckers entnehmen Sie bitte der Tabelle 8–1.

DB9 Pin	Funktion
2	RX
3	ТХ
7	RTS
8	CTS
5	Masse

Tabelle 8-1. RS-232 - Pinbelegung DB9 Steckverbinder
RS-485 Das Gerät verwendet eine vieradrige RS-485 Konfiguration mit automatischer Durchflusssteuerung (SD). Die Pinbelegung entnehmen Sie bitte Tabelle 8–2.

Tabelle 8-2. RS-485 - Pinbelegung DB9 Steckverbinder

DB9 Pin	Funktion
2	+ empfangen
8	- empfangen
7	+ senden
3	- senden
5	Masse

Ethernet Anschluss Ein RJ45 Verbinder wird für die 10Mbs Ethernet Verbindung verwendet, die die Kommunikation über TCP/IP über eine standardmäßige IPV4 Adressierung unterstützt. Die IP Adresse kann für die statische oder die dynamische Adressierung konfiguriert werden (Set mit einem DHCP Server).

> Jegliche serielle Port-Protokolle sind zusätzlich zum seriellen Port über Ethernet zugänglich. Bis zu drei gleichzeitige Verbindungen pro Protokoll sind zulässig.

Steckverbindung
für externes
ZubehörDiese Steckverbindung wird beim Gerät Modell 5030*i* nicht
verwendet.Dieser Port wird bei anderen Modellen zur Kommunikation mit
externen Smart-Geräten verwendet; diese Geräte können bei
Verwendung einer RS-485 Elektronikschnittstelle in einer
Entfernung von mehreren hundert Metern vom Analysator
aufgestellt sein.

Chapter 9 Optionale Ausrüstungsteile

Das Gerät Modell 5030*i* ist mit folgendem optionalem Zubehör erhältlich:

- "Einlass-Baugruppen" auf Seite 9-1
- "Verlängerungen Probenahmerohr" auf Seite 9-1
- "I/O Erweiterungs-Karten-Baugruppe" auf Seite 9-1
- "25-pol. Klemmplatten-Baugruppe" auf Seite 9-2
- "Klemmleiste und Kabelsets" auf Seite 9-2
- "Kabel" auf Seite 9-2
- "Montageoptionen" auf Seite 9-4
- "Dachflansch-Anordnung" auf Seite 9-8

Einlass- Baugruppen	Das Modell 5030 <i>i</i> kann in verschiedenen Anwendungsbereichen zum Einsatz kommen. Mit unterschiedlichen Einlass- Konfigurationen (PM_{10} , $PM_{2.5}$, PM_1 Einlässe) können verschiedene Partikelgrößenklassen überwacht werden. Der Hauptanwendungsbereich liegt in der Messung von Feinstaub der Größenordnung PM_{10} und $PM_{2.5}$ zur Überwachung der Luftgüte/- qualität und in Studien zur Auswirkung auf die Gesundheit.
Verlängerungen Probenahmerohr	Bei der Aufstellung des Messgeräts Modell 5030 <i>i</i> an Standorten zur Lüftgüteüberwachung ist es oftmals am besten, den Einlass auf der gleichen Höhe wie andere ähnlich genutzte Einlässe anzuordnen. Im Kapitel "Installation" werden besondere Kriterien bezüglich Aufstellung erörtert. Zusätzlich zur Verwendung optionaler Einlässe ist es erforderlich, das Probenahmerohr nach unten mit Hilfe eines steifen Probenahmerohrs zu verlängern.
I/O Erweiterungs- Karten-Baugruppe	Auf der I/O-Erweiterungskarte werden sechs analoge Stromausgangskanäle (0-20 mA oder 4-20 mA) und acht analoge Spannungseingänge (0-10V) bereitgestellt. Der DB25

Steckverbinder auf der Geräterückseite stellt die Schnittstelle für diese Ein- und Ausgänge zur Verfügung.

25-pol. Klemmplatten-Baugruppe

Klemmleiste und Kabelsets

Diese 25-pol. Klemmplatten-Baugruppe ist in der optionalen I/O-Erweiterungskarte inkludiert. Lesen Sie hierzu den Abschnitt "Klemmleisten-Leiterplatten-Baugruppen" im Kapitel "Installation" und entnehmen Sie hier die relevanten Informationen darüber, wie das Kabel and die Platine anzuschließen ist. Die zugehörigen Teile-Nrn. finden Sie im Kapitel "Service".

Dank der Klemmleiste und Kabelsets können andere Geräte leicht und bequem an den Analysator angeschlossen werden. Mit den Kabelsets werden die Signale auf dem geräterückseitigen Steckverbinder in einzeln nummerierte Klemmen aufgeschlüsselt.

Es stehen zwei Arten von Klemmleiste und Kabelset zur Verfügung. Eine für den Steckverbinder DB37 - hier ist eine Verwendung entweder für den Analogausgangsstecker oder den Relaisausgangsstecker möglich. Das andere Set ist für die DB25 Steckverbindung bestimmt und kann für die optionale I/O-Erweiterungskarte verwendet werden. Die zugehörigen Teile-Nr. finden Sie im Abschnitt "Komponenten zum Anschluss externer Geräte" auf Seite 7-10.

Jedes Set besteht aus:

- einem Kabel (Länge ca. 1,8m)
- einer Klemmleiste
- einem Befestigungsstück zum Einschnappen

Hinweis Zur Unterstützung aller Verbindungen von Geräten mit optionaler I/O-Erweiterungskarte wird folgendes benötigt:

- zwei DB37 Sets
- ein DB25 Set

Kabel Tabelle 9–1 listet die einzelnen, optional erhältlichen Kabel auf, die für das Messgerät zur Verfügung stehen und in Tabelle 9–2 finden Sie die Kabelfarben. Die zugehörigen Teile-Nrn. Finden Sie im Abschnitt "Komponenten zum Anschluss externer Geräte" auf Seite 7-10. **Hinweis** Tabelle 9–2 liefert die Farbkodierung für beide Kabel (d.h. 25-pol. und 37-pol. Kabel). Die Farbkodierung für Pin 1-25 sind für die 25-pol. Kabel, die Farbkodierung für die Pins 1-37 sind für die 37-pol. Kabel. •

Tabelle 9-1. Kabel

Beschreibung	Kabellängen
DB37M – offenes Ende	1,8m
DB37F – offenes Ende	1,8m
DB25M – offenes Ende	1,8m
RS-232	1,8m

Tabelle 9–2. Farbkodierungen für 25-po. Und 37-pol. Kabel

Pin	Farbe	Pin	Farbe
1	SCHWARZ	20	ROT/SCHWARZ
2	BRAUN	21	ORANGE/SCHWARZ
3	ROT	22	GELB/SCHWARZ
4	ORANGE	23	GRÜN/SCHWARZ
5	GELB	24	GRAU/SCHWARZ
6	GRÜN	25	PINK/SCHWARZ
7	BLAU	Ende Farbkodierung für 25-pol. Kabel, weiter für 37-pol. Kabel.	
8	VIOLETT	26	PINK/GRÜN
9	GRAU	27	PINK/ROT
19	Weiß	28	PINK/VIOLETT
11	PINK	29	HELLBLAU
12	HELLGRÜN	30	HELLBLAU/BRAUN
13	SCHWARZ/WEISS	31	HELLBLAU/ROT
14	BRAUN/WEISS	32	HELLBLAU/VIOLETT
15	ROT/WEISS	33	HELLBLAU/SCHWARZ
16	ORANGE/WEISS	34	GRAU/GRÜN
17	GREEN/WEISS	35	GRAU/ROT
18	BLAU/WEISS	36	GRAU/VIOLETT
19	VIOLETT/WEISS	37	HELLGRÜN/SCHWARZ

Montageoptionen

Das Messgerät kann in den Konfigurationen wie in Tabelle 9–3 beschrieben und in Abb. 9–1 bis Abb. 9–4 dargestellt, installiert werden.

Tabelle 9–3. Montageoptionen

Art d. Montage	Beschreibung
Auf Arbeitsfläche	Die Montage auf einer Arbeitsfläche/Werkbank, inkl. Füße zum Aufstellen und seitliche Montagegriffe auf der Vorderseite.
In einem EIA-Rack (oberster Einschub)	Montage auf einem EIA-Rack, inkl. Montageschienen und EIA-Rack-Montagegriffe auf der Vorderseite.
In einem umgebauten Rack (oberster Einschub)	Montage in einem EIA-Rack, inkl. Montageschienen und EIA-Rack-Montagegriffe auf der Vorderseite. Diese Konfiguration ist für den direkten Austausch eines Geräts der C-Serie in einem bereits vorhandenen Rack gedacht. Die Schienenmontage erfolgt weiter unten am Gehäuse und die Schlitze für die vorderen Montageschrauben befinden sich nicht an den standardmäßig definierten EIA-Positionen.

Abb. 9–1. Montage auf Arbeitsfläche oder Werkbank

Abb. 9–2. Montage in einem EIA-Rack

Abb. 9-3. Montage in einem Umbau-Rack

Abb. 9-4. Baugruppe Rack-Montage (Option)

Dachflansch-Anordnung

Eine optionale Dachflansch-Anordnung kann bei Anwendungen mit Flachdach verwendet werden (siehe auch Abb. 9–5). Der Bausatz besteht aus einem 3" PVC-Rohr, entsprechenden Anschlussstücken sowie Dachflansch mit Dichtung. Wird ein Flansch dieses Typs verwandt, dann muss der Monteur eine wasserdichte Installation gewährleisten. Durch die Dachverkleidung des Gehäuses oder Gebäudes (falls Flachdach) muss ein 2-1/2", rundes Loch gebohrt werden. Das Dach oben sollte sauber sein (abgekehrt). Der Flansch sollte so positioniert werden, dass er mittig über dem gebohrten Loch sitzt. RTV-Dichtungsmittel oder Silikon sollte großzügig in Form einer Dichtungswulst um die in Abb. 9–5 dargestellten Stellen aufgetragen werden.

Der Flansch ist mit vier Löchern versehen, über die der Flansch mit Hilfe von Schlossschrauben, Scheiben und Muttern auf dem Dach befestigt werden kann. Die Länge der Schlossschrauben hängt von der Stärke der Dachverkleidung ab. Abb. 9–6 zeigt ein Bild des Dachflanschs, der hier zum Einsatz kommt.

Abb. 9-6. Befestigung des Dachflanschs

Chapter 10 Upgrade von Modell 5014*i* auf 5030*i*

Dieses Kapitel liefert eine Beschreibung für das Upgrade vom Messgerät Modell 5014*i* auf das Modell 5030*i*. Weitere Details finden Sie unter den folgenden Themen:

- "Gerät vorbereiten" auf Seite 10-1
- "SHARP Anschlusskonsole installieren" auf Seite 10-2
- "Radiusrohr-Adapter installieren" auf Seite 10-5
- "Externes SHARP Ventil installieren" auf Seite 10-7
- "SHARP-Optik-Baugruppe installieren" auf Seite 10-10
- "Upgrade der Heizungsrohr-Baugruppe" auf Seite 10-12
- "Modellaufkleber tauschen" auf Seite 10-14
- "Gerät einschalten" auf Seite 10-15

Gerät vorbereiten

Um das Gerät entsprechend vorzubereiten, bitte wie folgt vorgehen:

- 1. Bei einem Upgrade an einem Standort, an dem bereits ein Gerät installiert ist, bitte das Probenahme-Unterrohr entsprechend sichern, dann die Heizungs-Baugruppe entfernen und auf die Seite stellen bzw. legen.
- Am Bedienfeld auf der Frontplatte bitte das Hauptmenü, dann die Gerätesteuerung und dann den Service-Modus auswählen. So lange drücken, bis "Service Mode On" (= Service-Modus EIN) im Display erscheint.
- 3. Dann über das Bedienfeld die Option "Filter Tape" (= Filterband) > Manual (= Manuell) > open bench (= Messkopf öffnen) wählen.

- Dann bitte folgende Option auswählen: Diagnostics (= Diagnose) > Instrument Configuration (= Gerät konfigurieren) und dort die Konfiguration des Detektors von BETA zu SHARP ändern.
- 5. Dann die Stromversorgung abschalten. Der Messkopf ist dabei offen.
- 6. Das Gerät von der Netzstromversorgung abziehen.

INSTRUMENT CONFIGURATION:			
>I/O EXPANSION BOARD YES			
DETECTOR BETA			
DETECTOR B NONE			
←→ CHANGE VALUE ← SAVE '			
RANGE AVG DIAGS ALARM			

SHARP Anschlusskonsole installieren

Bitte die SHARP Anschlusskonsole wie folgt installieren:

1. Anschlusskonsole lokalisieren (Abb. 10–1) und beide Schrauben entfernen und beiseite legen.

Abb. 10-1. SHARP-Optik - Anschlusskonsole

2. Dann beide Seiten der Abdeckung abnehmen. Anschließend die Aufnahmespule für das Filterband entfernen (Abb. 10–2), indem Sie Flügelschraube, Scheibe, Filterband,

Distanzscheiben, O-Ringe und die hintere Filterband-Führungsplatte lösen.

Abb. 10–2. Aufnahmespule für Filterband entfernen

- 3. Nun die beiden Kreuzschlitzschrauben von der Anschlusskonsole entfernen und die Halterung/Konsole auf der Wandplatte ausrichten, wie oben im Kasten unter 4 beschrieben, und die beiden Schrauben durch die Wandplatte einstecken und festziehen.
- 4. Die Aufnahmerolle für das Filterband wieder einsetzen. Dazu die unter Nr. 2 beschriebenen Schritte in umgekehrter Reihenfolge ausführen, d.h. alle Scheiben, O-Ringe und hintere Führungsplatte wieder in der ursprünglichen Reihenfolge anbringen.
- 5. Dann das Filterband entsprechend des in Abb. 10–3 dargestellten Verlaufs einlegen. Das Filterband mit Klebeband auf der Filterband-Aufnahmespule befestigen und das Filterband min. einmal komplett um die Spule wickeln.

Abb. 10–3. Verlauf des Filterbands

 Als letzten Schritt der Installation der SHARP-Optik-Anschlusskonsole bitte den 4-pol. Stecker an der "SHARP 1" Buchse auf der Mess-Interface-Karte anschließen (siehe auch Abb. 10–4).

Hinweis Es sollte nicht notwendig sein, die Elektronik aus dem Gehäuse des Geräts zu entfernen, um den Stecker einzustecken. Der ersatzweise 2-pol. Stecker wird nicht verwendet.

Abb. 10-4. Anschlusskonsole mit Mess-Interface-Karte verkabeln

Radiusrohr-Adapter installieren

Um den Radiusrohr-Adapter zu installieren, bitte wie folgt vorgehen:

- 1. Als erstes die Schrauben zur Befestigung der Halterung des Radiusrohrs lösen.
- 2. Halterung nach hinten unten herausschieben.
- 3. Die Gleitringdichtung langsam entfernen, indem Sie diese mit einer drehenden Bewegung nach oben herausziehen.
- 4. Den Adapter langsam in das Rohr einsetzen und mit leichter Drehung nach unten drücken, bis er gut sitzt.
- 5. Schrauben der Befestigungsschelle für das Radiusrohr wie in Abb. 10–5 gezeigt festziehen.

Abb. 10-5. Radiusrohr-Adapter installieren

6. Die Abdeckungen des Geräts wieder anbringen und die Ausrichtung des Adapters durch das Loch in der Abdeckung überprüfen (Abb. 10–6). Gehen Sie sicher, dass Sie die alte Staubschutzkappe und die große Lochabdeckung entfernen.

Abb. 10-6. Ausrichtung des Adapters prüfen

Externes SHARP Ventil installieren

Zur Installation eines externen SHARP-Ventils bitte wie folgt vorgehen:

1. Die externe Ventil-Baugruppe mit der unverlierbaren Hardware an der Rückwand befestigen und den 3-pol. Stecker and dem entsprechend gekennzeichneten Ventil auf der Geräterückseite anschließen (Abb. 10–7).

Abb. 10–7. Ventil-Baugruppe installieren

- 2. Die Verrohrung gemäß nachfolgender Abb. 10–8 ausführen.
 - a. Befestigen Sie das 3/8" Vakuumrohr zwischen Pumpeneinlass und Vakuum-Port auf der Geräterückwand und setzen Sie das Schnellverschluss-T-Stück so ein, dass

sich die 0,040" Durchgangsbohrung auf der T-Seite in dieser Anordnung befindet.

- b. Von der Ventil-Baugruppe, die jetzt an der Geräterückwand angebracht ist, jetzt das mit Gewinde versehene Fitting an den Pumpenauslassstutzen anschließen.
- c. Nun das 3/8" Rohr mit HEPA-Filter an den verfügbaren Port (Port #1) auf der externen Ventil-Baugruppe anschließen. Hierzu das verfügbare Schnellanschluss-Fitting verwenden.

Hinweis Dieser Schritt kann auch erst zu einem späteren Zeitpunkt erfolgen, d.h. nach der Installation des Nullluft-Zuführrohrs und T-Stücks am Probenahme-Einlass.

- d. Am Probenahme-Einlass das T-Stück aus Edelstahl am Probenahme-Unterrohr befestigen und die Swagelok-Verschraubung mit Teflon-Klemmen festziehen. Die Klemmen aber nicht zu stark anziehen.
- e. Das grüne Vakuumrohr nach unten Richtung hinterer Ventil-Baugruppe schieben und am Port #1 des Ventils befestigen. Bei einer Feldinstallation sollten gute Abdichtungen verwendet werden, damit kein Wasser in das Gerät eindringen kann.

Abb. 10-8. Verrohrung (schematische Darstellung)

SHARP-Optik-Baugruppe installieren

Die SHARP-Optik-Baugruppe wie folgt installieren:

- 1. Die Schutzkappen für die Ports der SHARP-Optik-Baugruppe entfernen.
- 2. Den Radiusrohr-Adapter mit dem offenen Port auf der Unterseite der Optik-Baugruppe ausrichten (siehe Abb. 10–9) und dann die beiden Schlaufen sanft nach unten drücken festschrauben. Hierzu die unverlierbaren Schrauben verwenden.

Abb. 10–9. Optik installieren

 Das Kabel von der Rückseite der Optik-Baugruppe anschließen und an der Optik-Steckverbindung befestigen wie in Abb. 10– 10 dargestellt.

Abb. 10–10. Optik an Optik-Steckverbindung anschließen

Upgrade der Heizungsrohr-Baugruppe

Für das Upgrade der Heizungsrohr-Baugruppe bitte wie folgt vorgehen:

 Die Heizungs-Baugruppe muss f
ür das Messger
ät Modell 5030*i* SHARP
überholt werden und eine Ferritperle und einen kleinen Farady'schen K
äfig beinhalten. Mit den nachfolgenden, in Abb. 10–11 und Abb. 10–12 gezeigten 4 Arbeitsschritte kann man die Heizungs-Baugruppe modifizieren.

Hinweis Das Probenahme-Unterrohr sollte an der Dachverkleidung leicht locker sein, damit ausreichend Spiel in senkrechter Richtung vorhanden ist, wenn an dieser Baugruppe gearbeitet wird. Wurde die Höhe des Rohrs verändert und muss gekürzt werden, bitte vor Befestigung an der Optik-Baugruppe abschneiden und entsprechend reinigen. •

Abb. 10–11. Upgrade -5030*i* Heizungs-Baugruppe

Abb. 10–12. Heizung an Abdeckung der Optik-Baugruppe befestigen

Modellaufkleber tauschen

Um den Aufkleber für das Modell zu wechseln, bitte folgendermaßen vorgehen:

 5014*i* Aufkleber entfernen und durch neuen 5030*i* SHARP Aufkleber – auf der Gerätevorderseite – ersetzen (gemäß Abb. 10–13 unten).

Das Upgrade ist nun abgeschlossen.

Gerät einschalten

Appendix A Gewährleistung

Der Verkäufer gewährleistet, dass die Produkte gemäß den vom Hersteller veröffentlichten Angaben funktionieren und frei von jeglichen Mängeln hinsichtlich Material und Verarbeitung sind, soweit die Produkte normal, korrekt und bestimmungsgemäß von korrekt ausgebildetem Personal für den in der Produktdokumentation, veröffentlichten Spezifikationen oder in Packungsbeilagen festgelegten Zeitraum betrieben und bedient werden. Ist in der Produktdokumentation, den veröffentlichten Spezifikationen oder den Packungsbeilagen des Herstellers kein Zeitraum festgelegt, so beträgt die Gewährleistungsfrist ein (1) Jahr ab Versand für das Gerät und neunzig (90) Tage für alle anderen Produkte (die "Gewährleistungsfirst"). Während der Gewährleistungsfrist verpflichtet sich der Verkäufer - nach Wahl des Verkäufers - die defekten Produkte entweder zu reparieren oder zu ersetzen, so dass diese gemäß vorgenannten Herstellerangaben betrieben werden können unter der Voraussetzung, dass (a) der Käufer den Verkäufer umgehend schriftlich vom Auftreten eines Defekts in Kenntnis setzt, wobei in der Mitteilung das Produktmodell und die Seriennummer (falls zutreffend) sowie Details bzgl. des Gewährleistungsanspruches anzugeben sind; (b) nach Prüfung durch den Verkäufer letzterer dem Käufer Service-Daten und/oder eine "Return Material Authorization" (RMA) (= Genehmigung zum Materialrückversand) zukommen lässt, die Verfahren bzw. Vorgehensweisen zur Dekontaminierung biologischer Risiken und andere produktspezifische Anweisungen zum Umgang mit dem Gerät beinhaltet; und (c) – falls zutreffend – der Käufer die defekten Produkte an den Verkäufer zurückschickt wobei der Käufer im Voraus die Kosten für den Rückversand trägt. Die Ersatzteile können neue oder alte wieder aufbereitete Teile sein. Dies liegt im Ermessen des Verkäufers. Alle ersetzten Teile werden Eigentum des Verkäufers. Der Versand reparierter Teile oder Ersatzteile erfolgt gemäß den Klauseln hinsichtlich Lieferung in den Verkaufsbedingungen des Verkäufers. Lampen, Sicherungen, Glühbirnen und andere Einwegartikel sind ausdrücklich von der Gewährleistung ausgeschlossen.

Ungeachtet vorstehender Angaben, übernimmt der Verkäufer für Produkte, die von ihm geliefert wurden, welcher letzterer jedoch vom Originalhersteller oder einem anderen Drittlieferanten bezieht, keine Gewährleistung. Der Verkäufer erklärt sich aber bereit, jegliche Gewährleistungsrechte bzgl. derartiger Produkte, die der Verkäufer vom Originalhersteller oder einem anderen Drittlieferanten hat, abzutreten, in dem Umfang in dem eine derartige Abtretung vom Originalhersteller oder Drittlieferanten eingeräumt wurde.

Der Verkäufer ist unter keinen Umständen dazu verpflichtet, Reparaturen vorzunehmen, Teile zu ersetzen oder erforderliche Korrekturmaßnahmen durchzuführen, ganz oder teilweise, falls dies auf Gründe zurückzuführen ist wie (i) normalen Verschleiß und Abnutzung, (ii) Unfälle, Unglücke oder Ereignissen höherer Gewalt, (iii) Missbrauch, falsche Benutzung oder Fahrlässigkeit des Kunden, (iv) den nicht bestimmungsgemäßen Gebrauch der Produkte, (v) externe Gründe wie z.B. - jedoch nicht beschränkt auf - Stromausfall oder sprungartiger Spannungsanstieg, (vi) unsachgemäße Lagerung der Produkte oder (vii) den Einsatz der Produkte in Kombination mit Geräten oder Software, die nicht vom Verkäufer geliefert wurden. Legt der Verkäufer fest, dass Produkte, für die der Kunde eine Gewährleistung fordert, nicht unter die hier beschriebene Gewährleistung fallen, dann ist der Kunde dazu verpflichtet, alle Kosten dem Verkäufer zu zahlen oder zu vergüten, die durch Nachprüfung und Beantwortung einer solchen Gewährleistungsanfrage entstanden sind. Für die Vergütung gelten die dann jeweils gültigen Stundensätze und Materialkosten. Nimmt der Verkäufer Reparaturen oder Ersatzleistungen vor, die nicht durch die festgelegte Gewährleistung abgedeckt werden, dann ist der Kunde dazu verpflichtet, den Verkäufer diese Leistung zu den dann jeweils gültigen Stundensätzen und Materialkosten des Verkäufers zu vergüten. JEGLICHE INSTALLATION, WARTUNG, REPARATUR, SERVICE, VERSCHIEBUNG ODER MODIFIKATION AN ODER DER PRODUKTE. ODER JEDWEDER UNERLAUBTER EINGRIFF AN DEN PRODUKTEN, DER VON EINER ANDEREN PERSON ODER EINEM ANDEREN RECHTSSUBJEKT DURCHGEFÜHRT BZW. VORGENOMMEN WIRD ALS DEM VERKÄUFER OHNE DESSEN VORHERIGE ZUSTIMMUNG, SOWIE JEGLICHE VERWENDUNG VON ERSATZTEILEN. DIE NICHT VOM VERKÄUFER GELIEFERT WURDEN, FÜHRT DAZU, DASS JEGLICHE GEWÄHRLEISTUNG IM HINBLICK AUF BETROFFENE PRODUKTE NICHTIG UND UNGÜLTIG WIRD.

DIE IN DIESEM ABSCHNITT DARGELEGTEN VERPFLICHTUNGEN ZUR REPARATUR ODER ZUM ERSATZ EINES DEFEKTEN PRODUKTES STELLEN DAS EINZIGE **RECHTSMITTEL DES KUNDEN IM FALLE DES AUFTRETENS** EINES DEFEKTS AM PRODUKT DAR. FALLS NICHT AUSDRÜCKLICH ANDERS IN DIESER GEWÄHRLEISTUNG VEREINBART, SCHLIESST DER VERKÄUFER JEGLICHE GEWÄHRLEISTUNG, OB AUSGEDRÜCKT ODER IMPLIZIERT; MÜNDLICH ODER SCHRIFTLICH, IM HINBLICK AUF DIE PRODUKTE AUS. DIES SCHLIESST AUCH OHNE EINSCHRÄNKUNG ALLE IMPLIZIERTEN GEWÄHRLEISTUNGSANSPRÜCHE DER MARKTFÄHIGKEIT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK MIT EIN. DER VERKÄUFER SCHLIESST AUSSERDEM VON DER GEWÄHRLEISTUNG AUS, DASS DIE PRODUKTE FEHLERFREI SIND ODER BESTIMMTE ERGEBNISSE ERZIELEN.

Appendix B C-Link Protokollbefehle

Dieser Anhang liefert eine Beschreibung der C-Link Protokollbefehle, die dazu verwendet werden können, das Messgerät Modell 5030*i* mit Hilfe eines Host-Gerätes wie z.B. PC oder Messwerterfassungsgerät fernzusteuern. Das C-Link Protokoll kann über RS-232, RS-485 oder Ethernet verwendet werden. Zugang zu den C-Link Funktionen ist über Ethernet mit Hilfe des TCP/IP Ports 9880 möglich.

Streaming-Daten werden über den seriellen Port oder Ethernet Port in vom Bediener festgelegten, periodischen Abständen gesandt. Streaming-Daten über Ethernet werden nur erzeugt, wenn eine Verbindung am TCP Port 9881 hergestellt wird.

Über Ethernet können bis zu drei simultane Verbindungen pro Protokoll hergestellt werden.

Weitere Einzelheiten entnehmen Sie bitte den folgenden Themen:

- "Geräte- Identifikations nummer" auf Seite B-2
- "Befehle" auf Seite B-2
- "Messungen" auf Seite B-13
- "Alarme" auf Seite B-16
- "Diagnose" auf Seite B-27
- "Messwerterfassung" auf Seite B-31
- "Kalibrierung" auf Seite B-39
- "Tasten/Display" auf Seite B-51
- "Konfiguration der Messungen" auf Seite B-52
- "Hardware Konfiguration" auf Seite B-58
- "Konfiguration d. Kommunikation" auf Seite B-61
- "I/O Konfiguration" auf Seite B-68
- "Definition Datensatz-Layout" auf Seite B-74

Geräte-Identifikations nummer

Jeder Befehl, der zum Analysator über den seriellen Port geschickt wird, muss mit einem ASCII-Zeichen (ASCII = American Standard Code for Information Interchange) oder Byte-Wert beginnen, der ein Äquivalent der Geräte-Identifikationsnummer plus 128 ist. Ist die Geräte ID 25, dann muss jeder Befehl mit dem ASCII-Zeichencode 153 beginnen. Jeglicher Befehl, der nicht mit der Geräte ID-Nr. des Analysators beginnt, wird ignoriert. Wird als ID-Nr. 0 eingestellt, dann ist dieses Byte nicht erforderlich. Weitere Infos, wie Sie die Geräte ID ändern können, finden Sie in Kapitel 3 "Betrieb".

Befehle Um Parameter über Fernsteuerung ändern zu können, muss sich der Analysator im Remote-Modus befinden. Es kann jedoch der Befehl "set mode remote" (= Remote-Modus setzen) an das Gerät geschickt werden, um es in den Remote-Modus zu setzen. Berichtsbefehle (d.h. Befehle, die nicht mit "set" beginnen) können entweder im Fernsteuermodus oder im lokalen Modus verfasst werden. Wie Sie Betriebsarten wechseln können, finden Sie in Kapitel 3 mit dem Titel "Betrieb".

Die Befehle können in Groß- oder in Kleinbuchstaben gesendet werden. Jeder Befehl muss mit der geräteeigenen ID-Nr. (ASCII) Zeichen beginnen. Der untenstehende Befehl beginnt mit dem ASCII Zeichencode 153, dezimal, mit dem der Befehl zum Modell 5030*i* geschickt wird, und endet durch eine Absatzschaltung "CR" (ASCII Zeichencode 13 dezimal).

<ascii 153=""></ascii>	Т	Ι	Μ	E	<cr></cr>
------------------------	---	---	---	---	-----------

Viele der Befehle existieren in 2 Formen. Form 1: Parameter werden aus dem Gerätespeicher gelesen – Form 2: ein Parameter wird geschrieben oder aktualisiert. Die Syntax für einen Schreibbefehl fügt das Wort "set" vor dem eigentlichen Befehl hinzu. Als Antwort auf den Befehl wird in der Regel der Befehl zurückgeschickt, wobei diesem aber ein Datenelement beigefügt ist.

Hinweis Ist der Service-Modus aktiv, dann sind C-Link "set" Befehle nicht erlaubt. Somit wird ein Ändern der Parameter über Fernsteuerung vermieden, während das Gerät gerade vor Ort gewartet wird. • Wird ein falscher Befehl geschickt, so wird eine Fehlermeldung generiert. Eine Liste aller Fehlermeldungen finden Sie in Tabelle B–1. Das folgende Beispiel zeigt einen falschen Befehl "set unit mg/m3" anstelle des korrekten Befehls "set conc unit mg/m3."

Send: set unit mg/m3 Receive: set unit mg/m3 bad cmd

Befehlsantwort	Beschreibung
bad cmd	Befehl unbekannt
too high	Gelieferter Wert ist größer als oberer Grenzwert
too low	Geliefert Wert ist kleiner als der untere Grenzwert
invalid string	Gelieferter String ist ungültig (üblicherweise wenn ein Buchstabe anstelle einer Zahl entdeckt wird)
data not valid	Gelieferter Wert nicht akzeptabel für eingegebenen Befehl
can't, wrong settings	Befehl nicht zulässig für aktuellen Messmodus
can't, mode is service	Befehl nicht zulässig, da/während Gerät sich im Service-Modus befindet
feature not enabled	I/O Erweiterungsplatine wird nicht erkannt
flags no alarm active	Kein Messalarm aktiv

Tabelle B-1. Fehlermeldungen

Die Befehle "save" und "set save params" (doppelt für Abwärtskompatibilität) speichern Parameter im FLASH Speicher ab. Bei jeder Änderung der Geräteparameter ist es wichtig, diese Befehle zu schicken. Werden die Änderungen nicht gespeichert, so gehen diese möglicherweise bei einem Stromausfall verloren.

Befehlsliste Tabelle B–2 zeigt eine Liste der 5030*i* C-Link Protokollbefehle. Das Interface antwortet dabei auf die unten erläuterten Befehlsstrings.

Tabelle B–2. C-Link Protokollbefehle

Befehl	Beschreibung	Seite
1	Simuliert Drücken des Softtasters 1	B-44
2	Simuliert Drücken des Softtasters 2	B-44

Befehl	Beschreibung	Seite
3	Simuliert Drücken des Softtasters 3	B-44
4	Simuliert Drücken des Softtasters 4	B-44
addr dns	Meldet/setzt Domain Name Server Adresse für Ethernet Port	B-54
addr gw	Meldet/setzt Default-Gateway-Adresse für Ethernet Port	B-54
addr ip	Meldet/setzt IP Adresse für Ethernet Port	B-54
addr nm	Meldet/setzt Adresse der Netzmarke für Ethernet Port	B-55
addr ntp	Meldet/setzt IP Adresse für Netzwerk- Zeitprotokoll-Server	B-55
alarm alpha count max	Meldet max. Wert Alarm Alpha Zählrate	B-14
alarm alpha count min	Meldet min. Wert Alarm Alpha Zählrate	B-14
alarm amb rh max	Meldet/setzt max. Wert Alarm rel. Feuchte Umgebungsluft	B-14
alarm amb rh min	Meldet/setzt min. Wert Alarm rel. Feuchte Umgebungsluft	B-14
alarm amb temp max	Meldet/setzt max. Wert Alarm Umgebungstemperatur	B-15
alarm amb temp min	Meldet/setzt min. Wert Alarm Umgebungstemperatur	B-15
alarm baro pres max	Meldet/setzt max. Wert Alarm Luftdruck	B-15
alarm baro pres min	Meldet/setzt min. Wert Alarm Luftdruck	B-15
alarm bench status	Meldet Status der Messkammer/des Messkopfes	B-15
alarm beta count max	Meldet max. Wert Alarm Beta Zählrate	B-15
alarm beta count min	Meldet min. Wert Alarm Beta Zählrate	B-15
alarm board temp max	Meldet/setzt max. Wert Alarm Platinentemperatur	B-16
alarm board temp min	Meldet/setzt min. Wert Alarm Platinentemperatur	B-16
alarm conc avg neph max	Meldet/setzt max. Wert Alarm mittlere Nephelometer Konzentration	B-16
alarm conc avg	Meldet/setzt min. Wert Alarm mittlere	B-16

Befehl	Beschreibung	Seite
neph min	Nephelometer Konzentration	
alarm conc avg pm max	Meldet/setzt max. Wert Alarm mittlere PM- Konzentration	B-17
alarm conc avg pm min	Meldet/setzt min. Wert Alarm mittlere PM- Konzentration	B-17
alarm conc avg sharp max	Meldet/setzt max. Wert Alarm mittlere SHARP- Konzentration	B-17
alarm conc avg sharp min	Meldet/setzt min. Wert Alarm mittlere SHARP- Konzentration	B-17
alarm conc inst neph max	Meldet/setzt max. Wert Alarm momentane Nephelometer Konzentration	B-17
alarm conc inst neph min	Meldet/setzt min. Wert Alarm momentane Nephelometer Konzentration	B-17
alarm conc inst pm max	Meldet/setzt max. Wert Alarm momentane PM- Konzentration	B-18
alarm conc inst pm min	Meldet/setzt min. Wert Alarm momentane PM- Konzentration	B-18
alarm conc inst sharp max	Meldet/setzt max. Wert momentane SHARP- Konzentration	B-18
alarm conc inst sharp min	Meldet/setzt min. Wert momentane SHARP- Konzentration	B-18
alarm filter tape status	Meldet Status des Filterbandes	B-19
alarm flow max	Meldet/setzt max. Wert Durchflussalarm	B-19
alarm flow min	Meldet/setzt min. Wert Durchflussalarm	B-19
alarm flow pres max	Meldet/setzt max. Wert Alarm Durchflussdruck	B-19
alarm flow pres min	Meldet/setzt min. Wert Alarm Durchflussdruck	B-19
alarm flow temp max	Meldet/setzt max. Wert Durchflusstemperatur	B-20
alarm flow temp min	Meldet/setzt min. Wert Durchflusstemperatur	B-20
alarm ib status	Meldet Status d. Interfacekarte	B-20
alarm io status	Meldet Status der I/O Erweiterungskarte	B-20
alarm mb status	Meldet Status d. Motherboard	B-20
alarm nb status	Meldet Status der Nephelometer-Interface-Karte	B-20
alarm ncal status	Meldet Status der letzten autom. Nullkalibrierung des Nephelometers	B-21
Befehl	Beschreibung	Seite
---------------------------	--	-------
alarm neph led cur max	Meldet/setzt max. Wert Alarm akt. Nephelometer LED	B-21
alarm neph led cur min	Meldet/setzt min. Wert Alarm akt. Nephelometer LED	B-21
alarm neph rh max	Meldet/setzt max. Wert Alarm rel. Luftfeuchte d. Nephelometers	B-21
alarm neph rh min	Meldet/setzt min. Wert Alarm rel. Luftfeuchte d. Nephelometers	B-21
alarm neph temp max	Meldet/setzt max. Wert Alarm Nephelometer- Temperatur	B-22
alarm neph temp min	Meldet/setzt min. Wert Alarm Nephelometer- Temperatur	B-22
alarm sample rh max	Meldet/setzt max. Wert Alarm rel. Feuchte Probenahme	B-22
alarm sample rh min	Meldet/setzt min. Wert Alarm rel. Feuchte Probenahme	B-22
alarm status det	Meldet Detektorstatus	B-22
alarm tape counter max	Meldet/setzt max. Wert Alarm Filterbandzähler	B-23
alarm vac pres max	Meldet/setzt max. Wert Alarm Vakuumdruck	B-23
alarm vac pres min	Meldet/setzt min. Wert Alarm Vakuumdruck	B-23
allow mode cmd	Meldet/setzt den akt. "set" Modus zulassen Befehl	B-55
alpha eff	Meldet/setzt den akt. Wert der Alpha-Efficiency für den Detektor	B-34
alpha th	Meldet/setzt den akt. Wert des Alpha- Schwellwerts für den Detektor	B-34
amb rh	Meldet die rel. Feuchte der Umgebungsluft	B-23
amb rh offset	Meldet/setzt den akt. Offset für die rel. Feuchte der Umgebungsluft	B-35
amb temp	Meldet die akt. Umgebungstemperatur	B-23
amb temp offset	Meldet/setzt den akt. Offset der Umgebungstemperatur	B-35
analog iout range	Meldet/setzt analogen Stromausgangsbereich pro Kanal	B-61
analog vin	Ruft analoge Spannungsausgangsdaten pro Kanal ab	B-61

Befehl	Beschreibung	Seite
analog vout range	Meldet/setzt analogen Spannungsausgangsbereich pro Kanal	B-61
avg24 time	Meldet/setzt 24-Std. Mittelungszeit um Mittelung der Konzentrationswerte zu starten	B-11
baro mass coef	Meldet/setzt den akt. barometrischen Massekoeffizienten	B-35
baro pres	Meldet den akt. Luftdruck	B-24
baro span	Meldet/setzt den akt. Luftdruck-Messbereich	B-36
baud	Meldet/setzt aktuelle Baudrate	B-56
beta th	Meldet/setzt den akt. Referenz-Beta-Schwellwert für den Detektor	B-36
bkg pm	Meldet/setzt den akt. PM Hintergrund	B-36
bkg sharp	Meldet/setzt den akt. SHARP Hintergrund	B-37
board temp	Meldet die akt. Platinentemperatur	B-24
cal baro pres span	Berechnet automatisch den Messbereichs- Koeffizienten	B-37
cal flow pres span	Setzt automatisch den Durchflussdruck- Messbereich	B-37
cal flow span	Setzt automatisch den Durchfluss-Messbereich	B-37
cal vac flow offset	Löst automatisch einen Filterwechsel aus und setzt den Vakuum- und Durchfluss-Offset	B-38
cal vac pres span	Setzt automatisch den Vakuumdruck-Messbereich	B-38
clr lrecs	Löscht nur lange Datensätze (= lrecs), die gespeichert wurden	B-27
clr records	Löscht alle Messwerterfassungs-Datensätze, die gespeichert wurden	B-27
clr srecs	Löscht nur kurze Datensätze (= srecs), die gespeichert wurdend	B-27
coef pm	Meldet/setzt akt. PM-Koeffizienten	B-39
coef sharp	Meldet/setzt akt. SHARP-Koeffizienten	B-38
conc unit	Meldet/setzt akt. Konzentrationseinheit	B-45
contrast	Meldet/setzt akt. Bildschirmkontrast	B-51
copy lrec to sp	Setzt/kopiert akt. Irec Auswahl in den Notizblock	B-28
copy sp to lrec	Setzt/kopiert akt. Auswahlen im Notizblock in die Irec Liste	B-27
copy sp to srec	Setzt/kopiert akt. Auswahlen im Notizblock in die srec Liste	B-27

Befehl	Beschreibung	Seite
copy sp to stream	Setzt/kopiert akt. Auswahlen im Notizblock in die Stream-Liste	B-27
copy srec to sp	Setzt/kopiert akt. srec Auswahl in den Notizblock	B-28
copy stream to sp	Setzt/kopiert akt. Streaming-Daten Auswahl in den Notizblock	B-28
crn	Meldet die akt. Radon-Konzentration	B-24
custom	Meldet/setzt def. kundenspez. Bereichskonzentration	B-46
data treatment Irec	Meldet/setzt Datenverarbeitung für Konzentrationswerte in Irecs	B-28
data treatment srec	Meldet/setzt Datenverarbeitung für Konzentrationswerte in srecs	B-28
date	Meldet/setzt aktuelles Datum	B-52
default params	Setzt Parameter auf Default-Werte	B-52
det	Meldet/setzt Status der Detektorplatine	B-53
det status	Meldet akt. Masse für den Detektor	B-24
dhcp	Meldet/setzt Gebrauchsstatus des Dynamic Host Configuration Protocol (DHCP)	B-57
diag volt det	Meldet Diagnose-Spannungspegel auf der Detektorplatine	B-24
diag volt iob	Meldet Diagnose-Spannungspegel für I/O Erweiterungskarte	B-24
diag volt mb	Meldet Diagnose-Spannungspegel für Motherboard	B-24
diag volt mib	Meldet Diagnose-Spannungspegel für Mess- Interface-Karte	B-25
diag volt neph	Meldet Diagnose-Spanungspegel auf der Nephelometer-Interface-Karte	B-25
dig in	Meldet Status der Digitaleingänge	B-62
din	Meldet/setzt digitalen Eingangskanal und aktiven Status	B-62
do (down)	Simuliert das Drücken einer Taste	B-44
dout	Meldet/setzt digitalen Ausgangskanal und aktiven Status	B-63
dtoa	Meldet Ausg. der dig./anal. Konverter pro Kanal	B-63
en (enter)	Simuliert das Drücken der Enter-Taste	B-44
er	Schickt eine kurze Beschreibung der Betriebsbedingungen in dem in den Befehlen festgelegten Format zurück	B-28

Befehl	Beschreibung	Seite
erec	Schickt eine kurze Beschreibung der Betriebsbedingungen (Messungen und Status) in dem im Befehl festgelegten Format zurück	B-28
erec format	Meldet/setzt erec Format	B-30
erec layout	Meldet aktuelles Layout der erec Daten	B-31
filter period	Meldet/setzt Anz. Stunden, die für den Filterbandwechsel nächstes Mal zum Filter hinzugefügt werden müssen	B-46
filter time	Meldet/setzt das nächste Datum/Zeit für den Filterbandwechsel	B-47
flags	Meldet aktuelle aktive Messstatus-Flags im HEX Format	B-12
flow	Meldet den akt. Probenahmefluss	B-25
flow pres	Meldet den akt. Durchflussdruck	B-25
flow pres span	Meldet/setzt den Durchflussdruck-Messbereich	B-39
flow pres offset	Meldet den Durchflussdruck-Offset	B-39
flow span	Meldet/setzt den akt. Durchfluss-Messbereich	B-39
flow target	Meldet/setzt den akt. Durchfluss	B-47
flow temp	Meldet die akt. Durchflusstemperatur	B-25
flow temp offset	Meldet/setzt Offset für Durchflusstemperatur	B-39
format	Meldet/setzt akt. Antwortabschlußformat	B-57
he (help)	Simuliert das Drücken der HILFE-Taste	B-44
high volt	Meldet/setzt akt. Hochspannung für den Detektor	B-40
host name	Meldet/setzt String d. Host-Namens	B-58
ht control	Meldet/setzt akt. Status der Heizung	B-47
instr name	Meldet den Gerätenamen	B-58
instrument id	Meldet/setzt Geräte ID-Nr.	B-58
int time	Meldet/setzt Massen- und Konzentrations- integrationszeit	B-48
io bd	Meldet/setzt Vorhandensein der I/O Erweiterungskarte	B-25
isc (iscreen)	Ruft/frage Framebuffer-Daten für das Display ab	B-44
layout ack	Deaktiviert altes Layout/Indikator für geändertes Layout ('*')	B-59
le (left)	Simuliert Drücken der linken Taste	B-44
list din	Listet akt. Auswahl für dig. Eingänge auf	B-64
list dout	Listet akt. Auswahl für dig. Ausgänge auf	B-64

Befehl	Beschreibung	Seite
list Irec	Listet akt. Auswahl d. erfasstem Irec Messwertdaten auf	B-29
list sp	Listet akt. Auswahl in der Notizblockliste auf	B-29
list srec	Listet akt. Auswahl d. erfasstem srec Messwertdaten auf	B-29
list stream	Listet akt. Auswahl d. Streaming-Daten-Ausgangs auf	B-29
list var aout	Meldet Liste Analogausgang, Index-Nr. und Variablen	B-64
list var din	Meldet Liste Digitaleingang, Index-Nr. und Variablen	B-64
list var dout	Meldet Liste Digitalausgang, Index-Nr. und Variablen	B-64
list var log	Meldet List Messwerterfassung Index-Nr. Und Variablen	B-64
lr	Meldet den zuletzt gespeicherten Irec	B-29
lrec	Meldet max. Anzahl langer Datensätze (= Irecs)	B-29
Irec format	Meldet/setzt Ausgabeformat für Irecs (ASCII oder binär)	B-30
Irec layout	Meldet akt. Layout d. Irec-Daten	B-31
lrec mem size	Meldet max. Zahl langer Datensätze, die gespeichert werden können	B-31
lrec per	Meldet/setzt Erfassungszeitraum für Irecs (lange Datensätze)	B-31
malloc lrec	Meldet/setzt Speicherzuordnung für lange Datensätze	B-32
malloc srec	Meldet/setzt Speicherzuordnung für kurze Datensätze	B-32
mass	Meldet Vorhandensein von Masse	B-26
mass coef	Meldet/setzt akt. Massenkoeffizienten	B-40
mass limit	Meldet/setzt akt. Filtermassengrenzwert	B-48
me (menu)	Simuliert das Drücken der MENÜ-Taste	B-44
neph	Meldet den laufenden, gemittelten 1-Min.Konzentrationswert des Nephelometers	B-12
neph 24avg	Meldet die letzten, berechneten 24-Std. Nephelometer-Mittelwerte	B-12
neph bkg	Meldet den akt. Nephelometer-Hintergrund	B-26
neph cal bkg	Setzt das Nephelometer in eine automatische Nullkalibrierungsroutine	B-41

Befehl	Beschreibung	Seite
neph coef	Meldet/setzt den Nephelometer- Messbereichskoeffizienten	B-41
neph led current	Meldet den Nephelometer LED-Strom	B-13
neph mode	Meldet die akt. Betriebsart des Nephelometers	B-26
neph prev bkg	Meldet den vorherigen Nephelometer-Hintergrund	B-26
neph raw	Meldet die unbearbeitete (rohe), ungemittelte Nephelometer-Konzentration	B-13
neph ref det	Meldet die Referenz-Detektorspannung des Nephelometers	B-13
neph reset bkg	Setzt den gemessenen Hintergrund auf Null zurück	B-41
neph restore bkg	Stellt die vorherigen Hintergrundwerte wieder her	B-42
neph rh	Meldet die rel. Feuchte des Nephelometers	B-13
neph rh offset	Meldet/setzt den Offset für den rel. Feuchte Sensor des Nephelometers	B-42
neph src level	Meldet den Nephelometer-Quellenpegel	B-42
neph temp	Meldet den Nephelometer-Temperatursensor	B-13
neph temp offset	Meldet/setzt den Offset für den Nephelometer- Temperatursensor	B-42
neph thermal coef	Meldet/setzt den therm. Koeffizienten des Nephelometers	B-43
no of Irec	Meldet/setzt Anzahl der langen Datensätze, die im Speicher sind	B-32
no or srec	Meldet/setzt Anzahl der kurzen Datensätze, die im Speicher sind	B-32
pm	Meldet die gemessene PM-Konzentration	B-13
pm 24avg	Meldet den 24-Std. Mittelwert der PM- Konzentration	B-13
power up mode	Meldet/setzt Modus f. Einschalten/Hochfahren lokal oder Fernsteuerung	B-59
pres comp	Meldet/setzt Druckausgleich auf aktuell oder Standard	B-48
pres std	Meldet/setzt Standard-Druck	B-49
program no	Meldet Analyzer-Programmnummer	B-60
pump	Meldet Pumpenstatus	B-53
push	Simuliert das Drücken einer Taste auf dem Bedienfeld d. Frontplatte	B-44

Befehl	Beschreibung	Seite
range	Meldet/setzt akt. PM-Bereich	B-49
relay	Setzt den log. Status für das/die benannte(n) Relais)	B-65
relay stat	Meldet log. Relais-Staus für alle Relais	B-65
reset tape counter	Setzt Filterbandzähler auf Null zurück	B-26
rh th	Meldet/setzt akt. rel. Feuchte-Schwellwert for den Detektor	B-50
ri (right)	Simuliert Drücken der rechten Taste	B-44
ru (run)	Simuliert Drücken der RUN-Taste	B-44
sample rh	Meldet rel. Feuchte Probenahme	B-26
save	Speichert Parameter im FLASH	B-53
save params	Speichert Parameter im FLASH	B-53
sc (screen)	C-Serie Legacy-Befehl der eine allg. Antwort meldet (anstatt dessen iscreen verwenden)	B-45
sharp	Meldet den laufenden, 1-Min. SHARP- Konzentrationsmittelwert	B-14
sharp24avg	Zeigt den letzten, berechneten 24-Std. SHARP- Konzentrationsmittelwert an	B-14
sp field	Meldet/setzt Art. Nr. und Name in Notizblockliste	B-33
sr	Meldet den zuletzt gespeicherten kurzen Datensatz (= srec)	B-29
srec	Meldet max. Anzahl kurzer Datensätze	B-29
srec format	Meldet/setzt Ausgabeformat für kurze Datensätze (= srecs)(ASCII oder binär)	B-30
srec layout	Meldet akt. Datenlayout f. kurze Datensätze (srec)	B-31
srec mem size	Meldet akt. Anzahl kurzer Datensätze (srecs), die gespeichert werden können	B-31
srec per	Meldet/setzt Erfassungszeitraum für kurze Datensätze (=srecs)	B-31
stream per	Meldet/setz akt. Zeitintervall für Streaming-Daten	B-33
stream time	Meldet/setzt einen Zeitstempel für Streaming- Daten oder nicht	B-34
tape counter	Meldet die Anzahl Zählimpulse entsprechend zur Filterbandbewegung	B-27
tape to ncal ratio	Meldet/setzt das Verhältnis von Filterbandwechsevorgängen pro autom. Nullung des Nephelometers	B-43

Befehl	Beschreibung	Seite
temp comp	Meldet/setzt Temperaturausgleich auf aktuell oder Standard	B-50
temp std	Meldet/setzt Standard-Temperatur	B-50
temp th	Meldet/setzt Temperatur-Schwellwert für den Detektor	B-51
thermal mass coef	Meldet/setzt akt. therm. Massekoeffizienten	B-40
time	Meldet/setzt akt. Zeit (24-Std. Format)	B-53
tz	Meldet/setzt Zeitzonen-String für Netzwerk- Zeitprotokoll-Server	B-60
up	Simuliert Drücken der Pfeiltaste nach oben	B-44
vac mass coef	Meldet/setzt akt. Vakuum-Massekoeffizienten	B-41
vac pres	Meldet akt. Vakuumdruck	B-27
vac pres span	Meldet/setzt Vakuumdruck-Messbereich	B-43
vac pres offset	Meldet Offset für Vakuumdruck	B-44
vf pres cal def	Setzt Standardwerte für Vakuum- und Durchflussdruck	B-44

Messungen

avg24 time

Über diesen Befehl wird die 24-Std.-Mittelungszeit in Stunden und Minuten mitgeteilt.. Beim folgenden Beispiel ist die Mittelungszeit auf 18:30 gesetzt.

Send: avg24 time Receive: avg24 time 18:30

set avg24 time *hh:mm hh* = hours = Stunden (01 - 23) *mm* = minutes = Minute (01 - 59)

Mit Hilfe dieses Befehls wird die 24-Std. Mittelungszeit eingestellt, mit der die Mittelwertbildung der Konzentration von *hh:mm* bis zu den nächsten 24 Stunden eingestellt. Sie wird dann autom. auf die nächsten 24 Std. eingestellt. Im folgenden Beispiel wird die 24-Std. Mittelungszeit auf 17:50 eingestellt.

Send: set avg24 time 17:50 Receive: set avg24 time 17:50 ok

flags

Mit Hilfe diese Befehls erhält man die 8 hexadezimalen Stellen (oder Flags), die den Status für Modus, Druck- und Temperaturausgleich, die Konzentrationseinheiten, Konzentrationsmodi und Alarm darstellen. Um die Flags zu entschlüsseln, muss jede Hexadezimalstelle in Binärformat konvertiert werden (siehe auch Abb. B–1). Die binären Stellen definieren den Status jedes Parameters.

Send: flags Receive: flags 0000000

Abb. B-1. Flag-Feld

neph

Über diesen Befehl erhält man den laufenden, 1-Min. Mittelwert der Nephelometer-Konzentration. Im nachfolgenden finden Sie den laufenden 1-Min. Mittelwert.

Send: neph Receive: neph 1.405E+01 µg/m3

neph 24avg

Über diesen Befehl erhalten Sie den letzten, berechneten 24-Std. Mittelwert der Nephelometer-Konzentration (standardmäßig 9.999 µg/m³, falls 24-Std. nicht überschritten).

Send: neph 24avg Receive: neph 24avg 9.999E+03 µg/m3

neph led current

Gibt man diesen Befehl ein, so erhält man den Nephelometer LED-Strom. Im folgenden Beispiel beträgt der LED-Strom 65,7 mA.

Send: neph led current Receive: neph led current 65.7 mA

neph raw

Mit Hilfe dieses Befehls erhält man die unbearbeitete (rohe), Nephelometer-Konzentration. Nachfolgend finden Sie den rohen, ungemittelten Konzentrationswert.

Send: neph raw Receive: neph raw 1.331E+01 µg/m3

neph ref det

Gibt man diesen Befehl ein, so erhält man die Referenz-Detektorspannung des Nephelometers. Diese beträgt in folgenden Beispiel 1096 mV.

Send: neph ref det Receive: neph ref det 1096 mV

neph rh

Mit Hilfe dieses Befehls erhält man die rel. Luftfeuchte des Nephelometers. Hier beträgt die rel. Luftfeuchte 27,2%.

Send: neph rh Receive: neph rh 27.2 %

neph temp

Gibt man diesen Befehl ein, so erhält man den Wert des Nephelometer-Temperatursensors. Der Wert im folgenden Beispiel beträgt 27,2 °C.

```
Send: neph temp
Receive: neph temp 27.2 degC
```

Über diesen Befehl erhalten Sie die gemessene Feinstaub-Konzentration. Die Feinstaub-Konzentration in diesem Beispiel beträgt 14,1 mg/m³.

Send: pm Receive: pm 1.410E+01 mg/m3

pm 24avg

Gibt man diesen Befehl ein, so erhält man den 24-Std. Mittelwert der Feinstaubkonzentration. Der Mittelwert der 24-Std. Feinstaubkonzentration ist nachfolgend dargestellt.

Send: pm 24avg Receive: pm 24avg 10.000E+00 ug/m3

sharp

Mit Hilfe dieses Befehls erhalten Sie den laufenden, 1-Min. SHARP-Konzentrationswert. Das folgende Beispiel zeigt den 1-Min. SHARP-Konzentrationswert.

Send: sharp Receive: sharp 1.187E+01 µg/m3

sharp 24avg

Gibt man diesen Befehl ein, so erhält man den letzten, berechneten 24-Std. Mittelwert der SHARP-Konzentration (standardmäßig 9.999 μ g/m³, falls 24 Std. nicht überschritten).

Send: sharp 24avg Receive: sharp 24avg 9.999E+03 µg/m3

Alarme alarm alpha count min alarm alpha count max

Mit Hilfe dieser Befehle erhält die akt. Einstellungen für den min. und max. Wert für einen Alpha-Zählraten-Alarm. Hier beträgt der min. Wert für einen Alarm 200.

Send: alarm alpha count min Receive: alarm alpha count min 200

alarm amb rh min alarm amb rh max

Gibt man diese Befehle ein, so erhält man die akt. Einstellungen für den min. und max. Wert für einen rel. Feuchte-Alarm. Hier beträgt der min. Wert 35,0%.

Send: alarm amb rh min Receive: alarm amb rh min 35.0 %

set alarm amb rh min Wert set alarm amb rh max Wert

Mit Hilfe dieser Befehle werden die min. und max. Werte für einen Alarm bzgl. der rel. Feuchte in der Umgebungsluft auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte für einen rel. Feuchte-Alarm in Prozent wiederspielgelt. Im folgenden Beispiel wird der max. Grenzwert für einen Alarm bzgl. Rel. Feuchte in der Umgebungsluft auf 55% gesetzt.

Send: set alarm amb rh max 55 Receive: set alarm amb rh max 55 ok

alarm amb temp min alarm amb temp max

Gibt man diese Befehle ein, so erhält man die Einstellungen für die min. und max. Werte für den Alarm bzgl. der aktuellen Umgebungstemperatur. Hier beträgt der min. Grenzwert für einen Umgebungstemperatur-Alarm 4,0 °C.

Send: alarm amb temp min Receive: alarm amb temp min 4.0 degC

set alarm amb temp min Wert set alarm amb temp max Wert

Mit Hilfe dieser Befehle kann man die min. und max. Werte für einen Umgebungstemperatur-Alarm auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte für einen Umgebungstemperatur-Alarm in °C darstellt. In diesem Beispiel wird der max. Wert für den Umgebungstemperatur-Alarm auf 38 °C gesetzt.

Send: set alarm amb temp max 38 Receive: set alarm amb temp max 38 ok

alarm baro pres min alarm baro pres max

Gibt man diese Befehle ein, so erhält man die aktuellen Einstellungen für die min. und max. Werte bzgl. Eines Luftdruckalarms. Hier beträgt der min. Grenzwert für einen Alarm 500,0 mmHg.

Send: alarm baro pres min Receive: alarm baro pres min 500.0 mmHg

set alarm baro pres min Wert set alarm baro pres max Wert Mit Hilfe dieser Befehle kann man die min. und max. Werte für einen Luftdruck-Alarm auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in Millimeter Quecksilbersäule angeben. Hier wird der max. Alarmgrenzwert auf 800,0 mmHg gesetzt.

Send: set alarm baro pres max 800 Receive: set alarm baro pres max 800 ok

alarm bench status

Gibt man diesen Befehl ein, so erhält man den akt. Status der Messkammer, angezeigt als FAIL oder OK. Hier in diesem Beispiel ist der Status OK.

Send: alarm bench status Receive: alarm bench status ok

alarm beta count min alarm beta count max

Mit Hilfe dieser Befehle erhält die akt. Einstellungen für den min. und max. Wert für einen Beta-Zählraten-Alarm. Hier beträgt der min. Wert für einen Alarm 5000.

Send: alarm beta count min Receive: alarm beta count min 5000

alarm board temp min alarm board temp max

Gibt man diese Befehle ein, so erhält man die Einstellungen für den min. und max. Grenzwert bzgl. Der aktuellen Platinentemperatur. In diesem Beispiel beträgt der min. Alarmgrenzwert o °C.

Send: alarm board temp min Receive: alarm board temp min 0.0 degC

set alarm board temp min Wert set alarm board temp max Wert

Mit Hilfe dieser Befehle kann man die min. und max. Werte für einen Alarm bzgl. der Platinentemperatur auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in °C darstellt. Hier wird der max. Alarmgrenzwert auf 38 °C gesetzt.

Send: set alarm board temp max 38 Receive: set alarm board temp max 38 ok

alarm conc avg neph min

alarm conc avg neph max

Mit Hilfe dieser Befehle erhält man die Einstellungen für die min. und max. Alarmgrenzwerte für den 24-Std. Mittelwert der Nephelometer-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die durchschnittl. Nephelometer-Konzentration o μ g/m³.

Send: alarm conc avg neph min Receive: alarm conc avg neph min 0.000E+00 $\mu\text{g/m3}$

set alarm conc avg neph min Wert set alarm conc avg neph max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der durchschnittl. 24-Std. Nephelometer-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die durchschnittl. Nephelometer-Konzentration auf 10000 μ g/m³ eingestellt.

Send: set alarm conc avg neph max 10000 Receive: set alarm conc avg neph max 10000 ok

alarm conc avg pm min alarm conc avg pm max

Mit Hilfe dieser Befehle erhält man die Einstellungen für die min. und max. Alarmgrenzwerte für den 24-Std. Mittelwert der Feinstaub-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die durchschnittl. Feinstaub-Konzentration 100 μ g/m³.

Send: alarm conc avg pm min Receive: alarm conc avg pm min 1.000E+02 $\mu\text{g/m3}$

set alarm conc avg pm min Wert set alarm conc avg pm max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der durchschnittl. 24-Std. Feinstaub-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die durchschnittl. Feinstaub-Konzentration auf 10000 mg /m³ eingestellt.

Send: set alarm conc avg pm max 10000 Receive: set alarm conc avg pm max 10000 ok

alarm conc avg sharp min alarm conc avg sharp max

Mit Hilfe dieser Befehle erhält man die Einstellungen für die min. und max. Alarmgrenzwerte für den 24-Std. Mittelwert der SHARP-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die durchschnittl. SHARP-Konzentration 0.0 μ g/.

Send: alarm conc avg sharp min Receive: alarm conc avg sharp min 0.000E+00 $\mu\text{g/m3}$

set alarm conc avg sharp min Wert set alarm conc avg sharp max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der durchschnittl. 24-Std. SHARP-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die durchschnittl. SHARP-Konzentration auf 10,000 μ g/m³ eingestellt.

Send: set alarm conc avg sharp max 10000 Receive: set alarm conc avg sharp max 10000 ok

alarm conc inst neph min alarm conc inst neph max

Mit Hilfe dieser Befehle erhält man die Einstellungen für die min. und max. Alarmgrenzwerte für die momentane Nephelometer-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die momentane Nephelometer-Konzentration o $\mu g/m^3$.

Send: alarm conc inst neph min Receive: alarm conc inst neph min 0.000E+00 $\mu\text{g/m3}$

set alarm conc inst neph min Wert set alarm conc inst neph max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der momentanen 24-Std. Nephelometer-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die momentane Nephelometer-Konzentration auf 10000 μ g/m³ eingestellt. Send: set alarm conc inst neph max 10000 Receive: set alarm conc inst neph max 10000 ok

alarm conc inst pm min alarm conc inst pm max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte für die 24-Std. momentane Feinstaub-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die momentane Feinstaub-Konzentration 100 μ g/m³.

Send: alarm conc inst pm min Receive: alarm conc inst pm min 1.000E+02 $\mu\text{g/m3}$

set alarm conc inst pm min Wert set alarm conc inst pm max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der momentanen 24-Std. Feinstaub-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die momentane Feinstaub-Konzentration auf 10000 μ g/m³ eingestellt.

Send: set alarm conc inst pm max 10000 Receive: set alarm conc inst pm max 10000 ok

alarm conc inst sharp min alarm conc inst sharp max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte für die 24-Std. momentane SHARP-Konzentration. Hier beträgt beispielsweise der min. Alarmgrenzwert für die momentane SHARP-Konzentration $0 \ \mu g/m^3$.

Send: alarm conc inst sharp min Receive: alarm conc inst sharp min 0.000E+00 $\mu\text{g/m3}$

set alarm conc inst sharp min Wert set alarm conc inst sharp max Wert

Mit Hilfe dieser Befehle werden die min. und max. Alarmgrenzwerte bzgl. der momentanen 24-Std. SHARP-Konzentration auf einen auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Konzentrationsalarmgrenzen darstellt. Die Werte müssen in der Einheit sein, die aktuell eingestellt ist. Im Beispiel unten wir der max. Alarmgrenzwert für die momentane SHARP-Konzentration auf 10000 μ g/m³ eingestellt.

Send: set alarm conc inst sharp max 10000 Receive: set alarm conc inst sharp max 10000 ok

alarm filter tape status

Gibt man diesen Befehl ein, so erhält man den Filterbandstatus in der Angabe FAIL (= Ausfall) oder OK. In diesem Beispiel ist der Filterbandstatus OK.

Send: alarm filter tape status Receive: alarm filter tape status ok

alarm flow min alarm flow max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte bzgl. eines Durchflussalarms. Hier beträgt der min. Alarmgrenzwert beispielsweise 16,0 LPM.

Send: alarm flow min Receive: alarm flow min 16.00 LPM

set alarm flow min Wert set alarm flow max Wert

Mit Hilfe dieser Befehle werden die min. und max. Grenzwerte für einen Durchflussalarm auf einen auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Grenzwerte für einen Durchflussalarm in Litern pro Minute / Litern pro Stunde darstellt. Hier wird der max. Alarmgrenzwert beispielsweise auf 17,34 LPM eingestellt.

Send: set alarm flow max 17.34 Receive: set alarm flow max 17.34 ok

alarm flow pres min alarm flow pres max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte bzgl. eines Durchflussdruckalarms. Hier beträgt der min. Alarmgrenzwert beispielsweise -10.0 mmHg.

Send: alarm flow pres min Receive: alarm flow pres min -10.0 mmHg

set alarm flow pres min Wert set alarm flow pres max Wert Mit Hilfe dieser Befehle werden die min. und max. Grenzwerte für einen Durchflussdruckalarm auf einen auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Grenzwerte für einen Durchflussdruckalarm in Millimeter Quecksilbersäule darstellt. Hier wird der max. Alarmgrenzwert beispielsweise auf 50.0 mmHg eingestellt.

Send: set alarm flow pres max 50 Receive: set alarm flow pres max 50 ok

alarm flow temp min alarm flow temp max

Gibt man diesen Befehl ein, so erhält man die akt. Einstellung für den max. Alarmgrenzwert bzgl. der Durchflusstemperatur. Hier beträgt der max. Alarmgrenzwert beispielsweise 20,0 °C.

Send: alarm flow temp max Receive: alarm flow temp max 20.0 degC

set alarm flow temp min Wert set alarm flow temp max Wert

Mit Hilfe dieses Befehls wird der max. Grenzwert für einen Durchflusstemperaturalarm auf einen auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche den Grenzwert für einen Alarm bzgl. Durchflusstemperatur in °C darstellt. Hier wird der max. Alarmgrenzwert beispielsweise auf 70 °C eingestellt.

Send: set alarm flow temp max 70 Receive: set alarm flow temp max 70 ok

alarm ib status

Gibt man diesen Befehl ein, so wird der Status der Interfacekarte als FAIL (= Ausfall) oder OK angezeigt. Hier wird als Status für die Interfacekarte OK angezeigt.

Send: alarm ib status Receive: alarm ib status ok

alarm io status

Gibt man diesen Befehl ein, so wird der Status der I/O-Erweiterungskarte als FAIL (= Ausfall) oder OK angezeigt. Hier wird als Status für die I/O-Erweiterungskarte OK angezeigt.

Send: alarm io status Receive: alarm io status ok

alarm mb status

Gibt man diesen Befehl ein, so wird der Status des Motherboards als FAIL (= Ausfall) oder OK angezeigt. Hier wird als Status für das Motherboard OK angezeigt.

Send: alarm mb status Receive: alarm mb status ok

alarm nb status

Gibt man diesen Befehl ein, so wird der Status der Nephelometer-Interfacekarte als FAIL (= Ausfall) oder OK angezeigt. Hier wird als Status für die Nephelometer-Interfacekarte OK angezeigt.

Send: alarm nb status Receive: alarm nb status ok

alarm ncal status

Über diesen Befehl erhält man den Status der letzten autom. Nullkalibrierung des Nephelometers.. Hier wird als Status OK, d.h. funktionsfähig, angezeigt.

```
Send: alarm ncal status
Receive: alarm ncal status ok
```

alarm neph led cur min alarm neph led cur max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte bzgl. eines Nephelometer-LED-Alarms. Hier beträgt der min. Alarmgrenzwert beispielsweise 50 mA.

Send: alarm neph led cur min Receive: alarm neph led cur min 50.0 mA

set alarm neph led cur min Wert set alarm neph led cur max Wert

Über diese Befehle werden die min. und max. Alarmgrenzwerte für einen Nephelometer-LED-Alarm auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Grenzwerte für den Nephelometer-LED-Alarm in mA darstellt. Hier beträgt der max. Alarmgrenzwert beispielsweise 75,0 mA.

Send: set alarm neph led cur min 75 Receive: set alarm neph led cur min 75 ok

alarm neph rh min alarm neph rh max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte für einen Alarm bzgl. der rel. Luftfeuchte des Nephelometers. Hier beträgt der min. Alarmgrenzwert beispielsweise 5,0% rel. Luftfeuchte.

Send: alarm neph rh min Receive: alarm neph rh min 5.0 %

set alarm neph rh min Wert set alarm neph rh max Wert

Über diese Befehle werden die min. und max. Alarmgrenzwerte für einen Alarm bzgl. rel. Luftfeuchte des Nephelometers auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in Prozent angibt. Hier wird als max. Alarmgrenzwert beispielsweise 95% eingestellt.

Send: set alarm neph rh min 95 Receive: set alarm neph rh min 95 ok

alarm neph temp min alarm neph temp max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Grenzwerte für einen Nephelometer-Temperaturalarm. Hier beträgt der max. Alarmgrenzwert beispielsweise 5,0 °C.

Send: alarm neph temp max Receive: alarm neph temp max 5.0 degC

set alarm neph temp min Wert set alarm neph temp max Wert

Über diese Befehle werden die min. und max. Alarmgrenzwerte für einen Nephelometer-Temperaturalarm auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in °C angibt. Hier wird der max. Alarmgrenzwert beispielsweise auf 40.0 °C eingestellt.

Send: set alarm neph temp max 40 Receive: set alarm neph temp max 40 ok

alarm sample rh min alarm sample rh max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Alarmgrenzwerte für einen Alarm bzgl. der rel. Luftfeuchte der Probe. Hier beträgt der min. Alarmgrenzwert beispielsweise 5% rel. Luftfeuchte.

Send: alarm sample rh min Receive: alarm sample rh min 5.0 %

set alarm sample rh min Wert set alarm sample rh max Wert

Über diese Befehle werden die min. und max. Alarmgrenzwerte für einen Alarm bzgl. rel. Luftfeuchte der Probe auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in Prozent angibt. Hier wird als max. Alarmgrenzwert beispielsweise 40% eingestellt.

Send: set alarm sample rh min 40 Receive: set alarm sample rh min 40 ok

alarm status det

Gibt man diesen Befehl ein, so wird der Status der Platine des Detektors angezeigt (FAIL = Ausfall oder OK). Hier ist der Status der Detektorplatine OK.

Send: alarm status det Receive: alarm status det ok

alarm tape counter max

Gibt man diesen Befehl ein so erhält man die akt. Einstellung des max. Grenzwerts für einen Filterband-Zählalarm. Hier ist der max. Alarmgrenzwert beispielsweise 480.

Send: alarm tape counter max Receive: alarm tape counter max 480

set alarm tape counter max Wert

Über diesen Befehl wird der max. Alarmgrenzwert für einen Alarm bzgl. Filterbandzählung auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine ganze Zahl ist, welche die Grenzwerte für einen Filterbandalarm darstellt. Hier wird der max. Alarmgrenzwert auf 490 eingestellt.

Send: set alarm tape counter max 490 Receive: set alarm tape counter max 490 ok

alarm vac pres min alarm vac pres max

Gibt man diese Befehle ein, erhält man die akt. Einstellungen für die min. und max. Grenzwerte für einen Vakuumdruckalarm. Hier beträgt der min. Alarmgrenzwert beispielsweise -20.0 mmHg.

Send: alarm vac pres min Receive: alarm vac pres min -20.0 mmHg

set alarm vac pres min Wert

set alarm vac pres max Wert

Über diese Befehle werden die min. und max. Alarmgrenzwerte für einen Vakuumdruckalarm auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alarmgrenzwerte in der Einheit Millimeter Quecksilbersäule angibt. Hier wird als max. Alarmgrenzwert beispielsweise 250,0 mmHg eingestellt.

Send: set alarm vac pres max 250 Receive: set alarm vac pres max 250 ok

Diagnose

amb rh Über diesen Befehl erhält man die relative Luftfeuchte in der Einheit Prozent. . Hier beträgt die rel. Feuchte beispielsweise 30%.

```
Send: amb rh
Receive: amb rh 30.0 %
```

amb temp

Gibt man diesen Befehl ein, so erhält man die Umgebungstemperatur in °C. Hier beträgt die Umgebungstemperatur beispielsweise 15 °C.

Send: amb temp Receive: amb temp 15.0 degC

baro pres

Über diesen Befehl erhält man den aktuellen Luftdruck in der Einheit in mmHg. Hier beträgt der Luftdruck beispielsweise 722 mmHg.

Send: baro pres Receive: baro pres 722.0 mmHg

board temp

Gibt man diesen Befehl ein, so erhält man die aktuelle Platinentemperatur in Grad Celsius (°C). Sie beträgt hier beispielsweise 15 °C.

Send: board temp Receive: board temp 15.0 degC

crn

Über diesen Befehl erhält man die aktuelle Radonkonzentration für den Detektor. Sie beträgt hier beispielsweise 1,2 Bq/m³.

Send: crn

```
Receive: crn 1.20 Bq/m3
```

det status

Gibt man diesen Befehl ein, so erhält man die aktuelle Masse für den Detektor. Die Reihenfolge der Anzeige lautet wie folgt: α , β , β_{C} , β_{REF} . Dier Werte sind mit Leerzeichen voneinander getrennt.

Send: det status Receive: det status 1 9657 9600 4623

diag volt det

Über diesen Befehl erhält man die Diagnose-Spannungsmessungen auf der Detektorplatine. Die Spannung hier ist positiv 5.

Send: diag volt det Receive: diag volt det 4.9

diag volt iob

Über diesen Befehl erhält man die Diagnose-Spannungsmessungen auf der I/O-Erweiterungskarte. Die Reihenfolge der Spannungswerte lautet: Positiv 24, positiv 5, positiv 3,3 und negativ 3,3. Die Spannungswerte sind durch Leerzeichen voneinander getrennt.

Send: diag volt iob Receive: diag volt iob 24.10 4.90 3.20 -3.20

diag volt mb

Über diesen Befehl erhält man die Diagnose-

Spannungsmessungen auf dem Motherboard. Die Reihenfolge der Spannungswerte lautet: Positiv 24, positiv 15, positiv 5, positiv 3.3 und negativ 3.3. Jeder Spannungswert wird durch ein Leerzeichen getrennt.

Send: diag volt mb Receive: diag volt mb 24.10 14.90 4.90 3.20 -3.20

diag volt mib

Über diesen Befehl erhält man die Diagnose-Spannungsmessungen auf der Mess-Interface-Karte. Die Reihenfolge der Spannungswerte lautet: Positiv 24, positiv 15, negativ 15, positiv 5, positiv 3.3 sowie positiv 15. Die Spannungswerte sind durch Leerzeichen voneinander getrennt.

Send: diag volt mib Receive: diag volt mib 24.98 14.80 -14.90 4.96 3.20

diag volt neph

Über diesen Befehl erhält man die aktuell angezeigten Spannungswerte der Nephelometer-Interfacekarte. Nachfolgend finden Sie die entsprechenden Werte.

Send: diag volt neph Receive: diag volt mib 3.3 3.3 5.0 7.2 -5.0 -7

flow

Gibt man diesen Befehl ein, so erhält man den aktuellen Probenahmedurchfluss. Er beträgt hier beispielsweise 16,69 LPM.

```
Send: sample flow
Receive: sample flow 16.69 LPM
```

flow pres

Über diesen Befehl erhält man the aktuellen Wert des Durchflussdrucks für den Detektor in mmHg. Hier beträgt der Wert beispielsweise 24,1 mmHg.

```
Send: flow pres
Receive: flow pres 24.1 mmHg
```

flow temp

Gibt man diesen Befehl ein, so erhält man the aktuelle Durchflusstemperatur für den Detektor in Grad Celsius (°C). Die Temperatur beträgt hier beispielsweise 22,3 °C.

Send: flow temp Receive: flow temp 22.3 deg

io bd

Über diesen Befehl erhält die Information, ob eine I/O-Erweiterungskarte vorhanden ist (ja/nein). Hier ist beispielsweise eine I/O-Erweiterungskarte vorhanden.

```
Send: io bd
Receive: io bd yes
```

mass

Gibt man diesen Befehl ein, so erhält eine Information darüber, ob Masse vorhanden ist. Die vorhandene Masse hier beträgt 0,1 mg/m³.

Send: mass Receive: mass 0.100E+00

neph bkg

Über diesen Befehl erhält man die aktuellen Nephelometer-Hintergrundwerte, die auf der Nephelometer-Interfacekarte gespeichert sind. Die Hintergrundwerte (auto-ranging) finden Sie in der 2. Zeile des folgenden Beispiels.

Send: neph bkg Receive: neph bkg1 0.00272 0.00272 0.01099 0.04351 0.17430 0.65535

neph mode

Gibt man diesen Befehl ein, so erhält man eine Info über die aktuelle Betriebsart des Nephelometers. Hier befindet sich das Nephelometer beispielsweise in der Betriebsart Probenahme.

Send: neph mode Receive: neph mode sample

neph prev bkg

Über diesen Befehl erhält man die vorherigen, früheren Nephelometer-Hintergrundwerte, die auf der Nephelometer-Interfacekarte gespeichert sind. Die Hintergrundwerte (autoranging) finden Sie in der 2. Zeile des folgenden Beispiels.

Send: neph prev bkg Receive: neph prev bkg 0.00272 0.00272 0.01094 0.04357 0.17422 0.65535

set reset tape counter

Mit diesem Befehl kann der Bandzähler auf null zurückgesetzt werden.

Send: set reset tape counter Receive: set reset tape counter ok

sample rh

Gibt man diesen Befehl ein, so erhält man die rel. Feuchte der Probe in Prozent. Der Wert hier beträgt beispielsweise 20%.

Send: sample rh Receive: sample rh 20.0 %

tape counter

Über diesen Befehl erhält man den Zählerstand der Filterbandzählers, der die Anzahl der Filterbewegungen wiederspiegelt. Der Zählerstand hier beträgt beispielsweise 250.

Send: tape counter Receive: tape counter 250

vac pres

Gibt man diesen Befehl ein, so erhält man den aktuellen Vakuumdruck des Detektors in mmHg. Hier beträgt der Vakuumdruck beispielsweise 100 mmHg.

```
Send: vac pres
Receive: vac pres 100.0 mmHg
```

Messwerterfassung

clr records

Mit diesem Befehl werden alle langen und kurzen Datensätze gelöscht, die gespeichert wurden.

```
Send: clr records
Receive: clr records ok
```

set clr lrecs

set clr srecs

Mit Hilfe dieser Befehle werden nur die lrecs oder nur die srecs gelöscht, die gespeichert wurden. Hier werden beispielsweise die srecs gelöscht.

Send: set clr srecs Receive: set clr srecs ok

set copy sp to lrec set copy sp to srec set copy sp to stream

Mit diesen Befehlen kopiert man die aktuelle Auswahl im Notizblock (= scratch pad (sp)) in die Liste der langen Datensätze, kurzen Datensätze oder Streaming-Daten.

Der Notizblock ist ein temporärer Speicherplatz der für das Erstellen von Auswahllisten langer Datensätze, kurzer Datensätze oder Streaming-Daten verwendet wird. Der Bediener kann jede dieser Listen in den Notizblock kopieren, einzelne Elemente der Liste verändern und dann den Notizblock zurück zur orig. Liste speichern. Bitte lesen Sie auch beim Befehl "sp field" nach.

Im folgenden Beispiel wird die aktuelle Liste im Notizblock in die Liste der langen Datensätze (= lrecs) kopiert.

```
Send: set copy sp to lrec
Receive: set copy sp to lrec ok
```

set copy lrec to sp set copy srec to sp set copy stream to sp

Über diese Befehle kann man den aktuellen Inhalt der Liste der langen Datensätze, kurzen Datensätze und Streaming-Daten in den Notizblock kopieren (= scratch pad (sp)). Diese Befehle sind bei leichten Modifikationen der Liste der langen Datensätze, kurzen Datensätze und Streaming-Daten hilfreich.

Der Notizblock ist ein temporärer Speicherplatz der für das Erstellen von Auswahllisten langer Datensätze, kurzer Datensätze oder Streaming-Daten verwendet wird. Der Bediener kann jede dieser Listen in den Notizblock kopieren, einzelne Elemente der Liste verändern und dann den Notizblock zurück zur orig. Liste speichern. Bitte lesen Sie auch beim Befehl "sp field" nach.

Hier wird beispielsweise die aktuelle Liste der langen Datensätze in den Notizblock kopiert.

Send: set copy lrec to sp Receive: set copy lrec to sp ok

data treatment lrec data treatment srec

Gibt man diese Befehle ein, so wird die aktuelle Auswahl der Datenverarbeitung für Konzentrationen in den langen oder kurzen Datensätzen angezeigt. Im folgenden Beispiel wird die Datenverarbeitung der Konzentrationen in langen Datensätzen angezeigt (hier: min).

Send: data treatment lrec Receive: data treatment lrec min

set data treatment lrec String
set data treatment srec String
String = | akt | durchschnittl. | min | max |

Mit Hilfe dieser Befehle wird die Datenverarbeitung auf aktuell, mittlere, min. oder max. bzgl. der in den langen oder kurzen Datensätzen erfassten Konzentrationswerte gesetzt. Nachfolgend wird beispielsweise die Datenverarbeitung für Konzentrationen in langen Datensätzen auf min. gesetzt.

Send: set data treatment lrec min Receive: set data treatment lrec min ok erec

erxy

x = | 0 | 1 | : Antwort-Abschlussformat (siehe Befehl "set format format")

y = | 0 | 1 | 2 | : Ausgabeformat (siehe Befehl "set erec/lrec/srec format *format*")

Über diesen Befehl erhält man eine kurze Beschreibung über die Betriebsbedingungen, die zu dem Zeitpunkt herrschen, an dem der Befehl eingegeben wird (d.h. Messungen und Status). Im nachfolgenden Beispiel wird eine typische Response gezeigt.

Das Format wird definiert durch die aktuellen Einstellungen der Befehle "format" und "erec format". Genauere Infos über die Formatierung von langen Datensätzen finden Sie im Abschnitt "Definition Datensatz-Layout" am Ende dieses Anhangs. Details über die Dekodierung dieser Merkerfelder in diesen Datensätzen finden Sie beim Befehl "flags" (= Merker).

```
Send: erec
Receive: erec
07:53 05-04-09 flags 110000 PM 0.000 1 24Hr
Avg PM 0.000 1 Coef A 1.000 Bkg A 0.000 Range
A 10000.000 Flow A 0.000 6 5 3 1 1 1 0 Temp
Threshold A 30.000 Temp Threshold A 35.000
```

list lrec list srec list stream list sp

Über diese Befehle erhält man eine Liste der aktuellen Auswahlen für Messwertdaten - lange Datensätze, Messwertdaten - kurze Datensätze, Ausgabe Streaming-Daten oder eine Notizblockliste.

Der Notizblock ist ein temporärer Speicherplatz der für das Erstellen von Auswahllisten langer Datensätze, kurzer Datensätze oder Streaming-Daten verwendet wird. Der Bediener kann jede dieser Listen in den Notizblock kopieren, einzelne Elemente der Liste verändern und dann den Notizblock zurück zur orig. Liste speichern. Bitte lesen Sie auch beim Befehl "sp field" nach. Hier wird beschrieben, wie man den Notizblock bearbeitet.

Im nachfolgenden Beispiel wird die Liste für den Streaming-Datenausgang gezeigt.

Send: list stream Receive: list stream field index variable X x time

lrec

srec lrec rec num srec rec num **lr**xy rec num srxy rec num lrec aa:bb oo-pp-qq yy **srec** *aa:bb oo-pp-qq yy rec* = Index-Nr. des beginnenden Datensatzes (1=aktuellster) num = Anzahl der zurückzuschickenden Datensätze (1 - 10) : Antwort-Abschlussformat (siehe Befehl "set format x = |0||1|*format*") y = |0||1||2|: Ausgabeformat (siehe Befehl "set erec/lrec/srec format *format*") aa =Stunden (01 - 23) bb = Minuten (01 - 59)oo = Monat(01 - 12)pp = Tag(01 - 31)qq = JahrÜber diese Befehle erhält man lange oder kurze Datensätze. Das

Uber diese Befehle erhalt man lange oder kurze Datensatze. Das Ausgabeformat wird in den Befehlen "set lrec format" und "set srec format" bestimmt. Die Zeit für die Protokollierung wird in den Befehlen "set lrec per" und "set srec per" festgelegt.

Nehmen Sie an, dass im folgenden Beispiel 740 lange Datensätze gespeichert sind. Wird der Befehl lrec 100 5 geschickt, dann zählt das Messgerät 100 Datensätze vom letzten gesammelten Datensatz zurück und schickt dann 5 Datensätze zurück, i.e. die Datensätze 640, 641, 642, 643 und 644. Details über die Dekodierung der Merkerfelder in diesen Datensätzen finden Sie bei der Beschreibung zum Befehl "flags".

```
Send:
            lrec 5
Receive:
            lrec 100 5
            08:28 05-04-09 flags 00110000 pm 0.000 baro
            0.000 vac -260.000 pflow -52.000 ambrh 0.000
            srh 0.000 ambtemp -32.000 stemp -41.000 fvol
            0.000 cflg 00001F86 aflg 0000FC0C
            08:29 05-04-09 flags 00110000 pm 0.000 baro
            0.000 vac -260.000 pflow -52.000 ambrh 0.000
            srh 0.000 ambtemp -32.000 stemp -41.000 fvol
            0.000 cflg 00001F86 aflg 0000FC0C
            08:30 05-04-09 flags 00110000 pm 0.000 baro
            0.000 vac -260.000 pflow -52.000 ambrh 0.000
            srh 0.000 ambtemp -32.000 stemp -41.000 fvol
            0.000 cflg 00001F86 aflg 0000FC0C
```

08:31 05-04-09 flags 00110000 pm 0.000 baro 0.000 vac -260.000 pflow -52.000 ambrh 0.000 srh 0.000 ambtemp -32.000 stemp -41.000 fvol 0.000 cflg 00001F86 aflg 0000FC0C 08:32 05-04-09 flags 00110000 pm 0.000 baro 0.000 vac -260.000 pflow -52.000 ambrh 0.000 srh 0.000 ambtemp -32.000 stemp -41.000 fvol 0.000 cflg 00001F86 aflg 0000FC0C

lrec format srec format erec format

Über diese Befehle erhält man das Ausgabeformat für lange und kurze Datensätze und dynamische Daten in verschiedenen Formaten wie z.B. ASCII ohne Text, ASCII mit Text oder binär. Im folgenden Beispiel handelt es sich um das Ausgabeformat für lange Datensätze in ASCII mit Text, gemäß Tabelle B–3.

Send: lrec format Receive: lrec format 1

set lrec format Format set srec format Format set erec format Format

Mit diesen Befehlen setzt man die Ausgabeformate für lange und kurze Datensätze und dyn. Daten gemäß Tabelle B–3. Beispiel hier: Ausgabeformat f. lange Datensätze auf ASCII mit Text.

Send: set lrec format 1 Receive: set lrec format 1 ok

Tabelle B-3. Datensatz Ausgabeformate

Format	Ausgabeformat
0	ASCII ohne Text
1	ASCII mit Text
2	Binäre Daten

lrec layout srec layout erec layout

Über diese Befehle erhält man das Layout (String der die Datenformate anzeigt) für Daten, die als Antwort auf die Befehle erec, lrec, srec und damit verbundene Befehle geschickt werden. Wie diese Strings zu interpretieren sind, entnehmen Sie bitte dem späteren Abschnitt "Definition Datensatz-Layout".

lrec mem size srec mem size

Über diese Befehle erhält man die langen und kurzen Datensätze, die mit den aktuellen Einstellungen gespeichert werden können, sowie die Anz. der Blöcke, die für lange und kurze Datensätze reserviert sind. Das folgende Beispiel zeigt, dass 1075 Blöcke für lrecs (lange Datensätze) reserviert wurden und dass die max. Anzahl langer Datensätze, die gespeichert werden kann, 241979 beträgt. Die Speicherzuordnung kann mit Hilfe des Befehls "malloc" geändert werden.

Send: lrec mem size Receive: lrec mem size 241979 recs, 1075 blocks

lrec per

srec per

Über diese Befehle erhält man die Erfassungsdauer für die langen und kurzen Datensätze. Die Erfassungsdauer für kurze Datensätze beträgt hier beispielsweise 5 Minuten.

Send: srec per Receive: srec per 5 min

set lrec per *Wert* **set srec per** *Wert Wert* = | 1 | 5 | 15 | 30 | 60 |

Mit diesen Befehlen kann man die Erfassungsdauer für lange und kurze Datensätze auf einen bestimmten *Wert* in Minuten einstellen. Hier wird der Wert für die Erfassung langer Datensätze auf den Wert 15 Minuten gesetzt.

Send: set lrec per 15 Receive: set lrec per 15 ok

malloc lrec malloc srec

Über diese Befehle erhält man die aktuelle eingestellte Speicherzuordnung für lange und kurze Datensätze in % vom gesamten Speicherplatz.

Send: malloc lrec

Receive: malloc lrec 10 %

set malloc lrec *Wert* **set malloc srec** *Wert Wert* = 0 bis 100

Über diese Befehle kann man den Speicherplatz, der langen und kurzen Datensätzen zugeordnet wird, auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, die in % ausgedrückt wird. Im Beispiel wird langen Datensätzen ein Speicherplatz von 10% zugeordnet.

Hinweis Führt man diese Befehle aus, werden alle Messwerterfassungsdaten aus dem Speicher gelöscht. Alle existenten Datensätze sollten mit den geeigneten Befehlen abgerufen werden, falls notwendig. •

Send: set malloc lrec 10 Receive: set malloc lrec 10 ok

no of lrec no of srec

no of srec Mit diesen Befe

Mit diesen Befehlen erhält man die Anzahl langer und kurzer Datensätze, die im Speicher für lange und kurze Datensätze abgelegt sind. Hier sind beispielsweise 50 lange Datensätze im Speicher abgelegt.

Send: no of lrec Receive: no of lrec 50 recs

sp field Zahl

Mit diesem Befehl erhält man die variable *Zahl* und den Namen, der im Index in der Notizblockliste gespeichert ist.

Der Notizblock ist ein temporärer Speicherplatz der für das Erstellen von Auswahllisten langer Datensätze, kurzer Datensätze oder Streaming-Daten verwendet wird. Der Bediener kann jede dieser Listen in den Notizblock kopieren, einzelne Elemente der Liste verändern und dann den Notizblock zurück zur orig. Liste speichern.

Das Beispiel zeigt, dass das Feld 5 im Notizblock auf die Index-Nr. 3 gesetzt ist, die für den variable Feinstaubkonzentrationsdruck steht.

Send: sp field 1 Receive: sp field 1 3 PM

set sp field Zahl Wert

Zahl = 1-32 für lrec und srec Listen, 1-8 für Streaming-Datenlisten

Mit diesem Befehl wird das Feld *Zahl* der Notizblockliste (Pos-Nr. in Notizblockliste) auf einen bestimmten *Wert* gesetzt, wobei der *Wert* eine Index-Nr. einer Variablen in der Variablenliste "Analog out" ist. Verfügbare Variablen und die entsprechenden Index-Nr. erhält man mit dem Befehl "list var aout". Der Befehl "set sp field" wird verwendet, um eine Liste von Variablen zu erzeugen, die dann in die Liste der langen Datensätze, kurzen Datensätze oder Streaming-Daten transferiert werden kann. Hierzu verwendet man entsprechend die Befehle "set copy sp to lrec", "set copy sp to srec" oder "set copy sp to stream".

Send: set sp field 1 34 Receive: set sp field 1 34 ok

stream per

Mit diesem Befehl erhält man das aktuell eingestellte Zeitintervall für Streaming-Daten in Sekunden. Hier wird beispielsweise ein Wert von 10 Sekunden angegeben.

Send: stream per Receive: stream per 10 sec

set stream per Zahlenwert

Zahlenwert = | 1 | 2 | 5 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 300 |

set stream per Zahlenwert

Zahlenwert = | 1 | 2 | 5 | 10 | 20 | 30 | 60 | 90 |120 | 180 | 240 | 300 |

Mit diesem Befehl setzt man das Zeitintervall zwischen zwei aufeinanderfolgenden Streaming-Daten-Strings auf einen *Zahlenwert* in Sekunden. Hier wird der Wert auf 10 Sekunden eingestellt.

Send: set stream per 10 Receive: set stream per 10 ok

stream time

Über diesen Befehl erfährt man, ob der Streaming-Datenstring einen Zeitstempel hat oder nicht, gemäß Tabelle B–4. Hier sollen beispielsweise die Streaming-Daten keinen Zeitstempel tragen.

Send: stream time Receive: stream time 0

set stream time Wert

Mit diesem Befehl aktiviert man einen *Wert*. Der *Wert* besagt, ob ein Zeitstempel angehängt oder deaktiviert werden soll (siehe Tabelle B–4). Im Beispiel wird ein Zeitstempel an die Streaming-Daten angehängt.

Send: set stream time 1 Receive: set stream time 1 ok

Tabelle B-4. Streamzeitwerte

Wert	Stream-Zeit
0	Zeitstempel wird an Streaming-Datenstring angehängt
1	Zeitstempel am Streaming-Datenstring wird deaktiviert

Kalibrierung

alpha eff

Gibt man diesen Befehl ein, so erhält man den aktuellen Wert der Alpha-Effektivität des Detektors. Hier beträgt der Wert beispielsweise 0,12.

Send: alpha eff Receive: alpha eff 0.120

set alpha eff Wert

Gibt man diesen Befehl ein, kann man die Alpha Effektivität für den Detektor auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche die Alpha-Effektivität für den Detektor darstellt. Hier wird ein Wert von 0,15 eingestellt.

Send: set alpha eff 0.15 Receive: set alpha eff 0.15 ok

alpha th

Über diesen Befehl erhält den aktuellen Alpha-Schwellwert für den Detektor. Dieser beträgt hier beispielsweise 1220.

Send: alpha th Receive: alpha th 1220

set alpha th Wert

Gibt man diesen Befehl ein, kann man den Alpha-Schwellwert für den Detektor auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Alpha-Schwellwert für den Detektor darstellt. Hier wird ein Wert von 1250 eingestellt.

Send: set alpha th 1250 Receive: set alpha th 1250 ok

amb rh offset

Gibt man diesen Befehl ein, so erhält man den aktuellen Offset für die rel. Feuchte in der Umgebungsluft. Der Offset-Wert beträgt hier 0,6%.

Send: amb rh offset Receive: amb rh offset 0.6 %

set amb rh offset Wert

Gibt man diesen Befehl ein, kann man den Offsetwert für die rel. Feuchte in der Umgebungsluft auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Offsetwert in Prozent darstellt. Hier wird ein Wert von 7% eingestellt.

Send: set amb rh offset 7 Receive: set amb rh offset 7 ok

amb temp offset

Gibt man diesen Befehl ein, so erhält man den aktuellen Offset für die Umgebungstemperatur in Grad Celsius. Der Offset-Wert beträgt hier 5 °C.

Send: amb temp offset Receive: amb temp offset 5.0 degC

set amb temp offset Wert

Gibt man diesen Befehl ein, kann man den Offsetwert für die Umgebungstemperatur auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Offsetwert in Grad Celsius darstellt. Hier wird ein Wert von 3 °C eingestellt.

Send: set amb temp offset 3 Receive: set amb temp offset 3 ok

baro mass coef

Gibt man diesen Befehl ein, so erhält man den aktuellen barometrischen Massenkoeffizienten. Er beträgt hier beispielsweise 0,000540.

Send: baro mass coef Receive: baro mass coef 0.000540

set baro mass coef Wert

Gibt man diesen Befehl ein, kann man den barometrischen Massenkoeffizienten auf einen benutzerdefinierten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Hier wird ein Wert von 0,000630 als Koeffizient eingestellt.

Send: set baro mass coef 0.000630 Receive: set baro mass coef 0.000630 ok

baro span

Über diesen Befehl erhält man den aktuellen Luftdruck-Messbereich, der zum Zeitpunkt der Kalibrierung aufgezeichnet wurde. Er beträgt hier beispielsweise 1.0.

Send: baro span Receive: baro span 1.0000

set baro span Wert

Bei diesem Befehl ist es erforderlich, den Messbereichs *wert* für den Luftdruck-Messbereich manuell anzugeben, wobei der *Wert* eine Gleitpunktzahl ist, welche den Luftdruck-Messbereich darstellt. Hier wird der Wert erfolgreich auf 1,023 gesetzt.

Send: set baro span 1.023 Receive: set baro span 1.023 ok

beta th

Gibt man diesen Befehl ein, so erhält man den aktuellen Referenz-Beta-Schwellwert für den Detektor. Der Beta-Schwellwert beträgt hier beispielsweise 440.
Send: beta th Receive: beta th 440

set beta th Wert

Gibt man diesen Befehl ein, kann man den Referenz-Beta-Schwellwert auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Beta-Schwellwert darstellt. . Hier wird für den Schwellwert ein Wert von 500 eingestellt.

Send: set beta th 500 Receive: set beta th 500 ok

bkg pm

Über diesen Befehl erhält man die aktuellen Feinstaub-Hintergrundwerte. Der Feinstaub-Hintergrund beträgt hier zum Beispiel 4 µg/m³.

Send: bkg pm Receive: bkg pm 4.000E+00 µg/m3

set bkg pm Wert

Gibt man diesen Befehl ein, kann man die Werte für den Feinstaub-Hintergrund auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Hintergrund in der aktuell ausgewählten Einheit darstellt. Im folgenden Beispiel wird der Feinstaub-Hintergrund auf 5,2 µg/m³ gesetzt.

Send: set bkg pm 5.2 Receive: set bkg pm 5.2 ok

bkg sharp

Über diesen Befehl erhält man die aktuellen SHARP-Hintergrundwerte. Der SHARP-Hintergrund beträgt hier zum Beispiel 4 µg/m³.

Send: bkg sharp Receive: bkg sharp 4.000E+00 µg/m3

set bkg sharp Wert

Gibt man diesen Befehl ein, kann man die Werte für den SHARP-Hintergrund auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Hintergrund in der aktuell ausgewählten Einheit darstellt. Im folgenden Beispiel wird der SHARP-Hintergrund auf 5,2 µg/m³ gesetzt.

Send: set bkg sharp 5.2 Receive: set bkg sharp 5.2 ok

set cal baro pres span

Mit Hilfe dieses Befehls wird der Messbereichs-Koeffizient automatisch berechnet (basierend auf dem eingegebenen Zielwert für den Druck). In diesem Beispiel wird für den Kalibrierdruck 720,5 mmHg eingestellt.

Send: set cal baro pres span 720.5 Receive: set cal baro pres span 720.5 ok

set cal flow pres span Wert

Über diesen Befehl wird der Messbereich für den Durchflussdruck basierend auf dem, zum Zeitpunkt der Kalibrierung eingegebenen, Durchflussdruck automatisch eingestellt. Hier wird der neue Wert für den Durchfluss-Messbereich basierend auf dem Durchflussdruck erfolgreich auf 50,5 mmHg eingestellt.

Send: set cal flow pres span 50.5 Receive: set cal flow pres span 50.5 ok

set cal flow span Wert

Über diesen Bereich wird der neue Wert für den Durchfluss-Messbereich basierend auf dem eingegebenen, korrigierten Durchfluss automatisch eingestellt. Hier wird der neue Wert für den Durchfluss-Messbereich basierend auf dem korrigierten Durchfluss auf 17,2 LPM eingestellt.

Send: set cal flow span 17.2 Receive: set cal flow span 17.2 ok

set cal vac pres span Wert

Gibt man diesen Befehl ein, so wird der Vakuum-Messbereich, basierend auf dem zum Zeitpunkt der Kalibrierung eingegebenen Vakuumdruck, automatisch eingestellt. Hier wird der neue Wert für den Vakuum-Messbereich basierend auf dem Vakuumdruck auf 120,5 mmHg eingestellt.

Send: set cal vac pres span 120.5 Receive: set cal vac pres span 120.5 ok

set cal vac flow offset

Mit Hilfe dieses Befehls wird automatisch der Filterwechsel ausgelöst und der neue Wert für den Vakuum- und Durchfluss-Offset gesetzt. Im Beispiel wird der Offset für Vakuum und Durchfluss erfolgreich eingestellt.

Send: set cal vac flow offset Receive: set cal vac flow offset ok

coef pm

Über diesen Befehl erhält man den Feinstaub-Koeffizienten. Hier beträgt er beispielsweise 1.200.

Send: coef pm Receive: coef pm 1.200

set coef pm Wert

Gibt man diesen Befehl ein, kann man den Feinstaub-Koeffizienten auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der Feinstaub-Koeffizient auf 1.200 gesetzt.

Send: set coef pm 1.200 Receive: set coef pm 1.200 ok

coef sharp

Gibt man diesen Befehl ein, so erhält man den SHARP-Koeffizienten. Er beträgt hier beispielsweise 1,05.

Send: coef sharp Receive: coef sharp 1.050

set coef sharp Wert

Gibt man diesen Befehl ein, kann man den SHARP-Koeffizienten auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der SHARP-Koeffizient auf 1,04 gesetzt.

Send: set coef sharp 1.04 Receive: set coef sharp 1.04 ok

flow pres span

Über diesen Befehl erhält man den Durchflussdruck-Messbereich, erfasst zum Zeitpunkt der Kalibrierung. Hier beträgt er beispielsweise 1,2.

Send: flow pres span Receive: flow pres span 1.200

set flow pres span Wert

Gibt man diesen Befehl ein, kann man den Durchflussdruck-Messbereich auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Messbereich darstellt. Im folgenden Beispiel wird der neue Wert für den Durchflussdruck erfolgreich auf 1,5 eingestellt.

Send: set flow pres span 1.5 Receive: set flow pres span 1.5 ok

flow pres offset

Gibt man diesen Befehl ein, so erhält man den Offset für den Durchflussdruck für den Detektor zum Zeitpunkt der Kalibrierung. Hier beträgt er beispielsweise 3,0.

Send: flow pres offset Receive: flow pres offset 3.0

flow span

Über diesen Befehl erhält man den aktuellen Durchfluss-Messbereich zum Zeitpunkt der Kalibrierung. Hier beträgt der Durchfluss bei Kalibrierung 1,00.

Send: flow span Receive: flow span 1.000

set flow span Wert

Gibt man diesen Befehl ein, kann man den aktuellen Durchfluss-Messbereich auf einen bestimmten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Messbereich zum Zeitpunkt der Kalibrierung darstellt. Im folgenden Beispiel wird der Messbereich auf 1,5 eingestellt.

Send: set flow span 1.5 Receive: set flow span 1.5 ok

flow temp offset

Gibt man diesen Befehl ein, so erhält man den Offset für die Durchflusstemperatur in Grad Celsius. Hier beträgt der Offset für die Durchflusstemperatur beispielsweise 5 °C.

Send: flow temp offset Receive: flow temp offset 5.0 degC

set flow temp offset Wert

Mit Hilfe dieses Befehls wird der Offset-*Wert* für die Durchflusstemperatur eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche Offset in Grad Celsius darstellt. Hier wird der Offset für die Durchflusstemperatur auf 7 °C eingestellt.

Send: set flow temp offset 7 Receive: set flow temp offset 7 ok

high volt

Über diesen Befehl erhält man the aktuellen der Wert der Detektor-Hochspannung. Hier beträgt sie beispielsweise 1400 V.

Send: high volt Receive: high volt 1400

set high volt Wert

Mit Hilfe dieses Befehls wird die Hochspannung für den Detektor auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Hochspannung darstellt. Hier wird die Hochspannung auf 1445 V gesetzt.

Send: set high volt 1445 Receive: set high volt 1445 ok

mass coef

Gibt man diesen Befehl ein, so erhält man den aktuellen Massenkoeffizienten. Hier beträgt er beispielsweise 7100.

Send: mass coef Receive: mass coef 7100.0

set mass coef Wert

Gibt man diesen Befehl ein, kann man den Massenkoeffizienten auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der Massenkoeffizient auf 7000 eingestellt.

Send: set mass coef 7000 Receive: set mass coef 7000 ok

thermal mass coef

Über diesen Befehl erhält man den aktuellen therm. Massenkoeffizienten. Hier beträgt er beispielsweise 19.000000.

Send: thermal mass coef Receive: thermal mass coef 19.000000

set thermal mass coef Wert

Gibt man diesen Befehl ein, kann man den therm. Massenkoeffizienten auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der therm. Massenkoeffizient auf 20,5 eingestellt.

Send: set thermal mass coef 20.5 Receive: set thermal mass coef 20.5 ok

vac mass coef

Gibt man diesen Befehl ein, so erhält man den aktuellen Vakuum-Massenkoeffizienten. Er beträgt hier beispielsweise 2,0.

Send: vac mass coef Receive: vac mass coef 2.000000

set vac mass coef Wert

Gibt man diesen Befehl ein, kann man den Vakuum-Massenkoeffizienten auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der Vakuum-Massenkoeffizient auf 3,1 eingestellt.

Send: set vac mass coef 3.1 Receive: set vac mass coef 3.1 ok

neph cal bkg

Mit Hilfe dieses Befehls wird für das Nephelometer eine autom. Nullkalibrierungsroutine eingestellt.

Send: set neph cal bkg Receive: set neph cal bkg ok

neph coef

Über diesen Befehl erhält man den werksseitig eingestellten Messbereichskoeffizienten des Nephelometers. Hier beträgt er beispielsweise 388.000.

Send: neph coef Receive: neph coef 388.000

set neph coef Wert

Gibt man diesen Befehl ein, kann man den Messbereichskoeffizienten des Nephelometers auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird der Messbereichskoeffizient auf 250.00 eingestellt.

Send: set neph coef 250 Receive: set neph coef 250 ok

neph reset bkg

Mit diesem Befehl werden alle gemessenen Hintergrundwerte wieder auf null zurückgesetzt.

```
Send: set neph reset bkg
Receive: set neph reset bkg ok
```

neph restore bkg

Über diesen Befehl kann man die früheren Hintergrundwerte wiederherstellen.

Send: set neph restore bkg Receive: set neph restore bkg ok

neph rh offset

Gibt man diesen Befehl ein, so erhält man den werksseitig eingestellten Offset für den rel. Feuchte-Sensor. Hier beträgt der Offset für diesen Sensor beispielsweise 7,3%.

Send: neph rh offset Receive: neph rh offset 7.3 %

set neph rh offset Wert

Gibt man diesen Befehl ein, kann man den Offset-Wert für den rel. Feuchte-Sensor des Nephelometers auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Offset darstellt. Im folgenden Beispiel wird ein Offset von 3% eingestellt.

Send: set neph rh offset 3 Receive: set neph rh offset 3 ok

neph src level

Über diesen Befehl erhält man den werksseitig eingestellten Quellenpegel des Nephelometers. Hier beträgt er beispielsweise 44%.

Send: neph src level Receive: neph src level 44 %

set neph src level Wert

Gibt man diesen Befehl ein, kann man den Nephelometer Quellenpegel auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Pegel darstellt. Im folgenden Beispiel wird ein Pegel von 50% eingestellt.

Send: set neph src level 50 Receive: set neph src level 50 ok

neph temp offset

Gibt man diesen Befehl ein, so erhält man den werksseitig eingestellten Temperatur-Offset des Nephelometers. Hier beträgt er beispielsweise 2,6 °C.

Send: neph temp offset Receive: neph temp offset 2.6 degC

set neph temp offset Wert

Gibt man diesen Befehl ein, kann man den Temperatur-Offset für das Nephelometer auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Offset darstellt. Im folgenden Beispiel wird ein Offset von 2,5 °C eingestellt.

Send: set neph temp offset 2.5 Receive: set neph temp offset 2.5 ok

neph thermal coef

Über diesen Befehl erhält man den werksseitig eingestellten Wärmekoeffizienten des Nephelometers. Er beträgt hier beispielsweise 0,00058.

Send: neph thermal coef Receive: neph thermal coef 0.00058

set neph thermal coef Wert

Gibt man diesen Befehl ein, kann man den Wärmekoeffizienten für das Nephelometer auf benutzerdefinierte *Werte* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Koeffizienten darstellt. Im folgenden Beispiel wird ein Wärmekoeffizient von 0,001 eingestellt.

Send: set neph thermal coef 0.001 Receive: set neph thermal coef 0.001 ok

tape to ncal ratio

Gibt man diesen Befehl ein, so erhält man das Verhältnis von der Anzahl Filterbandwechsel pro automatischer Nephelometer-Nullung. Hier beträgt das Verhältnis 1:1.

Send: tape to ncal ratio Receive: tape to ncal ratio 1:1

set tape to ncal ratio

Gibt man diesen Befehl ein, kann man für das Verhältnis Anzahl Filterbandwechsel zu autom. Nullung einen benutzerdefinierten *Wert* setzen, wobei der *Wert* eine Gleitpunktzahl ist, welche das Verhältnis darstellt. Im folgenden Beispiel wird ein Verhältnis von 2:1 eingestellt.

Send: set tape to ncal ratio 2:1 Receive: set tape to ncal ratio 2:1 ok

vac pres span

Über diesen Befehl erhält man den Vakuum-Messbereich für den Detektor zum Zeitpunkt der Kalibrierung. Er beträgt hier beispielsweise 1,0.

Send: vac pres span Receive: vac pres span 1.000

set vac pres span Wert

Mit diesem Befehl wird der Vakuum-Messbereich auf den zum Zeitpunkt der Kalibrierung angegebenen Wert eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche den Vakuum-Messbereich darstellt. Im folgenden Beispiel wird erfolgreich ein neuer Wert von 1,002 eingestellt.

Send: set vac pres span 1.002 Receive: set vac pres span 1.002 ok

vac pres offset

Gibt man diesen Befehl ein, so erhält man den Vakuum-Offset für den Detektor zum Zeitpunkt der Kalibrierung. Hier beträgt der Offset beispielsweise 0,3.

Send: vac pres zero Receive: vac pres zero 0.3

set vf pres cal def

Mit Hilfe dieses Befehls werden die Vakuum- und Durchflusskalibrierung wieder auf ihre standardmäßigen Werte zurückgesetzt.

Send: set vf pres cal def Receive: set vf pres cal def ok

Tasten/Display

push Taste		
do	me	1
down	menu	2
en	ri	3
enter	right	4
he	ru	
help	run	
le	up	
left	-	

Taste = | do | down | en | enter | he | help | le | left | me | menu | ri | right | ru | run | up | 1 | 2 | 3 | 4 |

Mit diesen Befehlen simuliert man das Drücken einer Taste auf dem Bedienfeld auf der Vorderseite des Gerätes. Die Zahlen stellen die Softkeys dar (von links nach rechts).

Send: push enter Receive: push enter ok

isc

iscreen

Mit diesem Befehl ruft man Daten aus dem Framepuffer ab, die für die Anzeige / Display auf dem iSeries Gerät verwendet werden. Der Puffer hat eine Größe von 19200 Bytes, 2-Bits pro Pixel, 4 Pixel pro Byte angeordnet als Zeichen 320 x 240. Die Daten werden in RLE-kodierter Form geschickt, um Übertragungszeit zu sparen. Sie werden als Typ '5' binäre c_link Antwort ohne Checksumme geschickt.

Die RLE-Kodierung besteht aus einer o gefolgt von einer 8-Bit Zählfolge von aufeinanderfolgenden oxFF Bytes. Der folgende 'c' Code erweitert die ankommenden Daten.

```
unpackDisplay ( void far* tdib, unsigned char far* rlescreen )
void
int i,j,k;
unsigned char far *sc4bpp, *sc2bpp, *screen, *ptr;
   ptr = screen = (unsigned char far *)malloc(19200);
   //RLE decode the screen for (i=0; i<19200 && (ptr - screen) < 19200; i++)
      * (ptr++) = * (rlescreen + i);
      if (*(rlescreen + i) == 0)
      {
         unsigned char rlecount = * (unsigned char *) (rlescreen + ++i);
         while (rlecount)
          {
             *(ptr++) = 0;
            rlecount--;
          1
      }
```

```
else if (*(rlescreen + i) == 0xff)
{
    unsigned char rlecount = *(unsigned char *)(rlescreen + ++i);
    while (rlecount)
    {
        *(ptr++) = 0xff;
        rlecount--;
     }
}
```

Um diese Daten in BMP für Windows zu konvertieren, ist zunächst eine Umwandlung in 4BPP erforderlich. Dies ist das kleinste Format, das Windows anzeigen kann. Beachten Sie auch, dass BMP Dateien umgekehrt zu diesen Daten sind, d.h. die oberste Zeile der Anzeige ist die letzte Zeile bei BMP.

SC

}

screen

Dieser Befehl dient zur Abwärtskompatibilität zur C Serie. Die Bildschirminformation wird mit dem o.g. "iScreen" Befehl angezeigt.

Send: screen Receive: screen This is an iSeries instrument. Screen information not available.

Konfiguration der Messungen

conc unit

Gibt man diesen Befehl ein, so werden die aktuellen Konzentrationseinheiten angezeigt (mg/m³ oder μ g/m³). Hier ist beispielsweise als Konzentrationseinheit mg/m³ eingestellt.

```
Send: conc unit
Receive: conc unit µg/m3
```

set conc unit Einheit

 $Einheit = | \mu g/m^3 | mg/m^3 |$

Mit diesem Befehl kann man die Konzentrationseinheit einstellen $(mg/m^3 \text{ oder } \mu g/m^3)$. Im folgenden Beispiel wird als Konzentrationseinheit mg/m^3 eingestellt.

Send: set conc unit mg/m3 Receive: set conc unit mg/m3 ok

custom Bereich

Bereich = |1|2|3|

Mit diesem Befehl erhält man den benutzerdefinierten Wert eines kundenspezifischen *Bereichs* 1, 2, oder 3. Hier ist beispielsweise der benutzerdefinierte Bereich 1 auf 5,50 mg/m³ festgelegt.

Send: custom 1 Receive: custom 1 5.500E+00 mg/m3

set custom Bereich range Wert set custom 1 Wert set custom 2 Wert set custom 3 Wert

Mit diesen Befehlen stellt man die max. Konzentration für einen beliebigen dieser drei kundenspezifischen *Bereiche* 1, 2 oder 3 auf einen *Wert*, wobei der *Wert* eine Gleitpunktzahl ist, die die Konzentration in der aktuell gewählten Einheit darstellt. Hier wird beispielsweise der Bereich 1 auf 100.5 μ g/m³ eingestellt.

filter period

Gibt man diesen Befehl ein, so wird die Anzahl Stunden angezeigt, die hinzugefügt werden muss für den nächsten Filterwechsel. Hier beträgt beispielsweise die Filterdauer acht Stunden.

Send: filter period Receive: filter period 8 HRS

set filter period Wert

Mit diesem Befehl wird die Anzahl Stunden, die für den Filterwechsel nächstes Mal hinzugefügt werden muss, auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Filterdauer in Stunden darstellt. Hier wird beispielsweise ein Wert von zehn Stunden eingestellt.

Send: set filter period 10 Receive: set filter period 10 ok

filter time

Gibt man diesen Befehl ein, so erhält man Datum und Uhrzeit an dem das Filterband gewechselt werden muss. Hier muss der Filter beispielsweise am 1. Januar 2008, um 18:12, das nächste Mal getauscht werden.

Send: filter time Receive: filter time 01Jan08 18:12

set filter time dd-mm-yyyy hh:mm:ss

dd = Tag mm = Monat yyyy = Jahr hh = Stunden mm = Minutenss = Sekunden

Mit diesem Befehl wird der nächste Filterwechsel festgelegt. Dieser soll hier beispielsweise am 1. Oktober 2008, um 23:32 durchgeführt werden.

```
Send: set filter time 10-01-2008 23:32
Receive: set filter time 10-01-2008 23:32 ok
```

flow target

Über diesen Befehl erhält man den aktuellen Durchfluss. Er beträgt hier beispielsweise 16,0 LPM.

Send: flow target Receive: flow target 16.00

set flow target Wert

Mit diesem Befehl wird der Durchfluss auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche den Durchfluss im Bereich 1 - 20 LPM darstellt. Hier wird beispielsweise ein Durchfluss von 16,67 LPM eingestellt.

Send: set flow target 16.67 Receive: set flow target 16.67 ok

ht control

Gibt man diesen Befehl ein, so erhält man den aktuellen Status der Heizung (aus, Schwellwert rel. Feuchte, oder Schwellwert für Temperatur). Hier ist als Status für die Steuerung der Schwellwert für die rel. Feuchte angegeben.

Send: ht control Receive: ht control RH

set ht control Auswahl

Auswahl = | off | rh | temp |

Gibt man diesen Befehl ein, so wird die Heizung auf AUS, Schwellwert rel. Feuchte oder Schwellwert Temperatur eingestellt. Hier lautet die Einstellung: Temperatur-Schwellwert.

Send: set ht control temp Receive: set ht control temp ok

int time

Über diesen Befehl erhält man die aktuelle Integrationszeit der berechneten Masse und Konzentration. Diese beträgt hier beispielsweise 15 Minuten.

Send: int time Receive: int time 15 min

set int time Wert

Mit diesem Befehl wird die Integrationszeit auf einen auf einen *Wert* eingestellt, der 15, 20, 30, 40, 45 oder 60 Minuten betragen kann. Hier wird beispielsweise eine Integrationszeit von 20 Minuten eingestellt.

Send: set int time 20 Receive: set int time 20 ok

mass limit

Gibt man diesen Befehl ein, so erhält man den aktuellen Grenzwert für die Filtermasse. Der Grenzwert beträgt hier 1500 mg/m³.

Send: mass limit Receive: mass limit 1500

set mass limit Wert

Mit diesem Befehl wird der Grenzwert für die Filtermasse auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche den Massengrenzwert zwischen 0,5 bis 1.5 mg/m³ oder 500 bis 1500 μ g/m³ einstellt. Hier wird beispielsweise 1,0 mg/m³ als Grenzwert eingestellt.

Send: set mass limit 1.0 Receive: set mass limit 1.0 ok

pres comp

Gibt man diesen Befehl ein, so wird angezeigt, ob der Druckausgleich für die aktuellen oder für Standard-Bedingungen erfolgt. Hier erfolgt ein standardmäßiger Temperaturausgleich.

Send: pres comp Receive: pres comp std

set pres comp *Auswahl Auswahl* = | act | std |

Über diesen Befehl wird der Druckausgleich entweder auf aktuelle oder auf Standard-Bedingungen eingestellt. Einstellung hier: aktuelle Bedingungen. Send: set pres comp act Receive: set pres comp act ok

pres std

Gibt man diesen Befehl ein, so erhält man den Normaldruck Er beträgt hier beispielsweise 760 mmHg.

Send: pres std Receive: pres std 760 mmHg

set pres std Wert

Über diesen Befehl wird der Normaldruck auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche den Normaldruck zwischen 0 und 760 mmHg darstellt. Hier wird ein Normaldruck von 730 mmHg eingestellt.

Send: set pres std 730 Receive: set pres std 730 ok

range

Über diesen Befehl erhält man den aktuellen Feinstaubbereich. Ist die Betriebsart nicht korrekt, dann antwortet das Gerät mit "nicht möglich, falsche Einstellungen". Hier ist der Feinstaubbereich beispielsweise auf 5 mg/m³ eingestellt, gemäß Tabelle B–5.

Send: range Receive: range 4: 5.000E+00 mg/m3

set range Auswahl

Mit diesem Befehl können die Bereiche für Feinstaub gemäß Tabelle B-5 ausgewählt werden. Hier wird z.B. ein Bereich von 10 mg/m³ eingestellt.

Send:	set	range	5	
Receive:	set	range	5	ok

Tabelle B-5. Standard-Bereiche

Auswahl	μ g/m ³	mg/m ³
0	100	0.1
1	1000	1.0
2	2000	2.0
3	3000	3.0
4	5000	5.0
5	10000	10.0
6	C1	C1

Auswahl	μ g/m ³	mg/m ³
7	C2	C2
8	C3	C3

rh th

Gibt man diesen Befehl ein, so erhält man den aktuellen Schwellwert für die rel. Feuchte für die Probe. Der Schwellwert beträgt hier beispielsweise 30%.

Send: rh th Receive: rh th 30 %

set rh th Wert

Mit Hilfe dieses Befehls kann man den rel. Feuchte Schwellwert für die Probe auf einen bestimmten *Wert* einstellen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Schwellwert zwischen 25 und 90% darstellt. Im folgenden Beispiel wird der Schwellwert für die rel. Feuchte auf 35% eingestellt.

Send: set rh th 35 Receive: set rh th 35 ok

temp comp

Gibt man diesen Befehl ein, so wird angezeigt, ob der Temperaturausgleich für aktuelle oder Standardbedingungen durchgeführt wird. Hier: Standardbedingungen.

Send: temp comp Receive: temp comp std

set temp comp Auswahl

Auswahl = |act| std|

Über diesen Befehl wird der Temperaturausgleich entweder auf aktuelle oder auf Standard-Bedingungen eingestellt. Einstellung hier: aktuelle Bedingungen.

Send: set temp comp act Receive: set temp comp act ok

temp std

Gibt man diesen Befehl ein, so erhält man die Normaltemperatur. Diese beträgt hier beispielsweise 18 °C.

Send: temp std Receive: temp std 18 degC

set temp std Wert

Über diesen Befehl wird die Normaltemperatur auf einen *Wert* eingestellt, wobei der *Wert* eine Gleitpunktzahl ist, welche die Normaltemperatur zwischen 0 und 25 °C darstellt. Hier wird für die Normaltemperatur 15 °C eingestellt.

Send: set temp std Receive: set temp std 15 ok

temp th

Über diesen Befehl erhält man den Heizungs-Temperaturschwellwert für die Probe. Der Schwellwert beträgt hier 30 °C.

Send: temp th Receive: temp th 30 degC

set temp th Wert

Mit Hilfe dieses Befehls kann man den Temperatur-Schwellwert für die Probe auf einen bestimmten *Wert* einstellen, wobei der *Wert* eine Gleitpunktzahl ist, welche den Schwellwert zwischen o und 70 °C darstellt. Hier wird als Temperaturschwellwert beispielsweise 35 °C eingestellt.

Send: set temp th 35 Receive: set temp th 35 ok

Hardware Konfiguration

contrast

Gibt man diesen Befehl ein, so wird angezeigt, welcher Kontrast eingestellt ist. Beim nachfolgenden Beispiel beläuft sich der Bildschirmkontrast auf 55%, gemäß Tabelle B–6.

```
Send: contrast
Receive: contrast 11: 55%
```

set contrast Stufe

Mit diesem Befehl kann man das *die Kontraststufe* einstellen (gemäß Tabelle B–6). Hier wird beispielsweise der Kontrast auf 50% eingestellt.

Send: set contrast 10 Receive: set contrast 10 ok

Tabelle B-6. Kontrasteinstellungen

Stufe	Kontrast
0	0%
1	5%

Stufe	Kontrast
2	10%
3	15%
4	20%
5	25%
6	30%
7	35%
8	40%
9	45%
10	50%
11	55%
12	60%
13	65%
14	70%
15	75%
16	80%
17	85%
18	90%
19	95%
20	100%

date

Mit diesem Befehl erhält man das aktuelle Datum. Das Datum hier ist der 1.4. 2009.

Send: date Receive: date 04-01-09

set date mm-dd-yy

mm = Monatdd = Tagyy = Jahr

Mit diesem Befehl kann man das Datum der internen Uhr des Analysators einstellen. Hier wird z.B. der 1. 5. 2009 eingestellt.

Send: set date 05-01-09 Receive: set date 05-01-09 ok

set default params

Mit diesem Befehl werden alle Parameter auf die Default-Werte zurückgesetzt. Die werksseitig eingestellten Parameter betrifft dies allerdings nicht.

Send: set default params Receive: set default params ok

det

Gibt man diesen Befehl ein, so erhält man Auskunft über den Status der Detektorplatine (sharp/beta/map/none). Hier beispielsweise: beta.

Send: det Receive: det beta

pump

Über diesen Befehl erhält man den aktuellen Status der Pumpe (ob ein oder aus). Hier ist die Pumpe beispielsweise aus.

Send: pump Receive: pump off

set pump EinAus

Ein/Aus = |ein|aus|

Mit Hilfe diese Befehls kann man die Pumpe ein oder ausschalten. Hier wird die Pumpe beispielsweise eingeschaltet.

Send: set pump on Receive: set pump on ok

save

set save params

Mit diesem Befehl werden alle aktuellen Parameter in den FLASH Speicher gespeichert. Es ist dabei wichtig, dass jedes Mal, wenn Parameter geändert werden, dieser Befehl geschickt wird. Werden die Änderungen nicht gespeichert, dann gehen sie im Fall eines Stromausfalls verloren. Das Beispiel zeigt: die Parameter werden im FLASH-Speicher abgelegt.

Send: set save params Receive: set save params ok

time

Über diesen Befehl erhält man die aktuelle Zeit im 24-Std. Format. Hier: 14:15:30.

Send: time Receive: time 14:15:30 set time hh:mm:ss hh = Stunden mm = Minuten ss = Sekunden Mit diesem Befehl wird die interne Uhr eingestellt (24-Std. Format). Hier wird als Zeit 14:15 eingestellt.

Hinweis: Werden die Sekunden nicht eingegeben, dann wird als Default-Wert oo eingestellt. •

Send: set time 14:15 Receive: set time 14:15 ok

Konfiguration d. Kommunikation

addr dns

Über diesem Befehl erhält man die TCP/IP Adresse für den Domain-Namen-Server.

Send: addr dns Receive: addr dns 192.168.1.1

set addr dns Adresse

Über diesen Befehl kann man die dns *Adresse* eingeben. Diese besteht aus 4 Zahlen von 0-255 inkl., die durch "." getrennt werden.

Send: set addr dns 192.168.1.1 Receive: set addr dns 192.168.1.1 ok

addr gw

Über diesen Befehl erhält man die Default-Einstellung der TCP/IP Gateway-Adresse.

Send: addr gw Receive: addr gw 192.168.1.1

set addr gw Adresse

Über diesen Befehl kann man die Default-Gateway *Adresse* eingeben. Diese besteht aus 4 Zahlen von 0-255 inkl., die durch "." getrennt werden.

Hinweis Dieser Befehl kann nicht verwendet werden, wenn DHCP aktiv ist. Weitere Informationen erhalten Sie beim Befehl DHCP. •

Send: set addr gw 192.168.1.1 Receive: set addr gw 192.168.1.1 ok

addr ip

Über diesen Befehl erhält man die IP Adresse des Messgeräts.

Send: addr ip Receive: addr ip 192.168.1.200

set addr ip Adresse

Mit Hilfe dieses Befehls kann man die IP *Adresse* des Messgeräts eingeben. Sie besteht aus vier Zahlen von 0-255 inkl., die durch "." getrennt werden.

Hinweis Dieser Befehl kann nicht verwendet werden, wenn DHCP aktiv ist. Weitere Informationen erhalten Sie beim Befehl DHCP. •

Send: set addr ip 192.168.1.200 Receive: set addr ip 192.168.1.200 ok

addr nm

Über diesen Befehl erhält man die TCP/IP Netzmaske.

Send: addr nm Receive: addr nm 255.255.252.0

set addr nm Adresse

Dieser Befehl dient zur Eingabe der Netzmasken-*Adresse*. Diese besteht aus 4 Zahlen von 0-255 inkl., die durch "." getrennt werden.

Hinweis Dieser Befehl kann nicht verwendet werden, wenn DHCP aktiv ist. Weitere Informationen erhalten Sie beim Befehl DHCP. •

Send: set addr nm 255.255.252.0 Receive: set addr nm 255.255.252.0 ok

addr ntp

Über diesen Befehl erhält man die IP Adresse für den Netzwerk-Zeitprotokoll-Server. Sieh auch "Netzwerk-Zeitprotokoll-Server" im Abschnitt "Kommunikationseinstellungen" des Kapitels "Betrieb".

Send: addr ntp Receive: addr ntp 10.209.43.237

set addr ntp Adresse

Dieser Befehl dient zur Eingabe der *Adresse* für den Netzwerk-Zeitprotokoll-Server. Diese besteht aus 4 Zahlen von 0-255 inkl., die durch "." getrennt werden.

Send: set addr ntp 10.209.43.237 Receive: set addr ntp 10.209.43.237 ok

allow mode cmd

Gibt man diesen Befehl ein, so erhält man die aktuelle Einstellung für den Erlauben-Modus: 1 = Befehle "lokalen Modus einstellen" und "Fernbedienmodus einstellen" zulassen ; O = Befehle "lokalen Modus einstellen" und "Fernbedienmodus einstellen" ignorieren (siehe auch Tabelle B–7). Der Default-Wert ist O, d.h. Befehle ignorieren. Hier ist das Gerät beispielsweise so konfiguriert, dass die Befehle "lokalen Modus einstellen" und "Fernbedienmodus einstellen" ignoriert werden.

Send: allow mode cmd Receive: allow mode cmd 0

set allow mode cmd Wert

Dieser Befehl dient dazu, das Gerät auf einen *Wert* zu konfigurieren, wobei der *Wert* entweder 1 = zulassen oder O = ignorieren der Befehle "lokalen Modus einstellen" und "Fernbedienmodus einstellen" bedeutet (siehe auch Tabelle B–7).

Wird das Gerät so eingestellt, dass die Befehle zugelassen werden (Wert = 1), dann wird über den Befehl "lokalen Modus einstellen" das Gerät entsperrt und über die Tastatur können Änderungen über das Bedienpanel auf der Gerätevorderseite vorgenommen werden.

Wird das Gerät so eingestellt, dass die Befehle ignoriert werden (Wert = 0), dann antwortet das Gerät mit "ok" als ob der Befehl zugelassen worden wäre, **der Status "verriegelt" des Geräts wird jedoch nicht geändert** (aus Kompatibilitätsgründen mit Systemen , die als Antwort "ok" erwarten).

Hinweis Unabhängig von obiger Einstellung antwortet das Gerät auf den Befehl "Modus" immer mit dem Status des Kennwortschutzes als "lokaler Modus" oder "Fernsteuermodus". Im folgenden Beispiel wird das Gerät so eingestellt, dass die Befehle "lokalen Modus einstellen" und "Fernbedienmodus einstellen" zugelassen werden.

Send: set allow mode cmd 1 Receive: set allow mode cmd 1 ok

Tabelle B-7. Befehle zulassen / ignorieren - Werte

Werte	Befehl zulassen / ignorieren
0	Ignorieren (Default-Einstellung)
1	Zulassen

baud

Über diesen Befehl erhält man die aktuelle Baudrate für den seriellen Port (RS232/RS485). Hier beträgt die aktuelle Baudrate 9600.

Send: baud Receive: baud 9600

set baud Rate

Rate = | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 |

Über diesen Befehl kann die Baudrate eingestellt werden. Hier lautet die Einstellung beispielsweise 9600.

Hinweis Nach dem Senden dieses Befehls, muss die Baudrate des Sendegerätes so geändert werden, dass Sie mit der des Gerätes übereinstimmt.

Send: set baud 9600 Receive: set baud 9600 ok

dhcp

Über diesen Befehl erhält man den aktuellen Status, ob das Dynamic Host Communication Protokoll (DHCP) aktiviert oder deaktiviert ist. Das DHCP wird dazu verwendet, um die IP Adresse dem Analysator automatisch zuzuordnen. Hier ist beispielsweise das DHCP aktiviert.

Send: dhcp Receive: dhcp on **set dhcp** *EinAus EinAus* = | ein | aus |

Mit diesem Befehl wird das DHCP aktiviert (*on*) oder deaktiviert (*off*). Ist das DHCP aktiviert, dann erhält das Gerät die IP Adresse, die Netzmasken-Adresse und die Gateway-Adresse vom DHCP Server. Ist dies nicht der Fall, erhält das Gerät diese Adressen aus dem Systemspeicher. Im nachfolgenden Beispiel ist diese DHCP Option aktiviert.

Hinweis Wechselt man von DHCP aktiviert zu DHCP deaktiviert, und wird dann die IP Adresse, die Netzmaskenadresse oder die Gateway-Adresse geändert, so müssen Sie den Strom einmal ausund wieder einschalten, damit die Änderungen wirksam werden. Solange das Netz nicht aus und wieder eingeschaltet wird, wird die vom DHCP Server vergebene Adresse weiter verwendet und als aktuelle Adresse genannt.

```
Send: set dhcp on
Receive: set dhcp on ok
```

format

Mit diesem Befehl erhält man das aktuelle Antwort-Abschlussformat. Hier ist das Antwortformat beispielsweise oo, d.h. Antwort ohne Checksumme, gemäß Tabelle B–8.

Send: format Receive: format 00

set format Format

Mit diesem Befehl kann das Antwort-Abschluss-*Format* eingestellt werden (siehe Tabelle B–8). Hier wird z.B. als Antwort-Abschuss die Checksumme gewählt.

```
Send: set format 01
Receive: set format 01 ok
```

Tabelle B-8. Antwort-Abschlussformate

Format	Antwortabschluss
00	<cr></cr>
01	<nl> sum xxxx <cr></cr></nl>

wobei xxxx = 4 hexadezimale Stellen, die die Summe aller Zeichen (Bytes) der Meldung darstellen.

host name

Über diesen Befehl erhält man den String des Hostnamens. Hier ist der Name des Host *i*Series.

Send: host name Receive: host name iSeries

set host name String

Mit Hilfe dieses Befehls kann man den *String* des Host-Namens einstellen (1-13 alphanumerische Zeichen). Im nachfolgenden Beispiel wird als Hostname "analyzero1" eingestellt.

Send: set host name analyzer01 Receive: set host name analyzer01 ok

instr name

Schickt man diesen Befehl, so wird dem Bediener der Gerätenamen mitgeteilt. Hier beispielsweise: Modell 5030*i*.

Send: instr name Receive: instr name SHARP Particle Analyzer

instrument id

Über diesen Befehl erhält man die Geräte ID. Das folgende Beispiel zeigt die aktuelle Einstellung der Geräte ID.

Send: instrument id Receive: instrument id 14

set instrument id Wert

Mit diesem Befehl kann man die Geräte ID auf einen bestimmten *Wert* einstellen, der *Wert* ist dabei eine Dezimalzahl zwischen 0 und 127 inkludiert. Hier wird beispielsweise als Geräte ID 12 eingestellt.

Hinweis Wird dieser Befehl über RS-232 oder RS-485 geschickt, dann muss der Host für die nachfolgenden Befehle die neue ID verwenden.

Send: set instrument id 12 Receive: set instrument id 12 ok

layout ack

Über diesen Befehl erhält man den stale Layout/Layoutänderungs-Indikator (*)der an jede Antwort angehängt wird, wenn sich das erec Layout seit der letzten erec Layout –Anforderung geändert hat. Siehe auch Tabelle B–9.

Send: layout ack Receive: layout ack 0

set layout ack Wert

Mit diesem Befehl deaktiviert man den stale Layout/Layout-Änderungs-Indikator ('*'), der an jede Antwort angehängt wird, wenn sich das erec Layout seit der letzten erec Layout – Anforderung geändert hat. Siehe auch Tabelle B–9.

Send:	set	layout	ack	
Receive:	set	layout	ack	ok

Tabelle B-9. Layoutbestätigungswerte setzen

Wert	Funktion
0	Keine Aktion (default)
1	"*" anhängen

power up mode

Gibt man diesen Befehl ein, so erhält man die aktuelle Einstellung für den "Power up" Modus. Gemäß Tabelle B–10 gibt es 2 Optionen:

o = lokal/entriegelt oder 1 = Fernsteuerung/verriegelt. Als Default-Einstellung wird als Wert o eingestellt = Power up im Modus local/unlocked (= lokal/entriegelt). Hier ist das Gerät beispielsweise wie folgt konfiguriert: Power up im Modus remote/locked (= Fernsteuerung/verriegelt).

Send: power up mode Receive: power up mode 1

set power up mode Wert

Mit Hilfe dieses Befehls kann man das Gerät konfigurieren. Folgende Optionen sind verfügbar: Power up im Modus local/unlocked (= lokal/entriegelt) (*Wert* = 0) oder im Modus remote/locked (= Fernsteuerung/verriegelt) (*Wert* = 1), gemäß Tabelle B–10.

Ist das Gerät auf "Power-up im Modus local/remote" eingestellt, so kann der Bediener über das Tastenfeld auf der Frontplatte Änderungen vornehmen. Hier ist das Gerät beispielsweise auf

Hochfahren im Modus remote/locked (= Fernsteuerung/verriegelt).

Send:	set	power	up	mode	1	
Receive:	set	power	up	mode	1	ok

Tabelle B-10. Werte – Power-Up Modus

Wert	Power-up Modus
0	Local/Unlocked Mode (default) Lokal/entriegelt (Default)
1	Remote/Locked Mode Fernsteuerung/verriegelt

program no

Wählt man diesen Befehl, dann erhält man Informationen über das Analysator-Modell und die Versionsnummer des Programms.

Send: program no Receive: program no iSeries 5030i 00.05.37.093

tz

Gibt man diesen Befehl ein, so erhält man den "tz" timezone String (= Zeitzonen-String) für den NTP Server. Weitere Informationen finden Sie unter "Netzwerk-Zeitprotokoll-Server" im Abschnitt "Kommunikationseinstellungen".

Send: tz Receive: tz EST+5EDT

set tz String

Mit Hilfe dieses Befehls setzt man den Zeitzonen-*String* für das Gerät, der mit dem NTP Server zu verwenden ist. Der *String* ist hierbei ein standardmäßiger Zeitzonen-String. Häufig vorkommende Strings finden Sie in der Beschreibung zur Anzeige/Display "Timezone" in Kapitel 3.

```
Send: set tz EST+5EDT
Receive: set tz EST+5EDT ok
```

I/O Konfiguration

analog iout range Kanal

Über diesen Befehl erhält man die Bereichseinstellung der analogen Stromausgänge für einen *Kanal*, wobei der *Kanal* zwischen 1 und 6 liegen muss. Hier ist beispielsweise der aktuelle Ausgangskanal 4 auf den Bereich 4 -20 mA eingestellt, gemäß Tabelle B–11. Wird die I/O-Erweiterungskarte nicht erkannt, dann antwortet dieser Befehl mit "feature not enabled" (= Funktion nicht aktiviert).

Send: analog iout range 4 Receive: analog iout range 4 2

set analog iout range Kanal Bereich

Mit diesem Befehl wird der analoge Stromausgang Kanal auf einen *Kanal-Bereich* eingestellt, wobei der Kanal zwischen 1 und 6 inkl. liegt und der *Bereich* gemäß Tabelle B–11. Hier wird der Stromausgangskanal 4 auf den Bereich 0-20 mA eingestellt. range. Wird die I/O-Erweiterungskarte nicht erkannt, dann antwortet dieser Befehl mit "feature not enabled" (= Funktion nicht aktiviert).

Send: set analog iout range 4 1 Receive: set analog iout range 4 1 ok

Tabelle B-11. Analoge Stromausgänge - Bereichswerte

Bereich	Ausgangsbereich
1	0-20 mA
2	4-20 mA
0 [kann nicht auf diesen Wert gesetzt werden, aber Anzeige möglich]	Nicht definiert

analog vin Kanal

Über diesen Befehl ruft man die Daten vom analogen Spannungseingang ab (berechneter und aktueller Spannungswert für den *Kanal*). Hier ist z.B. der "berechnete" Wert für Kanal 1 75,325 F, der Spannungswert beläuft sich auf 2796 V. Wird die I/O-Erweiterungskarte nicht erkannt, dann antwortet dieser Befehl mit "feature not enabled" (= Funktion nicht aktiviert).

Send: analog vin 1 Receive: analog vin 1 75.325, 2.796 V

analog vout range Kanal

Über diesen Befehl erhält man den Bereich des analogen Spannungsausgangs-*Kanals*. Der Kanal hat die Nr. 1-6 inkl., gemäß Tabelle B–12. Hier erhält man z.B. die Information, dass der analoge Spannungsausgangskanal 2 auf 3 gesetzt ist (0-10 V).

Send: analog vout range 2 Receive: analog vout range 2 3

set analog vout range Kanal Bereich

Mit diesem Befehl setzt man den analogen Spannungsausgangs-*Kanal* auf einen Bereich. Die Nummer des Kanals geht von 1 bis 6 inkl. Der Bereich wird gemäß Tabelle B–12 eingestellt. Hier wird z.B. Kanal 2 auf den Bereich 0-10 V eingestellt.

Send: set analog vout range 2 3 Receive: set analog vout range 2 3 ok

Tabelle B-12. Analoge Spannungsausgänge - Bereichswerte

Bereich	Ausgangsbereich
1	0-1 V
2	0-100 mV
3	0-10 V
4	0-5 V
0 [kann nicht auf diesen Wert gesetzt werden, aber Anzeige möglich]	Nicht definiert

dig in

Mit diesem Befehl erhält man den Status der digitalen Eingänge in Form eines 4-stelligen hexadezimalen Strings mit dem werthöchsten Bit Eingang 16.

Send: dig in Receive: dig in Oxffff

din Kanal

Mit diesem Befehl erhält man Informationen über die dem Eingangskanal zugeordnete Aktion und den entsprechenden aktiven Status. Hier wird beispielsweise dem Eingang 1 eine Index-Nr. 3 zugeordnet, die der Aktion "Feinstaub-Modus" mit aktivem Status "HIGH" entspricht.

Send: din 1 Receive: din 1 3 PM MODE high

set din Kanal Index Status

Mit diesem Befehl wird der digitale Eingangskanal (1-16) zugeordnet, die vom Index (1-12) angegebene Aktion zu aktivieren, wenn der Eingang in den entsprechenden Status übergeht (HIGH oder LOW). Verwenden Sie den Befehl "list din var", um eine Liste der unterstützten Index-Werte und die entsprechenden Aktionen zu erhalten. Hier wird beispielsweise der digitale Eingangskanal 1 auf 3 gesetzt (bei einem Übergang von LOW zu HIGH).

Send: set din 1 3 high Receive: set din 1 3 high ok

dout Kanal

Mit diesem Befehl erhält man die Index-Nr. und Ausgangsvariable sowie den aktiven Status, der dem Ausgangs*kanal* zugeordnet ist. Hier ist beispielsweise dem Ausgang 4 die Index-NR.11 zugeordnet, welche der Aktion "Durchfluss-Alarm" entspricht.

Send: dout 4 Receive: dout 4 11 FLOW ALARMS open

set dout Kanal Index Status

Mit Hilfe dieses Befehls wird dem digitalen Ausgangs*kanal* eine Aktion mit dem zugeordneten *Index* und aktiver Status (offen oder geschlossen) zugeordnet. Verwenden Sie den Befehl "list var dout", um die Liste unterstützter Indexwerte und den entsprechenden Status zu erhalten. Im folgenden Beispiel wird der digitale Ausgangskanal 4 auf Zustand 11 gesetzt.

Send: set dout 4 11 open Receive: set dout 4 11 open ok

dtoa Kanal

Mit diesem Befehl erhält man Informationen über die Ausgänge der 6 oder 12 Digital-/Analog-Konverter entsprechend Hinweis Befindet sich das Gerät in einem Modus, der keinen besonderen Ausgang zur Verfügung stellt, und wird dieser Ausgang ausgewählt, dann ist der Wert 0.0. •

Alle Kanalbereiche können vom Benutzer definiert werden. Wurde die Konfiguration der Analogausgänge individuellen Kundenbedürfnissen angepasst, dann gelten die Default-Einstellungen nicht.

Tabelle B–13. Hier hat beispielsweise der D/A #1 einen Wert von 97,7% vom Skalenendwert.

Send: dtoa 1 Receive: dtoa 1 97.7% **Hinweis** Befindet sich das Gerät in einem Modus, der keinen besonderen Ausgang zur Verfügung stellt, und wird dieser Ausgang ausgewählt, dann ist der Wert o.o. •

Alle Kanalbereiche können vom Benutzer definiert werden. Wurde die Konfiguration der Analogausgänge individuellen Kundenbedürfnissen angepasst, dann gelten die Default-Einstellungen nicht.

Tabelle B–13. Default-Zuordnungen der analogenAusgangskanäle

D zu A	Funktion	Bereich
1	Spannungsausgang	Feinstaub
2	Spannungsausgang	Durchschnittl. Feinstaub
3	Spannungsausgang	Durchfluss
4	Spannungsausgang	Umgebungstemperatur
5	Spannungsausgang	Durchflusstemperatur
6	Spannungsausgang	Rel. Feuchte i.d. Umgebungsluft
7	Stromausgang	Feinstaub
8	Stromausgang	Durchschnittl. Feinstaub
9	Stromausgang	Durchfluss
10	Stromausgang	Umgebungstemperatur
11	Stromausgang	Durchflusstemperatur
12	Stromausgang	Rel. Feuchte i.d. Umgebungsluft

list din list dout

Über diese Befehle erhält man die aktuelle Auswahl für die Digitaleingänge oder -ausgänge im Format: Ausgang Nr., Index-Nr, Name d. Variablen, aktiver Status. Der aktive Status für Digitalausgänge ist OFFEN oder GESCHLOSSEN; der aktive Status für die Digitaleingänge ist HIGH oder LOW.

Send: list dout Receive: list dout output index variable state

- 1 5 CONC ALARM open
- 2 1 LOCAL/REMOTE open
- 3 3 UNITS open

list var aout list var dout list var din list var log

Mit Hilfe dieser Befehle erhält man eine Liste von Index-Nr. und die Variablen (die mit der Index-Nr. verbunden ist), die im aktuellen Modus für Analogausgänge, Digitalausgänge, Digitaleingänge und Messwerterfassung zur Auswahl stehen. Die Index-Nr. dient dazu, eine Variable in ein Listenfeld mit Hilfe des Befehls "set sp field index" einzusetzen. Im nachfolgenden Beispiel finden Sie ein Liste der Analogausgänge, Index-Nr. und Variablen.

Send:	list var aout
Receive:	list var aout
	index variable
	0 none
	1 pm
	3 baro
	4 vac
	6 pflow
	8 ambrt
	9 srh
	11 ambtemp
	12 brdtemp
	13 ftemp
	15 stemp
	17 frol
	19 beta
	28 braw
	29 araw
	30 avgpm
	32 mass
	34 bzero
	45 exfg
	50 bref
	52 cflg
	53 aflg

relay stat

Mit diesem Befehl erhält man Informationen über die aktuelle Relais-Logik (Arbeitskontakt oder Ruhekontakt), wenn alle Relais auf denselben Status gesetzt sind, d.h. alle Arbeits- oder alle Ruhekontakt. Hier wird z.B. der Status angezeigt, wenn die Logik aller Relais auf "Arbeitskontakt" gesetzt ist. Send: relay stat Receive: relay stat open

Hinweis Wurde einzelnen Relais eine unterschiedliche Logik zugeordnet, dann erhält man als Antwort einen 4-stelligen hexadezimalen String mit dem letzten signifikanten Byte Relais Nr. 1. •

Beispiel:

Receive: relay stat 0x0001 (zeigt an, dass Relais Nr. 1 im Arbeitskontakt und alle anderen im Ruhekontakt sind)

Receive: relay stat 0x0005 (zeigt an, dass Relais Nr: 1 und 3 im Arbeitskontakt und alle anderen im Ruhekontakt sind))

set relay open set relay open Wert set relay closed set relay closed Wert

Mit diesen Befehlen kann man die Relais-Logik für ein Relais auf "Arbeitskontakt" oder "Ruhekontakt" setzen. Der *Wert* des Relais bzw. die Nummer liegt zwischen 1 und 16. Hier wird beispielsweise das Relais Nr. 1 auf "Arbeitskontakt" gesetzt.

Hinweis Wird der Befehl ohne eine angehängte Relais-Nr. geschickt, dann wird allen Relais die gesetzte Logik "Arbeitskontakt / Ruhekontakt" zugeordnet. •

Send: set relay open 1 Receive: set relay open 1 ok

Die Layouts der Datensätze vom Typ Erec, Lrec Srec enthalten folgende Informationen:

• ein Format-Spezifikationselement für die autom. Syntaxanalyse von ASCII Antworten

• ein Format-Spezifikationselement für die autom. Syntaxanalyse von binären Antworten,

Zusätzlich sind im Layout für den Datensatztyp Erec folgende Angaben enthalten

Definition Datensatz-Layout

• ein Format-Spezifikationselement zur Erzeugung der Anzeigen auf dem Display auf der Gerätevorderseite.

Im Betrieb, werden beim Einlesen der Werte entweder ASCII oder binär Format-Spezifikationselemente verwendet und in eindeutige interne Darstellungsformate konvertiert (32-bit Gleitpunktzahlen oder 32-bit ganze Zahlen). Diese Werte werden dann in Anzeigetexte konvertiert und die Formatangaben für die Anzeige auf dem Display verwendet. Normalerweise ist das Spezifikationselement, das für die autom. Syntaxanalyse einer Datenangabe vom Eingangsdatenstrom verwendet wird, stark mit dem Spezifikationselement verbunden, das zur Anzeige verwendet wird (d.h. alle Gleitpunkteingaben werden mit einem 'f' als Ausgangs-Spezifikationselement dargestellt und alle ganzzahligen Eingaben werden mit einem 'd' als Spezifikationselement angezeigt).

Die erste Zeile des Antwortlayouts beinhaltet eine Art gescannte Parameter Liste für die autom. Syntaxanalyse der Felder einer ASCII ERec Antwort. Die Parameter werden durch Leerzeichen getrennt und die Zeile wird mit a \n abgeschlossen (normales Trennzeichen für Zeilen). Gültige Felder sind:

%s - parse a string
%d - parse a decimal number
%ld - parse a long (32-bit) decimal number
%f - parse a floating point number
%x - parse a hexadecimal number
%lx - parse a long (32-bit) hex number
%* - ignore the field

Hinweis ob die ganzzahligen Werte ein Vorzeichen haben oder nicht, ist ohne Bedeutung, da dies automatisch geregelt wird. •

Format Spezifikationselement für binäre Antworten

In der zweiten Zeile der Layout-Antwort finden Sie die binäre Parameterliste für die autom. Syntaxanalyse der Felder einer binären Antwort. Die einzelnen Parameter MÜSSEN mit einem Leerzeichen voneinander getrennt sein. Die Zeile wird mit a '\n' abgeschlossen. Gültige Felder sind:

t - parse a time specifier (2 bytes)

- D parse a date specifier (3 bytes)
- i ignore one 8-bit character (1 byte)

Format Spezifikationselement für ASCII Antworten

Format Spezifikationselement für Erec Layout

B-76 Modell 5030*i* SHARP Instruction Manual

Werte-String

- e parse a 24-bit floating point number (3 bytes: n/x) E - parse a 24-bit floating point number (3 bytes: N/x) f - parse a 32-bit floating point number (4 bytes)
- c parse an 8-bit signed number (1 byte)
- C parse an 8-bit unsigned number (1 byte)
- n parse a 16-bit signed number (2 bytes)
- N parse a 16-bit unsigned number (2 bytes)
- m parse a 24-bit signed number (3 bytes)
- M parse a 24-bit unsigned number (3 bytes)
- l parse a 32-bit signed number (4 bytes)
- L parse a 32-bit unsigned number (4 bytes)

Es gibt ein optionales einzelnes Zeichen d, welches jedem beliebigen numerischen Feld folgen kann, welches anzeigt, dass nach der autom. Syntaxanalyse des Feldes der resultierende Wert durch 10^d geteilt werden muss. Folglich würde das 16-Bit Feld oxFFC6 mit dem Format-Spezifikationselement 'n3' als -0,058 interpretiert werden.

Die nachfolgenden Zeilen in der ERec Layout-Antwort beschreiben die Darstellung des gesamten Bedienfeldes. Das gesamte Bedienfeld des Gerätes - wie es im Display angezeigt wird - besteht aus zwei Spalten mit mehreren Zeilen. Jede Zeile besteht aus drei Hauptbestandteilen: (1) einem Textfeld, (2) einem Wertefeld und (3) einer Taste. Keine der drei Komponenten ist erforderlich. Das Textfeld beinhaltet statisch angezeigten Text.

Im Wertefeld erscheinen Werte, die aus der Antwort auf einen DATA/ERec Befehl autom. analysiert werden. Das Feld zeigt auch einen Alarmstatus an - hierbei ändert sich aber der Hintergrund. Die Taste, wenn gedrückt, stößt die Eingabe aus einer Dialogbox oder einer Auswahlliste an. Es gibt fünf Arten von Tasten B, I, L, T und N.

Jede Zeile im Layout-String entspricht einer Zeile im Display. Der Layout-String beschreibt jedes der drei Hauptfelder sowie alle Übersetzungsmechanismen und die entsprechenden Befehle.

Text Das erste Feld des Layout-Strings ist der Text. Der Text wird durch einen ':' getrennt. Der String bis zum ersten ':' wird gelesen und in das Textfeld der Zeile eingefügt.

Thermo Fisher Scientific

Danach folgt ein möglicher String, der in Anführungszeichen angehängt wird. Dies wird verwendet, um einen String in einem Wertefeld zu platzieren.

Werte-Quelle Die Wertequelle, welche die Pos. (oder Wort) Nr. in der DATA/ERec Antwort ist, erscheint als nächstes. Danach folgt ein optionaler Bitfeld-Designator. Das Datenelement, das von der Werte-Quelle identifiziert wird, kann als String 's', hexadezimal 'x', dezimal 'd' oder Gleitpunkt 'f' oder binäre 'b' Zahl gedruckt werden. Typischerweise gibt es Bitfeld-Auszüge nur bei Dezimaloder Hexadezimalzahlen.

> Nach Gleitpunktzahlen kann ein optionales Spezifikationselement zur Präzisierung folgen, das als Argument für "printf's %f format" verwendet werden kann (z.B. ein Feld von '4' wird in den printf Befehl '%.3f' umgesetzt). Alternativ, kann das Sonderzeichen '*' dem Spezifikationselement zur Präzisierung vorangehen; aus dem Spezifikationselement zur Präzisierung wird nun eine Zahl eines Feldes.

Dies ist zum Beispiel dann hilfreich und sinnvoll, wenn man Zahlen formatiert, die je nach Modus des Gerätes unterschiedlich genau sind.

Binäre Zahlen können auch ein optionales Spezifikationselement zur Präzisierung haben, das dazu dient festzulegen, wie viele Bits gedruckt werden. Das Spezifikationselement 'b4' beispielsweise druckt die vier wertniedrigsten Bits der analysierten Zahl.

Es gibt sehr strenge Einschränkungen, wo ein 's' Feld erscheinen kann: im Augenblick müssen die Quellen 1 und 2 ein 's' Feld sein, es können aber keine anderen Felder ein 's' Feld sein.

Alarm Information Der Wertequelle folgt eine optionale Alarm-Information, angezeigt durch ein '@' Zeichen mit einem Quellindikator und einem Startbit-Indikator. Bei allen Alarm-Informationen geht man von einer Länge von zwei Bits aus (LOW und HIGH). Der Bitfeld-Auszug wird vom ganzzahligen Teil der Quelle durchgeführt. Eine typische Alarm-Information würde z.B. so aussehen: '@6.4'.

TranslationstabelleDann erscheint eine optionale Translationstabelle in geschweiften
Klammern '{}'. Es handelt sich hierbei um einen String von
Wörtern, mit Leerzeichen getrennt. Ein Beispiel für solch eine
	Tabelle wäre '{Code_0 Code_1 Code_2 Code_3}'. Der extrahierte Wert wird als ein auf null basierter Index verwendet, um den String für die Anzeige zu bestimmen.
Auswahltabelle	Dann erscheint eine optionale Auswahltabelle in Klammern '()'. Hierbei handelt es sich um einen String von Zahlen, die mit Leerzeichen getrennt sind '(O 1)'. Die Auswahltabelle listet die Einträge der Translationstabelle auf, aus der der Bediener auswählen kann, wenn er die Parameter einstellt. Dies ist nicht unbedingt identisch zu den Einträgen, die angezeigt werden.
Tastenbezeichnung	Dann folgt eine optionale Bezeichnung für die Tasten 'B', 'I', 'L', 'T' oder 'N'.
	B- steht für eine Taste, bei der ein Dialogfeld am Bildschirm erscheint, in welchem der Bediener zur Eingabe eines neuen Wertes aufgefordert wird unter Berücksichtigung des bezeichneten Eingabeformats. Das Eingabeformat wird 'B' durch den nachfolgenden Semikolon spezifiziert.
	I—steht für eine Taste, bei der eine Auswahlliste mit Eingabeübersetzung am Display erscheint. Das bedeutet, dass die gelesenen Werte übersetzt werden, bevor sie mit den Optionen der Auswahlliste verglichen werden.
	L—steht für eine Taste, bei der eine Auswahlliste ohne Übersetzung erscheint. Der Ausgabewert ist eine Zahl der ausgewählten Option.
	T—steht für eine Taste, bei der eine Auswahlliste erscheint mit Ausgabeübersetzung. Die Zahl der ausgewählten Option wird als Index in der Translationstabelle benutzt, um einen Output- String zu erzeugen.
	N—steht für eine Taste, mit der der nachfolgende Befehl lediglich ans Gerät geschickt wird. Hier ist keine Eingabe durch den Bediener erforderlich.
	Der Befehl, der nach Beendigung der Tastenauswahl an das Gerät geschickt werden muss, ist der folgende String (durch ein optionales ' ') oder ein Zeilenende. Der Befehls-String sollte normalerweise eine druckähnliche Formatierung haben und die Eingabe des Bedieners beinhalten. Existiert ein ' ', so zeigt dies einen Befehl an, der an das Gerät geschickt wird, wenn der

Tastenbefehl erfolgreich abgeschlossen wurde, um das Wertefeld zu aktualisieren.

Beispiele Einige Beispiele ('\n' ist der C Syntax für ein Zeilenende-Zeichen):

'Concentrations\n'

Dies ist eine einzige Zeile nur aus Text bestehend.

'\n'

Dies ist eine einzige leere Zeile.

' NO:3s\n'

Diese Zeile hat einen leichten Einzug. Das Textfeld ist 'NO', der Wert wird aus dem dritten Element der Datenantwort genommen und als String interpretiert.

' NO:18sBd.ddd;set no coef %s\n'

Diese Zeile ist ebenfalls leicht eingezogen. Das Textfeld ist ebenfalls 'NO', der Wert wird jedoch aus dem achtzehnten Element der Datenantwort genommen, wieder als String interpretiert. Eine Taste erscheint in dieser Zeile, bei der – nach Drücken der Taste – eine Eingabeaufforderung im Display mit dem Text: "Please enter a new value for NO3 using a d.ddd format." Der vom Bediener eingegebene String wird zur Erzeugung eines Ausgabebefehls verwendet. Gibt der Bediener z.B. '1.234' ein, dann lautet der erzeugte Befehl 'set no coef 1.234'.

```
' NO:21f{Code_0 Code_1 Code_2 Code_3 Code_4 Code_5
Code_6 Code_7 Code_8 Code_9 Code_10 Code_11}Lset range no
%d\n'
```

Diese Zeile hat ebenfalls einen leichten Einzug. Die Überschrift ist wieder 'NO', und der Wert ist das einundzwanzigste Element der Datenantwort - interpretiert als Gleitpunktzahl. Es existiert eine keine Übersetzung-Taste, die eine Auswahlliste mit zwölf "Code nn" Optionen erzeugt. Die Zahl der Benutzerauswahl wird verwendet, um den Ausgabebefehl zu erzeugen

```
'Mode:6.12-13x{local remote service service}(0
1)Tset mode %s\n'
```

Dies ist eine Zeile mit der Überschrift 'Mode' (= Modus) und der Wert wird aus dem sechsten Feld der Datenantwort genommen. Es folgt ein Bitfeld-Auszug der Bits 12-13 aus der Quelle (der Wertetyp ist hier nicht wichtig, da der Wert in einen AusgabeString übersetzt wird). Nach dem Extrahieren der Bits, werden Sie zur Bit-Null Position nach unten verschoben. Folglich sind als Werte hier in diesem Beispiel die Werte o bis 3 möglich. Die Übersetzungsliste zeigt die Wörter, die jedem Eingabewert entsprechen, der nullte Wert erscheint dabei als erstes (O -> local, 1 -> remote, etc.). Die Auswahlliste zeigt, dass in diesem Fall nur die beiden ersten Werte dem Bediener angezeigt werden müssen, wenn die Taste gedrückt wird. Die Taste 'T' bedeutet: vollständige Übersetzung, Eingabe Code zu String und Bediener Auswahl an Ausgabe-String.

'\xC'

Hier handelt es sich um eine Zeile, die eine neue Spalte beginnt (\xC oder ^L).

' Comp:6.11x{off on}Tset temp comp %s\n'

Diese Zeile zeigt, dass das Bitfeld-Ende (der zweite Teil der Bitfeld-Spezifikation) optional ist. Das Bitfeld ist ein Bit lang und beginnt in diesem Fall beim elften Bit.

'Background:7f*8Bd.ddd;set o3 bkg %s\n'

In dieser Zeile sehen Sie die Verwendung eines indirekten Spezifikationselements zur Präzisierung für Gleitpunkt-Anzeigen. Der Hintergrundwert wird aus dem siebten Element genommen und das Spezifikationselement zur Präzisierung vom achten Element. Wäre das Sternchen nicht existent, würde dies bedeuten, dass 8 Stellen nach dem Dezimalpunkt angezeigt werden sollen.

Appendix C MODBUS Protokoll

Dieser Anhang beschreibt das MODBUS Protokoll-Interface; es wird über RS-232/485 (RTU Protokoll) und über TCP/IP über Ethernet unterstützt.

Die verwendeten MODBUS-Befehle werden in diesem Dokument in detaillierter Weise beschrieben. Die Unterstützung des MODBUS-Protokolls für die iSeries ermöglicht dem Bediener das Lesen der div. Konzentrationswerte und anderer Messwerte, das Lesen des Status der digitalen Ausgänge des Analysators und Anstoßen bzw. die Simulation des Aktivierens eines digitalen Eingangs am Gerät. All dies kann unter Verwendung der nachfolgenden MODBUS-Befehle durchgeführt werden.

Über Ethernet werden bis zu drei gleichzeitige Verbindungen unterstützt.

Details zur Spezifikation bzgl. des Modells 5030*i* MODBUS-Protokolls entnehmen Sie bitte folgenden Abschnitten:

- "Serielle Kommunikationsparameter" auf Seite C-1
- "TCP Kommunikationsparameter" auf Seite C-2
- "Definition Anwendungsdateneinheit" auf Seite C-2
- "Funktionscodes" auf Seite C-4
- "Unterstützte MODBUS Parameter" auf Seite C-9

Weitere Informationen über das MODBUS-Protokoll erhalten Sie im Internet unter <u>http://www.modbus.org</u>. Die Referenzen stammen aus der MODBUS Anwendungsprotokoll-Spezifikation V1.1a MODBUS-IDA, Version vom 4. Juni 2004.

Nachfolgend finden Sie die Kommunikationsparameter, die verwendet werden, um den seriellen Port der *i*Series zu konfigurieren, so dass das MODBUS RTU Protokoll unterstützt wird.

Anzahl Datenbits: 7 oder 8Anzahl Stoppbits: 1 oder 2

Serielle Kommunikations parameter

Parität: kein, ungerade oder geradeDatenrate: 1200 bis 115200 Baud (9600 = Defaultwert)

TCP Kommunikations parameter

*i*Series Geräte unterstützen das MODBUS/TCP Protokoll. Die Registerdefinition ist identisch zu der für die serielle Schnittstelle. Über Ethernet werden bis zu drei gleichzeitige Verbindungen unterstützt

TCP Anschluss-Port für MODBUS : 502

Definition Anwendungs dateneinheit

Nachfolgend die MODBUS ADU (Application Data Unit) Formate über serielle Kommunikation und über TCP/IP:

Seriell:	Slave Adresse	Funktionscode	Daten	FehlerCheck
TCP/IP :	MBAP Header	Funktionscode	Daten	

Slave Adresse Die MODBUS Slave-Adresse ist ein einziges Byte lang. Dies ist identisch zur Geräte ID, die für C-Link Befehle verwendet wird. Adressbereich: zwischen 1 und 127 dezimal (d.h. oxo1 hex bis ox7F hex). Diese Adresse wird nur für MODBUS RTU über serielle Verbindung eingesetzt.

> **Hinweis** Die Geräte ID 'o' für Broadcast MODBUS Befehle, wird nicht unterstützt. Die Geräte IDs 128 bis 247 (d.h. 0x80 hex bis 0xF7 hex) werden aufgrund aufgelegter Beschränkungen durch C-LINK nicht unterstützt.•

MBAP Header	Im MODBUS-Protokoll über TCP/IP, wird ein MODBUS Applikationsprotokoll Header (MBAP) zur Identifizierung der Meldung verwendet. Der Header besteht aus den folgenden Komponenten:				
	Transaktions ID	2 Bytes	0x0000 bis 0x	FFFF (in Antwort zurückgeschickt)	
	Protokoll ID	2 Bytes	0x00 (MODBL	JS Protokoll)	
	Länge	2 Bytes	0x0000 bis 0x	FFFF (Anz. der folgenden Bytes)	
	Einheit ID	1 Byte	0x00 bis 0xFF	(in Antwort zurückgeschickt)	
Funktionscode	Der Funktions folgenden Fun	code ist ei ktionscode	in Byte lang. Das Gerät unterstützt die les:		
	Ausgänge leser	ı	:	OX01	
	Eingänge lesen	1	:	0x02	
	Ausgangsdaten lesen Eingangsdaten lesen		:	0x03	
			:	0x04	
	Forcen (schrei Ausgänge	ben) einz.	:	0x05	
	Ausnahmestatus lesen		:	0x06	
	Wird ein Funktionscode empfangen, der nicht auf dieser Liste steht, dann wird ein ungültig zurückgeschickt.				
Daten	Das Datenfeld variiert in Abhängigkeit von der Funktion. Weitere Infos über diese Datenfelder finden Sie im Abschnitt "Funktionscodes".				
Fehler-Check	Bei der MODBUS-Kommunikation über serielle Schnittstelle beinhaltet die Meldung eine Art Fehlerprüfung. Bei MODBUS über TCP/IP ist dies nicht notwendig, da die übergeordneten Protokolle eine fehlerfreie Übertragung gewährleisten. Der Fehlercheck ist ein zwei-Byte CRC Wert (16-bit).				

Funktionscodes

(0x01/0x02) Ausgänge lesen/Eingänge lesen

Dieser Abschnitt beschreibt die verschiedenen Funktionscodes, die vom Modell 5030*i* unterstützt werden.

Hier wird der Status der digitalen Ausgänge (Relais) im Gerät gelesen. Egal welche dieser Funktionen ausgeführt wird, es wird die gleiche Antwort erzeugt.

Diese Anforderungen spezifizieren die Startadresse, d.h. die Adresse des ersten spez. Ausgangs sowie die Anzahl der Ausgänge. Die Ausgänge werden beginnend mit O adressiert. Demzufolge werden die Ausgänge mit den Nummern 1-16 als O-15 adressiert.

Die Ausgänge in der Antwortmeldung werden gepackt (einer pro Bit des Datenfeldes). Der Status wird mit 1 = Aktiv (on) und o = Inaktiv (off) angegeben. Das wertniedrigste Bit des ersten Datenbytes enthält die Ausgangsadresse in der Abfrage. Die anderen Ausgänge folgen zum höherwertigen Ende dieses Bytes. Ist die zurückgeschickte Anzahl von Ausgängen kein Vielfaches von acht, dann werden die verbleibenden Bits im finalen Datenbyte mit Null aufgefüllt (zum höherwertigen Ende des Bytes hin). Das Feld "Byteanzahl" spezifiziert die Anzahl kompletter Datenbytes.

Hinweis Die angezeigten Werte reflektieren möglicherweise den Status des aktuellen Relais im Gerät nicht, da der Bediener diese Ausgänge entweder als aktiv geschlossen (Ruhekontakt) oder offen (Arbeitskontakt) programmieren kann. •

Anforderung

Funktionscode	1 Byte	0x01 oder 0x02
Start-Adresse	2 Bytes	0x0000 bis zum zulässigen Max. d. Gerätes
Anzahl Ausgänge	2 Bytes	1 bis zum zulässigen Max. d. Gerätes
Einheit ID	1 Byte	0x00 bis 0xFF (wird in Antwort zurückgeschickt)

Antwort

Funktionscode	1 Byte	0x01 oder 0x02
Byteanzahl	1 Byte	N*
Status Ausgang	N Byte	N = N oder N+1
XNT		

 $^{*}N$ = Anzahl Ausgänge / 8, falls Rest nicht gleich Null, dann N=N+1

Fehlerantwort

Funktionscode	1 Byte	0x01 oder 0x02
Ausnahmecode	1 Byte	01=Illegale Funktion, 02=Illegale Adresse
		03=Illegale Daten, 04=Störung Slave

Nachfolgend ein Beispiel für eine Anforderung und Antwort, die Ausgänge 2-15 zu lesen:

Anforderung	
Feldname	(Hex)
Funktion	0x01
Start-Adresse Hi	0x00
Start-Adresse Lo	0x02
Anzahl Ausgänge Hi	0x00
Anzahl Ausgänge Lo	0x0D

Antwort

Feldname	(Hex)
Funktion	0x01
Byteanzahl	0x03
Status Ausgänge 2–10	0xCD
Status Ausgänge 11–15	0x0A

Der Status der Ausgänge 2-10 wird als Byte-Wert oxCD, oder binär als 1100 1101 angezeigt. Ausgang 10 ist das werthöchste Bit dieses Bytes und Ausgang 2 das wertniedrigste Bit. Per Konvention, werden die Bits in einem Byte wie folgt angezeigt: das wertniedrigste Bit steht links, das werthöchste Bit steht rechts. Demzufolge sind die Ausgänge im ersten Byte '10 bis 2', von links nach rechts. Im letzten Datenbyte, wird der Status der Ausgänge 15-11 als Byte-Wert OxOA angezeigt, oder binär als 0000 1010. Ausgang15 ist an der fünften Bit-Position von links und Ausgang 11 ist das wertniedrigste Bit dieses Bytes. Die verbleibenden vier höherwertigen Bits werden mit Null aufgefüllt.

(0x03/0x04) Ausgangsdaten Iesen/Eingangsdaten Iesen

Mit dieser Funktion werden die Messdaten aus dem Gerät gelesen. Beim Ausführen beider Funktionen wird die gleiche Antwort erzeugt. Mit diesen Funktionen kann man die Inhalte eines oder mehrerer zusammenhängender Register lesen.

Jedes Register hat 16 Bits, die wie nachfolgend gezeigt organisiert sind. Alle Werte werden im 32-Bit IEEE Standard 754 Gleitpunktformat angegeben. Dieses Format verwendet 2 sequentielle Ausgänge, die wertniedrigsten 16 Bits zuerst.

Die Anforderung spezifiziert die Start-Register-Adresse und die Anzahl von Registern. Die Register werden mit Null beginnend adressiert. Deshalb erhalten die Register Nr. 1-16 die Adressen O-15. Die Registerdaten in der Antwortmeldung werden als zwei Bytes pro Register gepackt. Der binäre Inhalt wird in jedem Byte rechtsbündig dargestellt. Bei jedem Register enthält das erste Byte die werthöheren Bits und das zweite Byte die wertniedrigen Bits.

Anforderung

Funktionscode	1 Byte	0x03 oder 0x04
Start-Adresse	2 Bytes	0x0000 bis zulässiges Max. Gerät
Anzahl Register	2 Bytes	1 bis zulässiges Max. Gerät

Antwort

Funktionscode	1 Byte	0x03 oder 0x04
Byteanzahl	1 Byte	2 x N*
Registerwert	N* x 2 Bytes	N = N oder N+1

*N = Anzahl Register

Fehlerantwort

Funktionscode	1 Byte	Funktionscode + 0x80
Ausnahmecode	1 Byte	01=Illegale Funktion, 02=Illegale Adresse
		03=Illegale Daten, 04=Störung Slave

C-6 Modell 5030*i* SHARP Instruction Manual

Nachfolgend ein Beispiel für eine Anforderung, die Register 10-13 zu lesen:

Anforderung

Feldname	(Hex)
Funktion	0x03
Start-Adresse Hi	0x00
Start-Adresse Lo	0x09
Anz. Register Hi	0x00
Anz. Register Lo	0x04

Antwort

Feldname	(Hex)
Funktion	0x03
Byteanzahl	0x06
Registerwert Hi (10)	0x02
Registerwert Lo (10)	0x2B
Registerwert Hi (11)	0x00
Registerwert Lo (11)	0x00
Registerwert Hi (12)	0x00
Registerwert Lo (12)	0x64
Registerwert Hi (13)	0x00
Registerwert Lo (13)	0x64

Die Inhalte von Register 10 werden als zwei Byte Wert 0x02 0x2B angezeigt. Die Inhalte der Register 11-13 als 0x00 0x00, 0x00 0x64 oder 0x00 0x64.

(0x05) Einz. Ausgang forcen (schreiben)

Mit dieser Funktion simuliert man das Aktivieren der digitalen Eingänge des Gerätes, wodurch die entsprechende Aktion ausgelöst wird.

Mit dieser Funktion kann man eine einzelne Aktion EIN oder AUS-schalten. Die Anforderung spezifiziert die Adresse der Aktion, die erzwungen werden soll. Die Aktionen werden bei Null beginnend adressiert. Demzufolge wird Aktion Nr. 1 als O adressiert. Der angeforderte ON/OFF STATUS wird durch eine Konstante im Anforderungs-Datenfeld spezifiziert. Der Wert oxFFoo fordert an, dass die Aktion aktiviert wird. Ein Wert von oxoooo führt zur Deaktivierung der Aktion. Alle anderen Werte sind nicht zulässig/illegal, und haben keine Auswirkung auf den Ausgang. Die normale Antwort ist ein Echo der Anforderung, die zurückgeschickt wird, nachdem der Status geschrieben wurde.

Hinweis Befindet sich das Geräte im Service-Modus, dann funktioniert diese Funktion nicht. •

Anforderung		
Funktionscode	1 Byte	0x05
Start-Adresse	2 Bytes	0x0000 bis zulässiges Max. Gerät
Ausg. Wert	2 Bytes	0x0000 oder 0xFF00
Antwort		
Funktionscode	1 Byte	0x05
Start-Adresse	2 Bytes	0x0000 bis zulässiges Max. Gerät
Ausg. Wert	2 Bytes	0x0000 oder 0xFF00
Fehlerantwort		
Funktionscode	1 Byte	Funktionscode + 0x80
Ausnahmecode	1 Byte	01=Illegale Funktion, 02=Illegale Adresse
		03=Illegale Daten, 04=Störung Slave

Hier ein Beispiel einer Anforderung, Ausgang 5 EIN zu schreiben:

Anforderung		
Feldname	(Hex)	
Funktion	05	
Ausg. Adresse Hi	00	
Ausg. Adresse Lo	05	
Ausg. Wert Hi	FF	
Ausg. Wert Lo	00	

Antwort

Feldname

(Hex)

Funktion	05
Ausg. Adresse Hi	00
Ausg. Adresse Lo	05
Ausg. Wert Hi	FF
Ausg. Wert Lo	00

Unterstützte MODBUS Parameter

In den folgenden Tabellen Tabelle C–1 bis Tabelle C–3 finden Sie eine Liste der MODBUS Befehle, die für das Modell 5030*i* unterstützt werden.

WICHTIGER HINWEIS Die Adressen in den nachfolgenden Tabellen sind Protokoll-Daten-Einheiten (Protocol Data Unit (PDU)) Adressen. Überprüfen Sie die Nr. des Ausgangs bei Ihrem MODBUS-Master, um eine Übereinstimmung mit dem Ausgang am Gerät sicherzustellen. •

Hinweis Status 1 zeigt einen aktiven Status/Zustand an. •

Register Nr.	Status
0	UNGÜLTIG
1	LOKAL/FERNSTEUERUNG
2	SERVICE
3	NICHT VERWENDET
4	ALLG. ALARM
5	KONZ ALARM
6	GERÄTE ALARM
7	BETA DETEKTOR ALARM
8	NEPHELOMETER ALARM
9	RH/TEMP ALARM
10	DRUCK/VAKUUM ALARM
11	DURCHFLUSS ALARM
12	NICHT VERWENDET
13	NICHT VERWENDET
14	NICHT VERWENDET
15	EXT ALARM 1

Register Nr.	Status
16	EXT ALARM 2
17	EXT ALARM 3

WICHTIGER HINWEIS Die Adressen in den nachfolgenden Tabellen sind Protokoll-Daten-Einheiten (Protocol Data Unit (PDU)) Adressen. Überprüfen Sie die Nr. des Ausgangs bei Ihrem MODBUS-Master, um eine Übereinstimmung mit dem Ausgang am Gerät sicherzustellen. •

Hinweis Weiterführende Infos über das Lesen von Registern und wie die Daten zu interpretieren sind finden Sie im Abschnitt "(0x03/0x04) Ausgangsdaten lesen/Eingangsdaten lesen" dieses Anhangs. •

Tabelle C-2. Ausgänge lesen - Modell 503	80 <i>i</i>
--	-------------

Register Nr.	Variable
0	UNGÜLTIG
1 & 2	РМа
3 & 4	NICHT VERWENDET
5&6	LUFTDRUCK
7 & 8	VAKUUM
9 & 10	NICHT VERWENDET
11 & 12	DURCHFLUSSDRUCK
13 & 14	NICHT VERWENDET
15 & 16	REL. FEUCHTE UMGEB.
17 & 18	REL. FEUCHTE PROBEN.
19 & 20	NICHT VERWENDET
21 & 22	UMGEBUNGSTEMPERATUR
23 & 24	PLATINENTEMPERATUR
25 & 26	DURCHFLUSSTEMP.
27 & 28	NICHT VERWENDET
29 & 30	NICHT VERWENDET
31 & 32	NICHT VERWENDET
33 & 34	DURCHFLUSSVOLUMEN
35 & 36	NICHT VERWENDET

Register Nr.	Variable
37 & 38	BETA
39 & 40	ANALOG EIN 1
41 & 42	ANALOG EIN 2
43 & 44	ANALOG EIN 3
45 & 46	ANALOG EIN 4
47 & 48	ANALOG EIN 5
49 & 50	ANALOG EIN 6
51 & 52	ANALOG EIN 7
53 & 54	ANALOG EIN 8
55 & 56	BETA ROH
57 & 58	ALPHA ROH
59 & 60	PM MITTEL
61 & 62	NICHT VERWENDET
63 & 64	MASSE
65 & 66	NICHT VERWENDET
67 & 68	BETA NULL
69 & 70	NICHT VERWENDET
71 & 72	NEPH
73 & 74	NICHT VERWENDET
75 & 76	NICHT VERWENDET
77 & 78	NICHT VERWENDET
79 & 80	NICHT VERWENDET
81 & 82	NICHT VERWENDET
83 & 84	SHARP
85 & 86	NICHT VERWENDET
87 & 88	SHARP MITTEL
89 & 90	NICHT VERWENDET
91 & 92	EXT ALARM
93 & 94	NEPH TEMP
95 & 96	NEPH REL FEUCHTE
97 & 98	NEPH IRED
99 & 100	NEPH REF
101 & 102	BETA REF
103 & 104	NICHT VERWENDET

Register Nr.	Variable
105 & 106	ALLG. FLAGS
107 & 108	BETA DETEKTOR FLAGS
109 & 110	NICHT VERWENDET
111 & 112	COMP MASSE
113 & 114	NICHT VERWENDET
115 & 116	NEPH MITTEL

WICHTIGER HINWEIS Die Adressen in den nachfolgenden Tabellen SIND Protokoll-Daten-Einheiten (Protocol Data Unit (PDU)) Adressen. Überprüfen Sie die Nr. des Ausgangs bei Ihrem MODBUS-Master, um eine Übereinstimmung mit dem Ausgang am Gerät sicherzustellen. •

Hinweis Schreibt man 1 in die Ausgangs-Nr. der Ausgänge der folgenden Tabelle, so wird die entsprechend aufgelistete Aktion ausgelöst. Der Zustand/Status muss min. 1 Sek. gehalten werden um zu gewährleisten, dass das Gerät die Änderung erkennt und die entsprechende Aktion auslöst.

Hinweis Die Ausgänge einer Ausgangsgruppe (siehe Tabelle unten) schließen sich gegenseitig aus und werden nicht ausgelöst/initiiert, wenn ein Konflikt vorherrscht. Bevor Sie also einen Ausgang bestätigen (1), stellen Sie bitte sicher, dass die anderen Ausgänge der Gruppe nicht aktiv sind (0). •

Ausgang Nr.	Ausgelöste Aktion
100	UNGÜLTIG
101	NICHT VERWENDET
102	NICHT VERWENDET
103	NICHT VERWENDET
104	ANALOGAUS AUF NULL
105	ANALOGAUS AUF FS
106	RESET FILTERBAND- ZÄHLER AUF NULL
107	FILTERBAND STG.
108	PUMPEN STG. EIN/AUS

Tabelle C-3. Ausgänge schreiben - Modell 5030i

Ausgang Nr.	Ausgelöste Aktion
109	TEMP KOMP EIN/AUS
110	DRUCK KOMP EIN/AUS
111	HEIZUNG EIN/AUS
112	HZG REL FEUCHTE/TEMP STG
113	EXT ALARM 1
114	EXT ALARM 2
115	EXT ALARM 3

Appendix D Gesytec (Bayern-Hessen) Protokoll

Dieser Anhang liefert eine Beschreibung der Geysitech (Bayern-Hessen oder BH) Protokoll-Schnittstelle und wird sowohl über RS-232/485 als auch via TCP/IP über Ethernet unterstützt.

Die implementierten Geysitech-Befehle werden in diesem Dokument detailliert erläutert. Dank der Geysitech-Protokollunterstützung für die *i*Series ist es dem Bediener möglich, Funktionen auszuführen wie z.B. das Lesen der verschiedenen Konzentrationen und beim Gerät verschiedene Modi anzusteuern wie z.B. den Probenahme/Null/Messbereichs-Modus, falls für dieses entsprechende Gerät gültig. Dies erreicht man durch Verwendung der unten aufgelisteten unterstützten Geysitech-Befehle.

Ethernet unterstützt bis zu drei Verbindungen gleichzeitig.

Detaillierte Angaben zum Gesytec-Protokoll für das Messgerät Modell 5030*i* finden Sie unter folgenden Punkten:

"Serielle Kommunikations-parameter" auf Seite D-1

"TCP Kommunikations-parameter" auf Seite D-2

"Geräteadresse" auf Seite D-2

"Verwendete Abkürzungen" auf Seite D-2

"Grundlegende Befehlsstruktur" auf Seite D-3

"Zeichen für Blockchecksumme" auf Seite D-3

"Gesytec Befehle" auf Seite D-3

Serielle Kommunikationsparameter

Nachfolgend finden Sie die verwendeten Kommunikationsparameter die Verwendung finden, um den seriellen Port der *i*Series zu konfigurieren, um das Geysitech-Protokoll zu unterstützen.

	Anzahl Datenbits	: 7 oder 8
	Anzahl Stoppbits	: 1 oder 2
	Parität	: keine, ungerade oder gerade
	Datenrate	: 1200 - 115200 Baud (9600 = Default)
TCP Kommunikations- parameter	<i>i</i> Series Geräte unte Die Register-Defini Schnittstelle. Über gleichzeitig unterst	rstützen das Geysitech-Protokoll über TCP/IP. ition ist daher identisch zu der der seriellen Ethernet werden bis zu drei Verbindungen ützt.
	TCP Anschlussport	für Geysitech: 9882
Geräteadresse	Die Geysitech Gerä und wird mittels ei mit führenden Null Geräteadresse 1 wir dargestellt).	teadresse hat einen Wert zwischen 0 und 127 ner 3-stelligen ASCII-Zahl – falls erforderlich - len oder führenden Leerzeichen dargestellt (die rd beispielsweise als 001 oder <sp><sp>1</sp></sp>
	Die Geräteadresse MODBUS-Befehle Tastenfeld auf der I	entspricht der Geräte ID, die für C-Link und verwendet wird. Eine Einstellung ist über das Frontseite des Gerätes möglich.
	Die Geräteadresse durch <address> d</address>	wird in den Beispielen dieses Dokuments argestellt.
	Hinweis Geräte II durch das C-Link P sind. •	Ds 128 bis 247 werden nicht unterstützt, da Protokoll gewisse Beschränkungen auferlegt
Verwendete	Folgende Abkürzur	ngen werden in diesem Dokument verwendet:
Abkürzungen	<cr> Abkürzung</cr>	für "Carriage Return" (ASCII Code oxoD)
	<stx> Abkürzung</stx>	für "Start of Text" (ASCII Code 0x02)
	<etx> Abkürzung</etx>	für "End of Text" (ASCII Code 0x03)
	<sp> Abkürzung fi</sp>	ir "space" = Leerzeichen (ASCII Code 0x20)

Grundlegende Befehlsstruktur

Nachfolgend die allg., generelle Struktur eines Geysitech-Befehls:

<STX>Befehlstext<ETX><BCC>

ODER

<STX>Befehlstext<CR>

Jeder Befehl wird durch Steuerzeichen eingerahmt; <STX> am Anfang des Textes und <ETX> oder <CR> am Ende.

Wird ein Text mit dem Steuerelement <ETX> abgeschlossen, dann werden noch zwei zusätzliche Zeichen, nämlich <BCC> nach dem <ETX> angehängt. Es handelt sich hierbei um die Blockchecksumme.

Diese Zeichen - <BCC> - können zum Befehl hinzugefügt werde, um die Verarbeitung ungültiger Befehle zu vermeiden.

Zeichen für Blockchecksumme <BCC>

Die Blockchecksummen-Zeichen werden beginnend mit einem Wert von 0000000 berechnet, binär (0x00), bitweise, ORing exkl., wobei jedes Zeichen des Befehlsstrings (oder der Antwort) die Zeichen <STX> und <ETX> miteinschließt. Die Checksumme hat die Aufgabe einer Art Fehlerprüfung. Der Befehlsabschluss bestimmt das Vorhandensein oder Nichtvorhandensein der <BCC> Zeichen.

Wird ein Befehl mit <ETX> abgeschlossen, dann stellen die nächsten beiden Zeichen die Checksumme dar. Schließt der Befehl mit <CR> ab, dann wird keine Checksumme angehängt.

Die Blockchecksumme besteht aus 2 Zeichen, die eine 2-stellige hexadezimale Zahl darstellen (1Byte) (z.B. 1 Byte 0xAB hex Checksumme wird mit Hilfe der beiden Zeichen 'A' & 'B' dargestellt).

Im gesamten Dokument wird die Checksumme mit <BCC> bezeichnet.

Gesytec Befehle Die folgenden Befehle werden vom Geysitech Protokoll unterstützt:

- Gerätesteuerbefehl (ST)
- Datenabfragebefehl (DA)

Gerätesteuerbefehl (ST)

Vom Geysitech Protokoll wird ein Steuerbefehl unterstützt.

Dieser <Steuerbefehl> ist ein einzelnes Zeichen, das im Gerät eine Aktion ansteuert/auslöst. Die Befehle sind nur dann aktiv, wenn der Service-Modus nicht aktiv ist und die Null/Messbereichsoption verfügbar ist.

Über den Befehl 'N' wird ein Filterwechsel aktiviert.

Nachfolgend verschiedene, zulässige Formate für den ST Befehl:

<STX>ST<Adresse><Steuerbefehl><ETX><BCC>

ODER

<STX>ST<Adresse><Steuerbefehl><CR>

ODER

<STX>ST<Adresse><SP><Steuerbefehl><CR>

ODER

<STX>ST<Adresse><SP><Steuerbefehl><ETX><BCC>

Die <Adresse> ist optional, d.h. sie kann komplett weggelassen werden. Falls existent, muss die <Adresse> der Geräteadresse entsprechen. Nach der <address> kann ein zusätzliches Leerzeichen folgen.

Entspricht der erhaltene Befehl nicht den o.g. Formaten, oder entspricht die <Adresse> nicht der Geräteadresse, so wird der Befehl ignoriert.

Nachfolgend ein Musterbefehl, mit dem vom Gerät ein Filterwechsel ausgelöst wird; Geräteadresse 14:

<STX>ST014<SP>N<CR>

Datenabfragebefehl (DA)

Mit diesem Befehl wird eine Datenübertragung vom Gerät initialisiert. Das Gerät antwortet, indem es Messdaten schickt. Dies hängt vom Bereichsmodus unten ist im nachfolgend beschriebenen Abschnitt "Messwerte als Antwort auf einen DA Befehl" aufgelistet.

Die Befehlsstruktur für einen Datenabfragebefehl lautet wie folgt:

<STX>DA<Adresse><ETX><BCC>

Die <Adresse> ist optional, d.h. sie kann komplett weggelassen werden. Falls existent, muss die <Adresse> der Geräteadresse entsprechen. Nach der <address> kann ein zusätzliches Leerzeichen folgen. Wird die <Adresse> ausgelassen, dann ist im Abfragestring kein Leerzeichen erlaubt.

Ein Befehl ohne Adresse ist ebenfalls ein gültiger Befehl.

Nachfolgend verschiedene, zulässige Formate für einen DA Befehl mit der Geräteadresse 14:

<STX>DA<CR>

<STX>DA014<CR>

<STX>DA<SP><14<ETX><BCC>

<STX>DA<ETX><BCC>

Der Datenabfrage-String ist gültig und wird nur dann mit der Übertragung von Daten beantwortet, wenn der Befehl mit den Zeichen <STX> beginnt, gefolgt von den Zeichen DA, und wenn die <Adresse> (falls vorhanden) der Geräteadresse entspricht, und der Befehl entweder mit <CR> ohne Checksumme oder mit <ETX>, gefolgt von der korrekten Checksumme <BCC> endet.

Beispiel für einen Antwortstring auf einen Datenabfragebefehl (DA):

Als Antwort auf einen gültigen Datenabfragebefehl antwortet das Gerät im folgenden Format:

<STX>MD09<SP><address><SP><measured value1><SP><status><SP><SFKT><SP><address+1><SP><mea sured value2><SP ><status><SP><SFKT><ETX><BCC>

Die Antwort verwendet den gleichen Befehlsabschluss wie vom erhaltenen Befehl verwendet, d.h. wurde der erhaltene Befehl mit <CR> beendet, dann wird auch die Antwort mit <CR> abgeschlossen. Endet der Befehl mit <ETX><BCC>, dann endet die Antwort mit <ETX> und der berechneten Checksumme <BCC>.

09 nach den Zeichen MD zeigt an, dass im Antwort-String neun Messungen existieren, 10 entspräche zehn Messungen usw. Dies legt auch die Länge des Antwort-Strings fest.

<Adresse> stellt die Geräteadresse dar. Jede nachfolgende Messung, die an die Antwort angehängt ist, hat als <Adresse + X>, wobei X jeweils bei jeder inkludierten Messung um 1 inkrementiert wird.

<Messwert> stellt den Konzentrationswert in der aktuell ausgewählten Einheit dar; Exponentielle Darstellung mit 4 Zeichen Mantisse und 2 Zeichen Exponent, jeweils mit Vorzeichen. Mantisse: Vorzeichen und 4 Stellen. Der Dezimalpunkt wird nach dem ersten Zeichen angenommen/vermutet und wird nicht übertragen.

Exponent: Vorzeichen und 2 Stellen.

Beispiel:

-5384000.0 wird dargestellt als -5384+06

+0.04567 wird dargestellt als +4567-02

<Status>: wird gebildet aus < Betriebsstatus > und < Fehlerstatus > und von einem Leerzeichen getrennt, d.h.:

<Betriebsstatus><SP><Fehlerstatus>

Jedes der beiden Stati (<Betriebsstatus> und <Fehlerstatus>) werden von zwei Zeichen gebildet. Jedes Zeichen stellt eine 2stellige hexadezimale Zahl dar = 1 Byte (8 Bits) Betriebsstatus und 1 Byte (8 Bits) Fehlerstatus.

Diese beiden Bytes enthalten Informationen über die Hauptbetriebsbedingungen des Gerätes zu diesem Zeitpunkt/Moment. Details, wie die Statusbytes zu interpretieren sind, entnehmen Sie bitte Tabelle D–1 und Tabelle D–2 unten.

<SFKT>: Platzhalter für zukünftigen Gebrauch bzw. spezielle Funktionen. Enthält derzeit einen String von zehn Nullen, d.h. <000000000>.

Die Gesytec Seriennummer ist standardmäßig auf Null eingestellt. Wenn Sie die Seriennummer einstellen möchten, wählen Sie im Hauptmenü > Instrument Controls > Communication Settings > Gesytec Serial No. (= Gerätesteuerung > Einstellungen Kommunikation > Gesytec SerienNr.).

Beispiel für einen Antwortstring auf einen Datenabfragebefehl (DA) vom Gerät mit der Gesytec SerienNr. 000. Die Seriennummer ist im Beispiel fett dargestellt.

Geysitech Protokoll mit Übertragung von drei Konzentrationen (Geräte ID = 1, Betriebsstatus = 03, Fehlerstatus = 04):

Datenabfrage-String: <stx>da<cr>

Antwort-String:

Adresse 1. Konzentration(E-format)=25.78 Adresse+1

```
+5681+00<SP>03<SP>04<SP>00000000<SP>003<SP>+1175+01<SP>0
3<SP>04<SP
↑ ↑ ↑
2. Konzentration = 5.681 Adresse+2 3. Konzentration=11.75
```

000000000<SP><CR>

Beispiel für einen Antwortstring auf einen Datenabfragebefehl (DA) vom Gerät mit der Gesytec SerienNr. 123. Die Seriennummer ist im Beispiel fett dargestellt.

Geysitech Protokoll mit Übertragung von drei Konzentrationen (Geräte ID = 1, Betriebsstatus = 03, Fehlerstatus = 04):

Datenabfrage-String: <stx>da<cr>

Antwort-String:

<pre><stx>MD03<sp>001<sp>+2578+0</sp></sp></stx></pre>)1 <sp>03 <</sp>	SP>04 <sp>12</sp>	3 0000000
<sp>002 <sp></sp></sp>			
$\uparrow \qquad \uparrow$			\uparrow
Adresse 1. Konzentration	n(E-format)=2g	5.78	Adresse+1
+5681+00 <sp>03<sp>04<sp>000</sp></sp></sp>	0000000 <si< td=""><td>P>003<sp>+11</sp></td><td>75+01<sp>0</sp></td></si<>	P>003 <sp>+11</sp>	75+01 <sp>0</sp>
3 <sp>04<sp< td=""><td></td><td></td><td></td></sp<></sp>			
\uparrow	\uparrow	↑	
2. Konzentration = 5.681	Adresse+2	3. Konzentratio	n=11.75

123000000<SP><CR>

Die beigefügten Konzentrationen sind in der ausgewählten Einheit. Die Messungen, die der Antwort angehängt werden – falls nicht in einem Sondermodus gültig - melden einen Wert von 0.0.

Messwerte als Antwort auf einen DA Befehl

Die nachfolgend genannten 14 Messergebnisse werden beim Modell 5030*i* als Antwort auf einen DA Befehl geschickt:

- SHARP
- Feinstaub (PM)
- Nephelometer
- Volumenstrom
- Umgebungstemperatur
- Probenahmetemperatur
- Rel. Luftfeuchte (Umgebungsluft)
- Rel. Luftfeuchte (Probenahme)
- Durchflussdruck
- Vakuumdruck
- Luftdruck
- Mittelwert SHARP
- Mittelwert Feinstaub (PM)
- Mittelwert Nephelometer

Betriebs- und Fehlerstatus

Die Betriebsstati für das Modell 5030*i* entnehmen Sie bitte Tabelle D-1, die Fehlerstati entsprechend der Tabelle D-2.

	Tabelle D-1	. Betriebstsati –	Modell	5030
--	-------------	-------------------	--------	------

	D7	D6	D5	D4	D3	D2	D1	D0
→ Bit	8	7	6	5	4	3	2	1
→ Hex-Wert	80	40	20	10	08	04	02	01
		MSB				LSB		
Betriebsstatus:								
Service Modus(Ein)	0	0	0	0	0	0	0	1
Kein Passwortschutz	0	0	0	0	0	0	1	0
Pumpe (aus)	0	0	0	0	0	1	0	0
Heizung (aus)	0	0	0	0	1	0	0	0
Filterwechsel	0	0	0	1	0	0	0	0
Nephelometer Null	0	0	1	0	0	0	0	0
Nephelometer Standby	0	1	0	0	0	0	0	0
Nicht verwendet	1	0	0	0	0	0	0	0

Tabelle D–2. Fehlerstati - Modell 5030*i*

	D 7	D6	D 5	D 4	D 3	D2	D 1	D 0
→ Bit	8	7	6	5	4	3	2	1
→ Hex-Wert	8 0	40	2 0	1 0	0 8	04	0 2	0 1
		MS B				LS B		
Fehlerstatus:								
Filterbandalarm	0	0	0	0	0	0	0	1
Filterwechsel	0	0	0	0	0	0	1	0
Beta-Impuls Alarm	0	0	0	0	0	1	0	0
Alarm Nephelometer- Platine	0	0	0	0	1	0	0	0
Statusalarm Detektorplatine	0	0	0	1	0	0	0	0
Statusalarm Motherboard		0	1	0	0	0	0	0

	D 7	D6	D 5	D 4	D 3	D2	D 1	D 0
Durchflussalarm	0	1	0	0	0	0	0	0
Alarm Referenzspannung Nephelometer	1	0	0	0	0	0	0	0

Appendix E ESM Protokollbefehle

Dieser Anhang liefert eine Beschreibung ESM Protokollbefehle (ausgehend von der vormaligen FH62 Plattform), die zur Fernsteuerung eines Messgeräts Modell 5030*i* über ein Host-Gerät wie z.B. PC oder Messwerterfassungsgerät verwendet werden können. Das ESM Protokoll kann über RS-232, RS-485 oder Ethernet verwendet werden. ESM Funktionen sind über Ethernet (TCP Port 9884) zugänglich.

Ethernet unterstützt bis zu drei Verbindungen gleichzeitig pro Protokoll.

Unterstützte ESM Befehle

Die Tabellen E-1 bis E-3 zeigen die für das Modell 5030*i* unterstützten ESM-Befehle.

Befehl	Beschreibung
C3	Feinstaubkonzentration immer µg/m³
C2	Neph Konz µg/m³
С	SHARP Konz µg/m³
H3	Durchschnittl. Feinstaubkonz. immer µg/m ³
H2	Durchschnittl. Neph Konz μg/m ³
HT	Durchschnittl. SHARP Konz μg/m³
JB	Temp. Probenahmekopf – Umgebungstemp.
JD	Temp. in der Durchflussmessblende-Durchflusstemp.l
JF	Differenzdruck des Luftstrommessmoduls in Pa
JG	Unterdruck-Saugkammer
JH	Barometer in hPa
JI	Probenahmekopf Luft–Volumenstrom
JJ	Norm. Luftstrom (273K, 1013hPa)
JR	Wert der rel. Luftfeuchte (%RH)
JS	Wert der rel. Luftfeuchte Probenahme (%RH)
m1	Ungefilterte Masse in µg or mg basierend auf gewählter

Befehl	Beschreibung
	Einheit
0	meldet "offline" im Service-Modus, "online" wenn NICHT im Service-Modus
UA	Beta-Zählrate (1/s)
UB	Beta-Nullzählrate (1/s)
UC	Alpha-Zählrate (1/s)
UD	Alpha-Nullzählrate (1/s)
UQ	Radon-EEC Aktivitätskonz. (Bq/m ³)
US	Neph lesen (Koef.faktor)
?	Geräteadresse – GeräteID lesen
#	Flags/Merker – benötigen Nephelometer-Alarme

Tabelle E-2. Schreibbefehle 5030*i*

Befehl	Beschreibung
d4	Baudrate
d7	Geräteadresse – GerätelD
K4	Konzentrationsfaktor
KB	Filterwechsel – Staubbeladung in µg
KD	Filterwechsel – Zyklus in Std.
KG	Ext. Steuerung der Heizung
	0=aus
	1=RH Steuerung
	2=TEMP Steuerung
KH	Sollwert Luftdurchflusssteuerung in L/Std.
KN	0=Temp.komp. EIN Druckkomp. AUS
	1=Temp.komp. AUS Druckkomp. AUS
KS	Nephelometer Koef.faktor
KU	Legt den Zielwert für die rel. Luftfeuchte fest
KT	Legt den Zielwert für die Temperatur fest
K\$	Normdruck
K%	Normtemperatur
Y\$	Parameter in EEPROM schreiben

Befehl	Beschreibung
А	Pumpe aus
E	Pumpe ein
F	Filterwechsel